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To evaluate the effect of implant platform/abutment design/ crown 

material combinations on the stress distribution around implant-

supported dental restorations. A literature search was made in three 

databases including PubMed, Cochrane and Web of Science. Inclusion 

criteria were in vitro studies, switched implant platform versus regular 

implant platform, titanium implants, internal hex connection and stress 

values of bone. Two review authors independently screened the 

articles for inclusion. This was followed by hand searching in the 

reference lists of all eligible studies for additional studies. Results: the 

search resulted in 16 eligible studies concerning the effect of platform 

switching on peri-implant bone stress, however no papers were found 

studying the effect of different implant platform/ abutment design 

/crown material complexes on bone stress. From the included studies, 

platform switching concept can replace conventional platform designs 

to improve implant survival rate, provided it should be used within its 

indications. 
Copy Right, IJAR, 2017,. All rights reserved.
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Harmoic Univalent Function:- 
A continuous complex valued function f=u+iv defined in a simply connected complex domain D is said to be 

harmonic in D if both u and v are real harmonic in D. Let F and G be analytic in D so that F(0)=G(0)=0,  

 

ReF=Ref=u, ReG=Imf=v by writing (F+iG)/2=h, (F-iG)/2 = g, The function f admits the representation f h g  , 

where h and g are analytic in D. h is called the analytic part of f and g, the co-analytic part of f. Clunie and Sheil-

Small [15] observe that f h g   is locally univalent and sense-preserving if and only if 

|g '(z)||h'(z)|,z D  . Further if f can be normalize so that f(0)=h(0)= zf (0) 1 0  . The SH denotes the 

family of all hamonic, complex valued, orientation-preserving normalized univalent functions defined on  . Thus 

the function f in SH admits the representation f h g  , where, 

(1.1.1) 
n n

n n 1

n 2 n 1

h(z) z a z , and g(z) b z ; |b | 1
 

 

       

are analytic functions in  . 

Corresponding Author:- Dr.Noohi Khan ( AP II ). 

Address:- Amity University Lucknow, Up. 

http://www.journalijar.com/


ISSN: 2320-5407                                                                                  Int. J. Adv. Res. 5(7), 1708-1712 

1709 

 

It follows from the orientation-preserving property that 1|b | 1 . Therefore, 
2

1 1(f b f ) (1 |b | ) SH    

whenever f SH . Thus a subclass 
0SH  of SH is defined by 

0

1SH {f SH: g '(0) b 0}    . 

 

Note that 
0S SH SH  . Both families SH and 

0SH  are normal families. That is every sequence of functions 

in SH (or 
0SH ) has a subsequence that converges locally uniformly in  . 

 

It is noted that SH S  if g=0. 

Let TH denote the sub class of SH with negative coefficients whose members f h g   where h and g are of the 

form 

(1.1.2) 
n

n

n 2

h(z) z |a |z




   and
n

n 1

n 1

g(z) |b |z , |b | 1, z




   . 

 

Complex Valued Harmonoic Multivalent  Function:- 

Let f be a harmonic function in a Jordan domain D with boundary C. Suppose f is continuous in D  and f(z) 0  

on C. Suppose f has no singular zeros in D, and let m to be sum of the orders of the zeros of f in D. Then 

c arg(f(z)) 2 m   , where c arg(f(z))  denotes the change in argument of f(z) as z traverses C. 

 

It is also shown that if f is sense-preserving harmonic function near a point 0z , where 0 0f(z )    and if 

0f(z)   has a zero of order m (m 1)  at 0z , then to each sufficiently small 0  there corresponds a 

0   with the  property: “for each 0 0N ( ) { :| | }       , the function f(z)   has exactly m 

zeros, counted according to multiplicity, in 0N (z ) ”. In particular, f has the open mapping property that is, it 

carries open sets to open sets. 

 

Let   be the open unit disc {z :|z| 1}    also let k ka b 0   for 0 k m   and ma 1 . Ahuja 

and Jahangiri [5], [9] introduce and studied certain subclasses of the family SH(m), m 1  of all multivalent 

harmonic and orientation preserving functions in  . A function f in SH(m) can be expressed as f h g  , where 

h and g are of the form 

(1.2.1) 
m n m 1

n m 1

n 2

h(z) z a z


 

 



   

n m 1

n m 1

n 1

g(z) b z


 

 



 ,   m|b | 1 . 

