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The aim of this study is to discuss the success of the Genetic Algorithm 

(GA) approach compared with the conventional Newton-Raphson (NR) 

and Nelder-Mead (NM) algorithms in the estimation of the Binary Logit 

Model (BLM) parameters over a simulated data and a real data set on 

Alopecia disease. NR algorithm requires restrictive assumptions such as 

the continuity of the objective function and determination of starting 

points for the model parameters in iterative process. As for the NM 

algorithm, it does not require differentiable objective function but still 

suffers from the starting point problem. In this study, the best set of 

parameters that maximize the likelihood function in BLM is found using 

both NR and NM algorithms. Then, considering the limitations of the 
conventional methods, the success of GA is investigated on condition that 

all the assumptions of the NR and NM methods are satisfied. The results 

show that when the assumptions of the classical techniques are valid, the 

GA approach can achieve to obtain very close result to NR and NM. This 

also implies that it is a good alternative to the NR and NM methods when 

the requirements of the classical methods cannot be satisfied. Model 

results of NR, NM and GA are compared in terms of the estimated values 

and the maximum likelihood function value.  

   
Copy Right, IJAR, 2016,. All rights reserved.

…………………………………………………………………………………………………….... 

Introduction:- 
When we study with a categorical dependent variable, regression model parameters can be estimated using the 

Maximum Likelihood Estimator (MLE). The aim is to find the best estimation result which maximizes the likelihood or 

log-likelihood functions. Because the likelihood equations obtained by taking the first order derivatives of the likelihood 
function with respect to the parameters are not linear, some iterative procedures such as Gauss-Newton, Newton-

Raphson, Levenberg-Marquardt, Direct Search and Steepest Descent are developed within the category of the classic 

optimization techniques for the solution of an unconstrained nonlinear optimization problem.  

 

These algorithms require restrictive assumptions such as the continuity of the likelihood function. They also have the 

risk of not finding the best solution due to the risk of getting stuck on local optimums relative to the selected starting 

points. Newton-Raphson (NR) algorithm is the most popular one among the classical techniques. Nelder-Mead (NM) 

algorithm can be seen as a good alternative to the NR algorithm. The most important advantage of NM algorithm is that 

it eliminates the requirement of the objective function (in our case, the likelihood function) to be differentiable. 
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However, the problem of selecting the most suitable starting point for parameters still exists in the iteration process. 

Unlike the traditional optimization approach, Genetic Algorithms (GA) have the advantage of being able to find the 

global optimum points in a much easier manner and does not suffer from the starting point problems and the continuity 

of the functions to be optimized. 

 

In this study, first a simulated data set is used for assessing the success of the algorithms. Binary Logit Model (BLM) is 
constructed using NR, NM and GA algorithms. Considering the difficulties mentioned above, the performance of GA is 

investigated when the classical optimization conditions are satisfied. The results suggest that GA gives very close 

results to the NR and NM results when the assumptions of the classical optimization techniques are provided. This also 

implies that it is a good alternative to the NR and NM methods when the requirements of the classical methods cannot 

be satisfied.  

 

In the second part of the application, the performance of the studied optimization approaches is discussed over a real 

data set on Alopecia disease. The best model results are interpreted and the statistical significant factors influencing the 

disease are determined.   

 

Literature review;- 
Some of the researches in the current literature related to the GA and NM algorithms are presented below. 

 

Lee and Kim (2015) compared the performance of the genetic algorithm and particle swarm optimization approaches 

forinverse surface radiation problems. 

 

In their study, Stylianouet al. (2015) discussed the effectiveness of neural networks, genetic algorithms, support vector 

systems and many other heuristic optimization techniques to investigate the mortality rate due to burns.  
 

Yuan and Lee (2015) compared the effectiveness of different methods for calculating a risk probability taking into 

account the financial indicators of 88 Taiwan companies in period of 2001-2010.  

 

Pfeifer et al. (2015) focused on delays in the completion of project. Genetic algorithm approach was utilized to estimate 

the maximum risk of project delays will move.    

 

In the study made by Hadjiet al. (2015), the theoretical and experimental analyses of maximum power point tracking 

were presented over photovoltaic systems (PV) using genetic algorithm. 

 

Aguilar-Rivera et al. (2015) discussed the use of many evolutionary computation methods such as genetic algorithms, 

genetic programming, multi-purpose evolutionary algorithm for the solution of the financial problems. It is concluded 
that as the interest of other methods varies depending of time, genetic algorithm maintains its popularity in each slice. 

 

In his study on the bankruptcy probability of SMEs in Italy, Gordini (2014) compared the results obtained from the 

genetic algorithm, logistic regression and support vector machines. It is observed that genetic algorithm gives 

significantly successful results.  

 

Johnson et al. (2013) used logistic regression and genetic algorithm in the diagnosis of Alzheimer disease. 

 

Meng and Weng (2011) used the genetic algorithm approach and logistic regression analysis to assess the risk of the 

working area. The results demonstrated that genetic algorithm approach performs better than binary logistic regression 

model.    
 

In the study of Babaoğluet al. (2010), the efficiency of particle swarm optimization and genetic algorithm is compared 

over a data set on coronary artery disease. 

 

Kohet al. (2008) used genetic algorithm approach in constructing a probability scoring system for assessing the adverse 

drug reaction. That the new founded system provided excellent signals at %83 ratio is observed.    

 

Liu and Ong (2008) used genetic algorithm approach to determine the most effective variables and number of clusters in 

order to get successful results from the cluster analysis for the marketing segmentation. Considering the number of 
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clusters and variables determined, it is observed that the genetic algorithm is extremely successful in finding the global 

optimum points.  

 

In the study made by Hadi and Gonzalez-Andujar (2009), seedling time was estimated as a function of thermal time 

using both nonlinear regression and genetic algorithm. Given the flexibility and other advantages of assumptions 

conclude that genetic algorithm is a more effective method. 

