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Several S. cerevisiae deletion strains involving heat-shock response 

factors were among the most sensitive mutants identified in a previous 

genetic screen for doxorubicin hypersensitivity. These strains included 

ydj1Δ, ssz1Δ and zuo1Δ mutants. In addition, new1Δ, whose function 

was unknown, also displayed significant sensitivity to anthracyclines. 

We further investigated the basis for the sensitivity of these mutants. 

We determined that heat-shock could partially rescue the sensitivity of 

the strains to doxorubicin, including the homologous recombination 

mutant rad52Δ, which is sensitive to doxorubicin-mediated DNA 

double strand breaks (DSBs). However, none of the heat-shock 

response mutants were sensitive to DSBs, but were highly sensitive to 

reactive oxygen species (ROS) generated by quinone-ring-containing 

agents, such as anthracyclines and menadione. A fluorescent-based 

assay indicates that doxorubicin causes protein aggregation. 

Interestingly, the disaggregase mutant hsp104Δ is not sensitive to 

anthracyclines or menadione suggesting that Hsp104p does not play a 

role in disaggregating doxorubicin-induced protein aggregates. 

However New1p, which has been recently shown to be a novel 

disaggregase, is essential for cell viability after exposure to 

anthracyclines and menadione and it is not involved in 

thermotolerance. Our data suggest that in S. cerevisiae, doxorubicin 

produces protein aggregation through ROS and requires Ydj1p and 

New1p for resolution.  
               Copy Right, IJAR, 2018,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Anthracycline antibiotics are commonly used chemotherapeutic drugs, which are effective in a wide range of 

hematologic malignancies and solid tumors [1, 2]. In the absence of targets for biological therapy, such as in triple 

negative breast cancer, cytotoxic chemotherapy may provide the only therapeutic alternative [3]. The mechanism by 

which anthracyclines exert their therapeutic action has not been completely elucidated. The inhibition of DNA 

topoisomerase II by anthracyclines, which results in the perpetuation of DNA double-stranded breaks (DSBs) and 

leads to apoptosis, is a major contributor to their anticancer activity [2, 4]. The aglycone moiety of anthracyclines 

[2], which contains a ring which cycles between the quinone and the quinol [5], is responsible for the generation of 

reactive oxygen species (ROS) which damage cellular structures, and has also been proposed to mediate 
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anthracyclines activity [2, 6]. The effectiveness of anthracyclines is dose-dependent, however the development of 

side effects from cumulative exposure to the drug can limit its use. Of particular concern is the development of 

chronic cardiomyopathy [7, 8]. Anthracycline toxicity results in apoptosis of the cardiomyocyte, leading to dilated 

cardiomyopathy which results in congestive heart failure. This condition is refractory to therapeutic treatment and 

can only be treated by heart transplantation [9]. It is proposed that anthracycline-induced ROS is responsible for 

damage to the cardiac mitochondria [10], and has been partially managed by the reduction of the cellular load of 

ROS using the iron chelator dexrazoxane [6]. In addition, the development of drug resistance is a significant 

concern, and commonly encountered during anthracycline-based chemotherapy. Primary resistance due to the 

overexpression of P-glycoproteins cannot be overcome by increasing the drug dose due to the increased risk of side 

effects [11] [12-14].   

 

To investigate the mechanism that protect cells from anthracyclines we carried out a genome-wide genetic screening 

in S. cerevisiae to identify mutant strains that display hypersensitivity to doxorubicin. A total of 71 deletion strains 

displayed varying levels of sensitivity to anthracyclines [15]. Of these, several factors involved in the heat-shock 

response (HSR) were identified, including the heat shock protein 40 (HSP40) Ydj1p and Zuo1p, the HSP70 Ssz1p 

and New1p, until then of unknown function. The HSR is activated by proteotoxic stress which leads to the release of 

transcription factor Hsf1 from an inactive complex containing HSP40/HSP70/HSP90 and its translocation into the 

nucleus where it induces the expression of other HSPs, also referred to as chaperones [16, 17]. The HSR is a 

complex series of reactions, which restores the native structure of unfolded peptides. HSP40s play a crucial role by 

binding unfolded peptide, presenting them to the HSP70s and stimulating their ATPase activity to promote refolding 

[18, 19]. Failure to refold denatured peptides can lead to the formation of protein aggregates, which require the 

function of a disaggregase, such as Hsp104p, in S. cerevisiae [20, 21].  