 

According to above argument, functions in SH(m) are harmonic and sense-preserving in   if fJ 0in  . The 

class SH(1) of harmonic univalent functions was studied in details by Clunie and Sheil Small [15]. It was observed 

that m-valent mapping need not be orientation-preserving. 

Let TH(m) denotes the subclass of SH(m) whose members are of the form 

(1.2.2) 
m n m 1

n m 1

n 2

h(z) z |a |z


 

 



   

and 

  
n m 1

n m 1

n 1

g(z) |b |z


 

 



 ,  m|b | 1 . 
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Let S 1m),m(H   denotes the class of functions f h g   that are m-valent harmonic and orientation- 

preserving functions in the unit disc {z :|z| 1}    for which 
zf(0) f (0) 1 0   . Then f in SH(m) can be 

expressed as ghf  , where h and g are analytic functions of the form 

(1.2.3)  














 
2n 1n

m

1mn

1mn

1mn

1mn

m 1|b|,zb)z(g,zaz)z(h  

 

Note that 
0SH (m) SH(m)  with 0bm  . 

Also TH(m) denote the class of functions ghf   so that h and g are of the form : 

(1.2.4)  














 
2n 1n

m

1mn

1mn

1mn

1mn

m 1|b|,z|b|)z(g,z|a|z)z(h  

 

Hardmard Product:-  

The Hadamard product (or convolution) of two analytic functions  )z(f1  and )z(f2  is defined by  







0n

n

nn1221 zdc)z)(ff()z)(ff(  

where 





0n

n

n1 zc)z(f  and 
n

2 n

n 0

f (z) d z ,z




  . 

The Pochhammer symbol n)(  is given by 















),Nn)(1n()1(

)0n(1

)(

)n(
:)( n  

 

Consider a function )z;c,a(m , defined as 

(1.3.1) 
mn

0n n

nm

m z
)c(

)a(
)z;c;1,a(Fz)z;c,a( 





  











2n

1mn

1n

1nm z
)c(

)a(
z  

0 0(a R;c R\Z ,Z : {0, 1, 2,...};z )       . 

where )z;c;1,a(F  is well known Gauss hypergeometric function. 

 

Linear Operator:- 

Corresponding to the function )z;c,a(m  a linear operator )c,a(Lm  on the analytic functions of the form (1.1.1) 

is considered which is defined by means of the following Hadamard product : 

(1.4.1) )z(h)z;c,a()z(h)c,a(L mm  . 

The linear operator of the harmonic function ghf  , where h and g are given by (1.1.1) is defined as 

(1.4.1) )z(g)c,a(L)z(h)c,a(L)z(f)c,a(L mmm   

where, 

 
1mn

1mn

2n 1n

1nm

m za
)c(

)a(
z)z(h)c,a(L 





 

  

and 
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n m 1n
m n m 1 m

n 1 n

(a)
L (a,c)g(z) b z ; a|b | c

(c)


 

 



  . 

 

Salagean Operator:- 

For analytic function h(z) S(m)  Salagean [33] introduced an operator mD


 defined as follows: 

0

mD h(z) h(z) , 
1

m m

z
D h(z) D (h(z)) h'(z)

m
   and 

1
1 m

m m m

z(D h(z))'
D h(z) D (D h(z))

m


    

     
n m 1

n m 1

n 2

n m 1
z a z

m


 

 



  
   

 
 , N.  

Whereas, Jahangiri et al. [22] defined the Salagean operator mD f(z)
 for multivalent harmonic function as follows: 

(1.5.1)              
     m m mD f(z) D h(z) ( 1) D g(z)  

where, 


  

 



  
   

 
m n m 1

m n m 1

n 2

n m 1
D h(z) z a z

m
 


  

 



  
  

 
 n m 1

m n m 1

n 1

n m 1
D g(z) b z

m
. 
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