 

Methodology:- 
Binary Logit Model (BLM):- 

The purpose of the BLM is to establish an acceptable model which can identify the relationship between the dependent 

variable and explanatory variables using minimum number of variables in order to achieve the best model fit.BLM 

model is easy to apply and interpret thus it is commonly used in many areas, especially in social sciences, biology, 

medicine, economy, agriculture and veterinary sciences. 
 

In BLM, dependent variable Y has two categories and coded as “0” and “1”. The probability expression of the model 

that uses the “logit link function” is expressed as the following. 

1 1 

     
N N

k ik k ik

i i

ˆ ˆP(Y 1 / x) exp( x ) 1 exp( x )       (1) 

 

In Eq.(1), P(Y 1 / x)  represents the probability of observing the category of “1” conditional on the explanatory 

variables X, β̂  is the estimated model parameters and N is the number of observations. The relationship between the 

expected value of Y  conditional on X is not in linear form.Considering that the model parameters are also nonlinear, 
MLE is commonly used for getting efficient estimations of the parameters (see Menard, 2002 for model assumptions, 

theoretical background of the model and other details).     

 

Maximum Likelihood Estimation Method for BLM:- 

Probability models are generally expressed as follows: 

)X / 1P(YP iii          (2)            

 

It is equal to iii P-1)X / 0P(Y   for binary dependent variable models. Considering each observations has a 

Bernoulli distribution with iP  parameter, the probability of iY  being equal to 0 or 1 is given in Eq.(3). 

iY1
i

iY
iii )P(1P)X / P(Y


 (3) 

 

The probability ofobserving N sample depending on the explanatory variables X and the dependent variable set Y is 

equal to the multiplication of N probability expression under the assumption that observations are independent.  

 



N

1i

iY1
i

iY
i )P(1 P X)P(Y /  (4) 

 

Because 
iP  and P(Y / X)  are dependent on parameters and the aim is to estimate the unknown parameters, this 

dependency could be revealed by defining a likelihood function L(.). 

L(Y / X, ) P(Y / X)  (5) 

 

L(.) denotes the probability (or likelihood) of observing a sample Y. The basis of the MLE is to find the optimal 

estimated ̂  vector which maximizes the probability of observing Y. 

ˆ ˆL(Y / X, ) maxL(Y / X, )


   (6) 

 

The likelihood function for BLM is given below. 

   


        
YN i 1-Y

i
k ik k ik k ik

i 1

L(Y / X, ) exp( x ) 1 exp( x ) 11 exp( x ) (7) 
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The logarithm of both sides of Eq.(7) is taken for much easier calculations.  
N

i i i i
i 1

log L(Y / X, ) Y logP (1 Y) log (1 P)


       (8) 

 

If ̂maximizes L(Y / X, ) , then it also maximizes log L(Y / X, ) . Therefore, in order to obtain parameter estimations 

maximizing the probability of observing sample Y , first order derivatives are taken, equalized to 0 and a total of K 

equations for K parameters are obtained. Simultaneous solution of these K equations provides likelihood estimations. 
Likelihood equations for the BLM are derived from the expression given below. 

  1 2

1 2



         







N

i k ik k ik ij
i 1

logL Y exp( x ) 1 exp( x ) x 0 ; i , , ,N

j , , ,K

(9) 

Because the likelihood equations are not linear in 
k , open forms of these equations could not be obtained. In this case, 

some traditional iterative optimization procedures like Newton-Raphson or Fisher-Scoring algorithms are applied 

(Agresti, 2002). 

 

Newton-Raphson (NR) Algorithm:- 

In NR algorithm, approximate parameter estimations can be determined depending on the starting point. Using Taylor 

series expansion and omitting high level terms, the first step of the iteration for NR algorithm can be expressed as 

follows.   
1

1 0 0 0

   = -H ( )S( )        (10) 

 

In Eq.(10), H is the Hessian matrix consisting of the second order partial derivatives of the log-likelihood function. 

These algorithms based on unconstrained optimization of an objective function are commonly used in traditional 

methods for the maximization of the log-likelihood function. However, due to the restrictive assumptions mentioned 

above, the efficiency of the NM algorithm in the estimation of BLM model parameters is discussed, as well. 

 

Nelder-Mead (NM) Algorithm:- 

The classical NM method which is one of the multivariate, unconstrained, non-derivative optimization techniques is a 

simplex method developed by John Ashworth Nelder and Roger Mead in 1964in order to find the local minimum of a 

multivariate function.Simplex, which has a N-dimensional geometrical form, contains (n+1) points in n 

dimension.Thus, a simplex in two dimensions is constituted by a triangle. A simplex in three dimensions turns into a 

triangular prism with four surfaces.While finding the coordinates and minimum value of the point where the n-

dimensional function is a minimum with this method, initial coordinates of (n+1) point must be provided. Given these 

coordinates, the algorithm searches surface topography and moves to a minimum. Calculated value depending on the 

starting coordinates may be the local or global minimum.  

 

In this method, (n+1) point is mutually placed as a regular simplex (simple and regular) in n-dimensional Euclidean 

Space. As the simplex is a triangle in two dimensions, the process begins with taking three corner points of the first 
triangle. The point which has the biggest function value for the maximum problem and the smallest function value for 

the minimum problem is called (“Best Vertex: B) while the next one is called (Good Vertex: G). In maximization 

problems, the point with the smallest function value and in minimization problems, the point with the largest function 

value is called (Worst Vertex: W). This process is repeated for each iteration and moves to the optimum solution with 

one series of triangles in two dimensional problems. The point where the corner points of the triangle called B, G, and 

W is equal to each other is the optimal point.  