 

There is growing evidence on the significance of the HSR in cancer and currently, the potential of targeting cancer 

cells with HSP90 inhibitors is an extensively investigated field [22-24]. In addition, despite knowledge of 

anthracyclines producing oxidative stress, which can potentially damage proteins, little is known about the 

consequences of the oxidative damage and the factors involved in protecting the cell.  

 

In this study we investigate the basis for the sensitivity of the HSR mutants. We determined that heat-shock is 

protective to yeast cells. Using a fluorescent-based assay we determine that doxorubicin causes protein aggregation. 

However, the activity of the HSP104p disaggregase is not essential for protection from doxorubicin-induced 

toxicity, and that function may be performed by New1p, which has been shown to possess disaggregase activity 

[25]. We also confirm a role for Ssz1p and Zuo1p in drug resistance, a function previously described [26]. All HSR 

mutants were sensitive to the ROS-generating agent menadione and not sensitive to DSBs. Our data suggest that, in 

S. cerevisiae, doxorubicin produces protein aggregation through ROS and requires Ydj1p and New1p for resolution. 

These results may provide novel leads for addressing both tumor hypersensitization and side-effects reduction in 

regimens including anthracyclines. 

 

Materials and Methods:- 
General Genetic Methods: YPD (1% yeast extract, 2% peptone, 2% dextrose, 2% agar) and synthetic complete (SC, 

0.67% yeast nitrogen base without amino acid, 0.087% amino acid mixture, 2% dextrose, 2% agar) media or the 

corresponding drop-out media (SD), were as described [27] [28].  

 

Strains: Homozygous haploid deletion strains library (Parental strain BY4741: MATa his31 leu20 met150 

ura30) was obtained from Dharmacon, Inc. (Pittsburgh, PA). Gene-disrupted strains were constructed using a 3-

step PCR method using DNA cassettes containing exogenic regions of the gene of interest (i.e. SSA1, SSA2), 

flanking a selective marker (i.e. HIS3, TRP1, URA3). These disruption cassettes were integrated into the genomes by 

homologous recombination. Double knockout mutants were obtained by sequential gene disruption using different 

selective markers. All strains were confirmed by PCR.  

 

Chemicals: Doxorubicin-HCl and daunorubicin were obtained from Bedford Laboratories (Eatontown, NJ, USA); 

menadione sodium bisulfite was purchased from Sigma-Aldrich (St Louis, MO, USA); and etoposide was obtained 

from Enzo Life Sciences (Farmingdale, NY). 
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Sensitivity of Strains to Chemotherapeutic Agents and Cytotoxic Stressors: The concentration of the drugs used for 

strain exposure was as previously described [15]. Briefly, single colonies were grown overnight in liquid YPD 

media, at 30C with shaking. Cells were then washed and re-suspended in ultra-pure sterile water. Strains were then 

separated into control and treatment groups. Ten-fold serial dilutions were spotted onto YPD agar plates containing 

the drugs as indicated for each experiment. Doxorubicin plates contained 20 µM of the drug; daunorubicin contained 

10 µM and etoposide contained 1 mM of the drug. Exposure to menadione (6.6 mM) and MNNG (3 µM) was done 

for 1 hour in cells resuspended in sterile water, followed by washing, serial dilutions and plating onto YPD agar 

plates. All plates were incubated at 30°C for the indicated time. Heat shock treatment was performed by plating 

serial dilutions of the strains and incubated at 37°C. Cell growth was monitored daily and colonies were counted at 

day 3. Survival was calculated relative to the corresponding untreated control and sensitivity was determined 

relative to the survival of the wild type strain.  