 

In two dimensions, this method is a model search method comparing function values in corners of the 

triangle.Considering the minimization of a two-variable z f(x,y)  function, it takes the greatest value in the worst 

corner of the triangle. Therefore, this worst corner is changed place with a new point.Thus, a new triangle is 

obtained.Now the search process is conducted in this new triangle.So this process becomes a series of triangles where 

corner point gets smaller in each iteration step.The process ends with triangles approaching a single point, which is the 

desired minimum point.This method, developed for two-variable z f(x,y)  function can be extended to n-variable 
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   1 2 nx f x ,x , ,xf   function. In NM algorithm, movement of the simplex is provided by three basic operations, 

which are (Reflection:R), Expansion (Expansion:E) and Contraction (Contraction:C) (Mathews and Fink, 2004).  

 

The Starting Triangle:- 

For the function f(x,y)  to be minimized, 
k k kV (x ,y ) (k=1,2,3) is created by providing values for three corner 

points of the triangle. Then, after function values for each of these points are calculated using 
k k kz f(x ,y ) , they are 

sorted as 
1 2 3

z zz   . Corner points of the triangle are defined as B(x1,y1), G(x2,y2), W(x3,y3). 

 

Midpoint of Good Side:- 

It is used for calculating the midpoint of the line drawn between points B and G.This point is found by calculating the 

mean value of the coordinates. 

     1 2 1 2
2 2 2B G x x , y yM       (11) 

 

Finding Point R Using the Reflection Procedure:- 

In order to determine the point R, first the point M in the BG line of the triangle is calculated as shown below. 

Secondly, a line is formed between points W and M. The length of this line is called “d”. Finally, a line with the length 
of “d” is drawn from point M, and the point where this line ends is called point R.This way, R point is found by using 

reflection operation. The vectorial notation of point R is given in Eq.(12) (Mathews and Fink, 2004). 

 

R = M + (M - W) = 2M - W           (12) 

 
Fig.1:- Finding the Point R Using the Middle Point of M and Reflection Operator 

 

Finding Point E Using the Expansion Procedure:- 

If the function value in point R is smaller than the function value in point W (if f(R) f(w)), then the iteration moves 

towards the minimum. The R point could be further from the minimum point. Therefore, when the line from point M to 

point R is expanded for the length of “d”, end point E is obtained. Thus, a BGE triangle from BGW triangle is obtained 

by using the expansion process. 

 
Fig2:- Producing the BGE Triangle and Point E by the Expansion Operator 

 

If the function value in point E is smaller than the function value in point R (f(E) < f(R)), a better corner than R is 

found. Vectorial formulation for point E obtained by expansion process is as given in Eq.(13) (Mathews and Fink, 

2004). 

E = R + (R - M) = 2R – M       (13) 

 

Finding Point C Using the Contraction Procedure:- 
If the function value in point R is equal to the function value (f(R) = f(W)), another point must be tested. Function may 

be smaller in point M but M and Wcannot be written again because there is a need to obtain a new triangle. When 

midpoints of lines WM and MR are called C1 and C2 respectively, our new triangle will be called BGC. In this case, 
BGC1 or BGC2 will not be different in two dimensions. However, there will be a difference in multiple dimensions 

(Mathews and Fink, 2004). 
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Fig3:-Producing the BGE Triangle with the Middle Points of C1 and C2 by the Reduction Operator 

 

Contraction of Triangle Towards Point B:- 

If the function value in point C is not smaller than the function value in point W (f(c) f(w)), points G and W must be 

contracted towards point B (Fig.4). In the first step of this process, point M (which is midpoint of BG line) instead of 

point G and point S (which is midpoint of BW line) instead of point W are used. The next sequential operation steps are 

always conducted by using midpoints towards point B. The process ends when the point B is obtained (Mathews and 

Fink, 2004). 

 
Fig4:-Transaction of Reduction to the Point B  

 

Logical Decisions for Each Step:- 

In each step described above, a new corner is found and this is replaced with W. We can explain it via an algorithm 

given below. 

If f(R) <f(G), Phase 1; If f(R)  f(G), Phase 2 is regulated. 

 

Phase 1: Reflection or Expansion 

If f(B) < f(R), R is used instead of W. If f(B)  f(R), E and f (E) are calculated. 

If f(E) < f(B), E is used instead of W. If f(E)  f(R), R is used instead of W. 

 

Phase 2: Shrinkage of Contraction 

If f(R) <f(W), R is used instead of W.   2C W M   and f(C) value is calculated. 

If f(C) <f(W), C is used instead of W. 

If f(C) f(W), f(S) is calculated instead of S. S is used instead of W and M is used instead of G (Mathews and Fink, 
2004; Tektaş, 2010).  

 

We mainly focus on finding the roots of the log-likelihood equations which maximize the likelihood function of 

 0 1 k
ˆ ˆ ˆ, , ,   by using the most suitable method. NM algorithm seems to be a good alternative to the NR algorithm. 

However, considering restrictive assumptions of the iterative methods, GA is one of most commonly used meta-

heuristic methods, especially in the optimization of non-linear functions. 

 

Genetic Algorithm:- 

GA is an intelligence technique that calculates the best solution for the problem using evolutionary processes.Influenced 

by Charles Darwin's evolution theory, GA is a meta-heuristic algorithm that was introduced in the study of Rechenberg 

(1973) called “evolution strategies” (He was a pioneer in evolutionary computation and artificial evolution); developed 
by John Holland (1975) and, popularized by a book published by Goldberg in 1989 (for details see; Genetic Algorithms 

in Search, Optimization and Machine Learning). GA, like other heuristic algorithms, does not guarantee the optimum 

point which minimizes or maximizes of an objective function. However, its solution quality is very high.  

 

Unlike other optimization methods, GA conducts the search using a community of candidate solutions instead of just 

one candidate solution.Thus, the solution space is scanned in parallel with the multiple starting points. This 
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characteristic is the major factor enabling GA‟s to find the global optimum value without getting stuck on local 

optimums.GA works with coded formats of candidate solutions (according to certain rules) instead of candidate 

solutions themselves.This encoding is formed by using an alphabet consisting of 0‟s and 1‟s (BIT - Binary digit) in the 

classical genetic algorithms.While binary coding is common in GA‟s, symbols and real number encoding are also used 

in broad applications (Mitchell, 1999; Karr and Freeman, 1999). 

 
In GA, the optimum solution of a problem is performed by some basic operations. These are the determination of the 

objective function, encoding, creating the initial population, selection, crossover and mutation operations. First, 

encoding is performed in accordance with the nature of the problem. Then, the starting population is created, often 

randomly. Suitable value for each array in the initial population is calculated. Finally, selection, crossover and mutation 

operators are used in order to change the population and create a new generation. GA operations proceed by assigning 

the adaptation value to the new population until the best solution is found (for details of schema theorem, see Holland, 

1992;Goldberg, 1989; Reeves and Rowe, 2002). 

 

Each individual in the population is called chromosome. In accordance with the fitness condition, chromosomes evolve 

and create new generations. Two chromosomes from current generation are obtained using Crossover or Mutation 

operators to create new generations. His new individual is calledthe „Parent‟. Parents matching the eligibility criteria 

(fitness value) are kept in the generation while parents who are not, are eliminated from the generation. This process is 
called the natural selection. Thus, GA‟s produce constantly improving solutions in accordance with the “survival of the 

fittest” rule found in nature. For this purpose, in order to determine what‟s best, GA‟s use a fitness function and for 

creating new solutions, they use operators like Recombination, Crossover and Mutation. During these processes, the 

change for the best chromosomes to be selected is maximized. A few generations later, the algorithm converges to the 

optimum solution where the best chromosomes exist. 

 

Encoding:- 
It is required to decide how solutions of individuals in the population are represented. It usually takes place in the form 

of chromosomes. Special structures in each chromosome are called „Genes‟. In binary encoding, every chromosome 

consists of character sequences like (0 or 1). Binary encoding is the most commonly used encoding method as well as 

the one most suitable for the structure of GA. However, there is no general coding technique that applies to all 
problems.  

 

Starting Population:-  

In this step, n chromosomes are chosen randomly as a starting group. Determination of the initial population is 

important in terms of possibilities like GA to fast converge or kept in local optimums.Population size is one of the 

parameters that display the performance of the solution (Pasia, Hermosilla and Ombao, 2005). Determining a small 

number of populations can cause the search space not to search effectively while determining large number of 

population can cause the processing load to increase and algorithm to be slowdown. Some studies suggest that 

population size should be around 20-30 while others argue that ideal population size should be between 50 and 100 

(Reeves and Rowe, 2002). 

 

Fitness Value:-  
In each iteration step of GA, fitness value for each individual in the population is calculated and recorded. Individuals 

with higher fitness value are more likely to be transferred to the next generation. GA cannot perform the function of 

selection without fitness values. A new population is created in each iteration step. In this population, every individual 

has a fitness value and the chromosome with the best fitness value is recorded. After the iteration is completed, all 

populations are compared and the best of each population‟s best value are considered for the optimum solutions of the 

GA.  

 

Selection Operator:- 

The selection process is the process of selecting a chromosome in the old population to the new population which will 

be created according to fitness values, in order to have individuals with higher fitness value in new generations. The 

parent with high fitness value increases its chance for selection by taking the principle of the selection method used. For 
the selection process, Tournament, Roulette Wheel, Sorting, Steady State and Stochastic Uniform methods can be used. 

Goldberg and Deb (1991) stated that none of these methods have advantages of one another. 
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Crossover Operator:-  

The basic function of this operator is to increase the probability of desired outcome by enabling new generations to 

produce different individuals than earlier generations and thus working in the solution space. Crossoveremploys the idea 

that new chromosomes become better by taking good genes from the old chromosomes. Crossover operator is expected 

to create better chromosomes by combininggood characteristics of the current chromosomes. Probability of crossover 

specifies how often crossover operation will be performed. If there is not any crossover (if probability of crossover is 
0%), the child will have the same chromosomes as the parents. If the probability of crossover is 100%, children are 

completely created by crossover. 

 

Mutation Operator:- 

Mutation prevents the searches to be stuck to local optimum points. How often crossover operation is to be performed to 

the individuals are determined by the probability of crossover (Pc) while it is determined by the probability of Pm for 

the Mutation operation. Mutation is often used within a smaller probability than Crossover. The reason for this is in 

order not to lose high adaptation levels achieved by Crossover. Crossover probability is often between 0.25 and 1 while 

Mutation probability is between 0.01 and 0.001. Mutation probability determines the frequency for chromosome parts to 

mutate. If there is no mutation, parents are directly copied without Crossover. If there is mutation, one or more parts of 

parent chromosomes change. If mutation probability is 100%, all chromosomes will change, if it is 0%, none of the 

chromosome will change. 

 

Application:- 
In this part of the study, performance comparisons of NR, NM and GA methods in the estimation of BLM model 

parameters are made over a simulated data and a real data set on Alopecia disease.  

 

Simulated data Results;- 
NR results for the estimation of BLM parameters:- 

Applicants generally use the results of this algorithm regardless of considering the iteration number, starting points and 

whether the function is differentiable or not. However, as mentioned earlier, this method may not achieve convergence 

in number of iterations if a starting point is chosen far away from the best solution. The NR algorithm results of the 

BLM model are given below. 

 

Table 3- BLM Results Obtained by the Algorithm NR 

 
 

Std.Error Wald df Sig. 
Exp ( ) 

Constant 0.744 0.817 0.829 1 0.363 2.103 

X1 0.333 0.620 0.288 1 0.591 1.395 

X2 -1.175 0.607 3.745 1 0.053 0.309 

X3 -0.060 0.616 0.010 1 0.922 0.941 

X4 -0.006 0.022 0.090 1 0.764 0.994 

Min(-Log-LikelihoodFunction)       32.4960      

 

The minimum log-likelihood function value is 32.4960 according to the NR algorithm.  

 

NM results for the estimation of BLM parameters:- 

In this part of the study, parameter estimations for the same data set are obtained by using the NM algorithm. Since this 

algorithm is not included in the standard package programs, Matlab program is used for constructing the required 
commands for estimation. The general representation of the NM commands and explanations are as the following. 

 

[x,y, exitflag, output]=fminsearch(@likelihood, [-0:0,-0:0,-0:0,-0:0,-0:0])      (14) 

x: represents the estimated parameter values; 

y: represents the optimized value of the log-likelihood function;  

exitflag: shows one of the integer values (-1, 0, 1) for specifying the reason for the algorithm to stop.  

output:monitorize the results. 

fminsearch: is added to the “command window” to obtain the best parameter estimations. Starting corner points for all 

parameters are taken “0”.After the command is run, results given in the last row of Table 4 are obtained. 

X = 0.647    0.313   -1.18   -0.037   -0.003; Y = 32.4829; exitflag = 1; output = iterations: 453; funcCount: 714; 

algorithm: 'Nelder-Mead simplex direct search'; message: [1x196 char] 
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Table 4:- LR Results Obtained by the Algorithm NM  

Corner Points [-3:3,-3:3,-3:3,-3:3,-3:3] [-1:1,-1:1,-1:1,-1:1,-1:1] [-0:0,-0:0,-0:0,-0:0,-0:0] 

    
Constant 0.647 0.647 0.647 

X1 0.313 0.313 0.313 

X2 -1.18 -1.18 -1.18 

X3 -0.037 -0.037 -0.037 

X4 -0.003 -0.003 -0.003 

Min Function Value 32.48285466470697 32.48285466470732 32.48285466876738 

Iteration number 5146 1269 453 

 

When Table 4 is examined, the optimum value of the log-likelihood function is found 32.48285466470697 in 5146 

iteration. Three different starting corner points and different iteration numbers are selected.  

 

GA results for the estimation of BLM parameters:- 
In this section, the performance of GA is discussed in terms of the best starting population; selection, crossover and 

mutation operators; crossover and mutation probabilities over randomly generated data. Tables 5, 6 and 7 give the 

estimated LR results under different combinations of alternatives in GA such as “Population Size”, “Selection 

Function”, “Number of Generations”, “Stopping Criteria” etc. 

 

Table  5:-GA Results According to the Different Population Size 

Population Size 

Selection Funct. 

Mutation Funct. 

Mutation Ratio 

Mutation Shrink 

CrossoverFcn 

Crossover Ratio 
Generations 

StallGenLimit 

TolFun 

TolCon 

Others  

20 

Roulette 
Gaussian 
0.2 
1.0 
Intermediate 
1.0 
5000 
5000 
1e-6 
1e-6 

Default 

40 

Roulette 
Gaussian 
0.2 
1.0 
Intermediate 
1.0 
5000 
5000 
1e-6 
1e-6 

Default 

60 

Roulette 
Gaussian 
0.2 
1.0 
Intermediate 
1.0 
5000 
5000 
1e-6 
1e-6 

Default 

80 

Roulette 
Gaussian 
0.2 
1.0 
Intermediate 
1.0 
5000 
5000 
1e-6 
1e-6 

Default 

100 

Roulette 
Gaussian 
0.2 
1.0 
Intermediate 
1.0 
5000 
5000 
1e-6 
1e-6 

Default 

 (constant) 
0.647 0.647 0.647 0.647 0.647 

 
0.313 0.313 0.313 0.313 0.313 

 
-1.18 -1.18 -1.18 -1.18 -1.18 

 
-0.036 -0.037 -0.037 -0.037 -0.037 

 
-0.003 -0.003 -0.003 -0.003 -0.003 

Min Function Value 

3
2
.4

8
2
8
5
4
6
6
5
2
2
5
7
3
 

3
2
.4

8
2
8
5
4
6
6
4
7
0
7
5
3
 

3
2
.4

8
2
8
5
4
6
6
4
7
2
4
 

3
2
.4

8
2
8
5
4
6
6
4
7
0
9
4
8
 

3
2
.4

8
2
8
5
4
6
6
4
7
0
8
9
2
 

 

In order to achieve the optimum results, at least 100 different combinations are examined by individually trying 
alternatives. Four alternatives for the Mutation function (Use constraint dependent default, Gaussian, Uniform, 

Adaptive feasible); ten for Mutation rates; six for Crossover function (Scattered, Single point, Two point, Intermediate, 

Heuristic, Arithmetic); ten for Crossover rates; five for Selection preferences.  
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Table 5 contains the estimated parameters and the minimum values of the negative of the log-likelihood function 

according to the different population sizes while other factors are the same. It shows that the best result (the smallest 

function value of 32.48285466470753) is obtained when the population size is 40. This table also emphasizes the 

selection of the optimal population size for getting better results.  

 

Table 6 shows the results under different number of generations and stopping criteria for the iteration process. We can 
easily see that better results could be obtained as the value of the stopping criteria decreases. In this case, the iteration 

number will increase. Thus, it is an expected result that we could have much better results as the iteration number 

increases.   

 

“Stopping criteria” and “number of generation” are taken as variable and population size is set to 60. The smallest 

function number (32.482854664706964) is obtained for the stopping criteria of “1e-6” for the number of generations 

“20000”. This means that the optimal generation number has to be truly determined for better model results. 

Additionally, when the results are examined according to three different stopping values of 1e-6”, “1e-10” and “1e-15”, 

optimal function value is obtained for the “1e-6”stopping valuein the scenario which the number of generation is set to 

20000.  

 

Table 6:- GA Results According to the Different Combinations 

Population Size 
Selection Function 

Mutation function 

Mutation ratio 

Mutation shrink 

CrossoverFcn 

Crossover ratio 

Generations 

StallGenLimit 

TolFun 

TolCon 

Others  

60 
Roulette 

Gaussian 

0.2 

1.0 

Intermediate 

1.0 

10000 

10000 

1e-6 

1e-6 

Default 

60 

Roulette 

Gaussian 

0.2 

1.0 

Intermediate 

1.0 

20000 

20000 

1e-6 

1e-6 

Default 

60 
Roulette 

Gaussian 

0.2 

1.0 

Intermediate 

1.0 

30000 

30000 

1e-6 

1e-6 

Default 

60 
Roulette 

Gaussian 

0.2 

1.0 

Intermediate 

1.0 

20000 

20000 

1e-10 

1e-10 

Default 

60 
Roulette 

Gaussian 

0.2 

1.0 

Intermediate 

1.0 

20000 

20000 

1e-15 

1e-15 

Default 

 (constant) 0.647 0.647 0.647 0.647 0.647 

 
0.313 0.313 0.313 0.313 0.313 

 
-1.18 -1.18 -1.18 -1.18 -1.18 

 
-0.037 -0.037 -0.037 -0.037 -0.037 

 
-0.003 -0.003 -0.003 -0.003 -0.003 

Min Function Value 

3
2
.4

8
2
8
5
4
6

6
4
7

0
7

4
4
 

3
2
.4

8
2
8
5
4
6

6
4
7

0
6

9
6

4
 

3
2
.4

8
2
8
5
4
6

6
4
7

0
7

0
3
 

3
2
.4

8
2
8
5
4
6

6
4
7

0
7

1
0
 

3
2
.4

8
2
8
5
4
6

6
4
7

0
7

0
3
 

In Table 6, the optimal value is obtained when the “Roulette” selection function is used. As a result of all the treatments 

made up till now, even they do not very much differ from each other; the smallest value found of the negative of the 
log-likelihood function is 32.4828546647066964.  
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Table 7:- GA Results According to the Different Selection Methods  

PopulationSize 

Selection Funct. 

Mutation function 

Mutation ratio 

Mutation shrink 

CrossoverFcn 
Crossover ratio 

Generations 

StallGenLimit 

TolFun 

TolCon 

Others  

60 

Stochastic Uniform 

Gaussian 

0.2 

1.0 

Intermediate 
1.0 

20000 

20000 

1e-6 

1e-6 

Default 

60 

Remainder 

Gaussian 

0.2 

1.0 

Intermediate 
1.0 

20000 

20000 

1e-6 

1e-6 

Default 

60 

Uniform 

Gaussian 

0.2 

1.0 

Intermediate 
1.0 

20000 

20000 

1e-6 

1e-6 

Default 

60 

Tournament (size 

4) 

Gaussian 

0.2 

1.0 
Intermediate 

1.0 

20000 

20000 

1e-6 

1e-6 

Default 

60 

Roulette 

Gaussian 

0.2 

1.0 

Intermediate 

1.0 

20000 
20000 

1e-6 

1e-6 

Default 

 (constant) 0.647 0.647 0.647 0.646 0.647 

 
0.313 0.313 0.313 0.314 0.313 

 
-1.18 -1.18 -1.18 -1.18 -1.18 

 
-0.037 -0.037 -0.037 -0.036 -0.037 

 
-0.003 -0.003 -0.003 -0.003 -0.003 

Min Function 

Value 

32.482854664 

7070 

32.482854664 

7071 
32.4828547845269 32.4828550128559 32.482854664706964 

 

In Table 7, results obtained according to the different selection functions are given. These are the “Stochastic Uniform”, 

“Roulette”, “Uniform” and “Tournament”. The best solution is obtained from the function of “Roulette” whereas the 

worst solution is for “Tournament” function.  

The combination of the optimum results through all the trials is given by Table 8 and the graphical representation of the 

iterative process is presented by Figure 5. 

 

Table 8:- Parameters Used in GA Coding 

GA parametresi Değer / Metod 

PopulationType 'doubleVector' 

PopulationSize 60 

SelectionFunction Roulette 

Mutationfunction Gaussian 

Mutationratio 0.2 

Mutationshrink 1.0 

CrossoverFcn Intermediate 

Crossoverratio 1.0 

Migration Direction 'forward' 

Others (InitialPopulation, InitialScoreset al.) Usedefault 

Stoppingcriteria  

Generations 20000 

StallGenLimit 20000 

TolFun 1e-6 

TolCon 1e-6 

Output  

PlotFcns @gaplotbestf 

Display 'iter','final','diagnose' 

Others Usedefault 
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Figure 5:- Fitness Value (20000 iteration) 

 

When Figure 5 is examined, the starting value of the fitness function, the resulting values and the spread of the search 

points at the end of the 20000 iterations can clearly be seen. The fitness value is approximately 50 and 100 in initial 

iterations. At the end of the 10000 iteration and after the application of the genetic operators, it falls into the interval of 
30-35. 

 

Table 9:- Iteration Numbers and Optimum Values in GA. 

Best           MeanStall 

Generation      f-frequency      f(x)            f(x)       Generation 

19981         1198920           32.48           32.48       1927 

19982         1198980           32.48           32.48       1928 

19983         1199040           32.48           32.48       1929 

19984         1199100           32.48           32.48       1930 

19985         1199160           32.48           32.48       1931 

19986         1199220           32.48           32.48       1932 

19987         1199280           32.48           32.48       1933 

19988         1199340           32.48           32.48       1934 

19989         1199400           32.48           32.48       1935 

19990         1199460           32.48           32.48       1936 

19991         1199520           32.48           32.48       1937 

19992         1199580           32.48           32.48       1938 

19993         1199640           32.48           32.48       1939 

19994         1199700           32.48           32.48       1940 

19995         1199760           32.48           32.48       1941 

19996         1199820           32.48           32.48       1942 

19997         1199880           32.48           32.48       1943 

19998         1199940           32.48           32.48       1944 

19999         1200000           32.48           32.48       1945 

20000         1200060           32.48           32.48       1946 
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Comparison of NR, NM and GA results:- 

The final comparison is on the performance of NR, NM and GA methods over the minimum value of the negative of the 

log-likelihood in Table 10. 

 

Table 10:- Comparison of the BLM Parameter Estimates of NR, NM and GA. 

ParameterEstimation BLM Model 

 NR p-value NM p-value GA p-value 

 (Constant) 0.744 0.363 0.647 0.441 0.647 0.441 

 
0.333 0.591 0.313 0.610 0.313 0.610 

 -1.175 0.053 -1.18 0.051 -1.18 0.051 

 -0.060 0.922 -0.037 0.952 -0.037 0.952 

 
-0.006 0.764 -0.003 0.889 -0.003 0.889 

MinFunction Value 32.4960  32.48285466470697  32.482854664706964  
 

When the results are compared, no significant variations are observed in terms of the parameter estimation. According 

to the minimum values of the negative of the log-likelihood function, GA is the most powerful method, followed by 

NM and NR.  

 

This result implies the success of the GA in the parameter estimation of the categorical dependent variable modeling 

when the assumptions of the classic optimization techniques are provided. This also means that GA will probably give 

efficient estimates even though the classical optimization assumptions are not met.  

 

Real data application:- 
In this part of the study we have compared the performance of NR, NM and GA approaches in the estimation process 

over a real data set on Alopecia disease and interpreted the best model results obtained. Data set has been taken from the 

records of Dermatology Unit of Çorum Training and Research Hospital of Hitit University in 2013.The total number of 

patients applied to the hospital with hair loss problem is 95 during 2013.  

 

The study variable (alopecia disease) is binary. The diagnosed patients are coded as “1” and the non-diagnosed patients 

are coded as “0”. Variables affecting the Alopecia diagnosis and the necessary abbreviations are given in Table 11. 

 

Table 11:- Variables Used in the Analysis. 

Variable Definition VariableType 

Y AlopeciaDisease (dependentvariable) Qualitative 
1 = ‘Diseased’   0 = ‘Nondiseased’ 

X1 Age Quantitative 
X2 Gender Qualitative 

1 = ‘Male’   0 = ‘Female’ 

X3 ALT (AlanineAminotransferase) Quantitative 

X4 AST (AspartateAminotransferase) Quantitative 

X5 Glucose Quantitative 

X6 HDL (High DensityLipoprotein)  Quantitative 

X7 LDL (LowDensityLipoprotein)  Quantitative 

X8, X9, X10 Cholesterol, Free t3 andFree t4 thyroids Quantitative 

X11 TSH (ThyroidStimulatingHormone)  Quantitative 

X12 Trigliserit (Tg)  Quantitative 
 

The explanations of some medical terms we used in the analysis is presented below. 

ALT and AST in Table 9 are enzymes existent in liver cell. Cholesterol is a greasy element existent in circulation 

system. HDL is good cholesterol by blood, which is a special type of molecular proteins generated in liver transports. 

LDL is bad cholesterol by blood, which is a special type of molecular proteins generated in liver transports. Free t3 and 
Free t4 are thyroid gland hormone. TSH is a thyroid stimulating hormone and Trigliserit is a principle component of 
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grease. For the unique qualitative explanatory variable of “Gender” is coded as “1” for male patients and “0” for 

females.  

 

MLE estimation results of BLM model parameters obtained via NR, NM and GA are given in Table 12.   

 

The optimal values of the statistically significant parameters (i.e. the roots of the log-likelihood function) are marked 
bold. 

 

In GA, we get the following log-likelihood function by substituting the independent variable values of patients in 

Eq.(5). 

 0 1 kf , , ,    52*x(1)+1481*x(2)+37*x(3)+1167*x(4)+1189*x(5)+4899*x(6)+2255.4*x(7)+8430*x(8) 

+4826.07*x(9)+178.45*x(10)+55.28*x(11)+103.67*x(12)+6695*x(13)-log(1+exp(x(1)+18*x(2)+ 

x(3)+20*x(4)+…...log(1+exp(x(1)+25*x(2)+10.6*x(4)+16.5*x(5)+88*x(6)+41.3*x(7)+140*x(8)+89.09*x(9)+3.19*

x(10)+0.62*x(11)+2.2*x(12)+136.7*x(13)-log(1+exp(x(1)+25*x(2)+13*x(4)+17*x(5)+81*x(6)+69.7*x(7)+ 

202*x(8)+118.7*x(9)+3.01*x(10)+0.86*x(11)+0.19*x(12)+68*x(13)))     (15) 

 

Table 12:- NR, NM and GA Results of the Alopecia Data. 

 NR NM GA 

 ̂  p-value ̂  p-value Exp ( ̂ ) ̂  p-value 

Constant 2.985 0.346 2.930 0.418 18.731 2.55 0.418 

Age -0.025 0.310 -0.024 0.337 0.976 -0.023 0.337 

Gender 1.618 0.009
* 1.622 0.010 5.063 1.589 0.010 

ALT -0.051 0.185 -0.050 0.187 0.951 -0.049 0.187 

AST 0.135 0.022
* 0.134 0.022 1.143 0.135 0.021 

Glucose -0.004 0.687 -0.004 0.689 0.996 -0.004 0.682 

HDL -0.012 0.791 -0.010 0.818 0.990 -0.01 0.826 

Cholesterol 0.011 0.774 0.009 0.757 1.009 0.012 0.772 

LDL -0.032 0.387 -0.030 0.362 0.970 -0.032 0.401 

Free t3 thyroid -1.611 0.038
* -1.611 0.048 0.199 -1.531 0.046 

Free t4 thyroid 2.357 0.026
* 2.372 0.028 10.72 2.325 0.002 

TSH -0.039 0.871 -0.016 0.889 0.984 -0.034 0.889 

Trigliserit 0.006 0.515 0.006 0.529 1.006 0.005 0.555 

Min (-log-likelihood func.)   52.8833 52.789756584169076 52.79292900514353 
*Coefficient is statistically significant at a significance level of 5%. ; Base category: Female; CI stands for Confidence Interval   

 

GA optimization command in MATLAB is generally expressed as the following [Michalewicz, 1996].  

[x,fval] = ga(@likelihood,13,options)                             (16) 

 

In Eq.(16), „ga‟ stands for the genetic algorithm and called by entering variable count („13‟) with the definition of 

the operators („likelihood‟);.„x‟ displays the independent variables that optimize the function and „fval‟ displays the 

optimum value of the function. In order to find the value of 52.79292900514353, we set: 

 
Table 13:- Set of Parameters Used in the Analysis. 

GA Parameter Value / Method 

Population Type – Population Size 'double Vector' -50 

Selection Function Roulette 

Reproduction Crossover fraction 0.95 

Mutation function Gaussian 

Mutation ratio and  Mutation shrink 0.15 and 0.88 

Crossover Function and Crossover ratio Crossover intermediate and 1.0 

Migration Direction 'forward' 

Others (Initial Population, Initial Scores et al.) Use default 

Stopping Criteria  

Generations and StallGenLimit 50000 and 5000 
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TolFun and TolCon 1e-6 and 1e-6 

Output  

Plot Fcns @gaplotbestf 

Display 'iter',' final', 'diagnose' 

Others Use default 

 

The graphical representation of the results after 50000 iterations is given in Figure 6. 

 
Figure 6:- Fitness Value (50000 iterations) 

 

The value of the log-likelihood function is around 100 at the end of the first iteration. It slowly approaches to the 50-

55 range, which includes the optimal value of 52.789756584169056 obtained from NM algorithm. As for GA, the 

optimum value is 52.79292900514353, which is not considerably far from the NM result.  

 

The results show that we can obtain very close and sometimes even better results in BLM using GA with different 

operators and rates when the necessary conditions for applying the classical methods are satisfied.  Additionally, 

these findings represent the success of GA because we can use GA method successfully in more flexible 
circumstances.    

 

A Brief Interpretation of the Statistical Results:- 

According to the NM algorithm results in Table 12, the statistically significant factors affecting the Alopecia disease at 

a %5 significance level are Gender (p=0.010), AST (p=0.022), Free t3 thyroid (p=0.048) and Free t4 thyroid (p=0.028).  

 

Exp ( ̂ ) values give the odds ratios in LR analysis. This value is 5.063 for Males. This means that Males are nearly 5 

times possible to exposure Alopecia disease compared with Females. 

 

Since the estimated coefficients of AST and Free t4 thyroid are positive, they are all associated with higher probability 

of having the disease with a unit change in their values. Inversely, a unit change in Free t3 thyroid leads to the decrease 

in the probability of having the disease. As for the interpretation of their odds-ratio values, a unit increase in the AST 

and Free t4 thyroid values result in 1.143 and 10.72 times increases in the probability of having the disease, 

respectively. A unit decrease in the value of Free t3 thyroid leads to nearly 5.025 (1/0.199) times increases the 

probability of having the disease.    

 

Conclusion:- 
In this study, the success of two classical (NR and NM) and a meta-heuristic optimization method (GA) in the 

parameter estimation of LR model are examined over simulated and real data sets. 
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In LR model, the method used for finding parameter estimations is based on the maximization of the likelihood function 

via the method of MLE. In the classical optimization approach, the performance of the process depends on the validity 

of the required assumptions.That is, likelihood function has to be differentiable and true starting points related to the 

parameters have to be defined.In addition, iterative methods should be used to estimate approximate parameters in 

categorical dependent variable modeling due to the nonlinear structure of the likelihood equations obtained by taking 

the first order derivatives of the likelihood equations with respect to the each parameter.The classical NR algorithm is 
one of the best known and widely used root finding methods. NM algorithm is somewhat different from NR in terms of 

the required assumptions. Namely, it is in the search methods category in the classical optimization approach and unlike 

NR, it does not require differentiable objective function. 

 

In NR and NM methods, search for the solution starts from a certain point and moves to another point according to 

some criteria. In order to find better parameter estimations in these methods, a starting point can be determined with a 

preliminary graphical drawing. However, incorrect selection of the starting point may cause the solution not to be found 

or solution time to be increased.  

 

In GA, search process is performed on a set of potential solutions instead of a single point and solutions are evaluated 

until the best solutions are found. GA has certain advantages like not requiring derivatives or other complementary 

information and not getting stuck to local optimum points in order to find global optimum points for the solution of the 
problem. For this reason, in order to examine the performance of the GA method in the parameter estimation of the 

binary logit model when the assumptions of the classical optimization techniques are satisfied, its success on parameter 

estimation are demonstrated over an application. 

 

In the application part of the study, first randomly generated data is used where the dependent variable is binary. LR 

model parameters are estimated using NR, NM and GA methods. In GA, many different combinations of the elements 

are applied and the best combination is tried to find that gives the best set of the estimated parameters. Results show that 

GA can successfully be used in categorical dependent variable modeling as well as the classical approaches on 

condition that the best component of the algorithm is defined correctly. Additionally, we could infer from the results 

that, if GA is powerful in the estimation even though the strict conditions are provided from the classical methods, it can 

be applied to the data, unhesitatingly under the worst conditions.  
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