 

Thermotolerance: Cells were grown to exponential phase in YPD at 30C and switched to 39C to induce the heat-

shock response. Aliquots were transferred to 50C and incubated for the indicated time, then placed on ice before 

spotting. Serial dilutions (5-fold) were spotted onto YPD plates and incubated at 30C. Cell growth was monitored 

daily and colonies were counted at day 3. 

 

Protein Aggregation and Fluorescent Microscopy: The assay is based on a firefly luciferase-GFP fusion. The GFP 

chromophore is resistant to denaturation while the luciferase component becomes denatured and aggregates, 

allowing the monitoring of GFP fluorescence in the cell. Aggregation will result in uneven distribution of the GFP. 

Plasmid pFFL-GFP (gift of Dr. John Glover, U. of Toronto) was transformed into wild type cells and selected in leu
-
 

drop-out plates. These cells were grown on liquid SD-leu
-
 media, washed, resuspended in sterile water and exposed 

to doxorubicin (300 µM) for 30 min. Cells were washed and prepared as described in spot assay. Cells (5 µl) were 

immobilized on a glass slide pre-coated with 0.1% poly-L-lysine solutions (Sigma) covered and sealed with 

Cytoseal
TM

 XYL mounting medium (Richard-Allan Scientific). Cells were viewed under a Zeiss Axioplan 2 

imaging microscope (Carl Zeiss, Thornwood, NY) with a water-immersion Achroplan 63X/0.9W/DIC III objective. 

The illumination source was a 100-W mercury arc lamp. Cell images were taken using an AxioCam HRm digital 

camera operated via AxioVision 4.5 software. Confocal images were captured with a LSM 510 META system 

operated via META 3.2 software. The wavelengths of the filters used to visualize the FFL-GFP were: excitation 488 

nm; emission 509 nm. Unless otherwise noted, all experiments were performed at room temperature. 

 

Results:- 
Heat-shock rescues the sensitivity of yeast strains to doxorubicin:- To determine the effect of the heat-shock 

response in the sensitivity of yeast cells to doxorubicin, we determined the survival of selected strains when exposed 

to doxorubicin under heat-shock conditions. As observed in figure 1, at the concentration of doxorubicin tested and 

in the absence of heat-shock (30°C, Fig 1, top panels), wild type cells displayed approximately a 10-fold reduction 

of viability, while rad52Δ mutant was completely inviable. The co-chaperone defective ydj1Δ strain displayed a 

~10,000-fold reduced viability. We also tested ssa1Δ, which is defective in an HSP70 normally associated to Ydj1p, 

displaying a 100-fold reduction in viability after exposure to doxorubicin. When the mutant strains were exposed to 

doxorubicin under heat-shock conditions (37°C, Fig. 1, bottom panels), a significant increase in viability was 

observed. The doxorubicin-exposed wild type strain showed no difference with untreated control (Fig 1), while the 

viability of rad52Δ, was increased from inviable to a 1,000-fold more sensitive than untreated (Fig 1). Interestingly, 

ssa1Δ was almost completely rescued, which contrasts with the inviability of the ydj1Δ strain (Fig 1). This result 

suggests that Ssa1p is not the exclusive HSP70 of Ydj1p, and other HSP70s may play a redundant role. We 

generated and tested the ssa1Δ ssa2Δ, ssa1Δ ssa3Δ and ssa2Δ ssa3Δ double mutants, as well as the ssa1Δ ssa2Δ 

ssa3Δ triple mutant, but failed to see a hypersensitive phenotype for doxorubicin and heat-shock sensitivity (data not 

shown). 
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Figure 1:- Heat-shock rescues strains sensitivity to doxorubicin. Serial dilutions of selected strains were plated onto 

YPD with or without doxorubicin, as described in the Materials and Methods. The plates were incubated at either 

30°C (normal temperature) or 37°C (heat-shock). Growth was scored after 3 days of incubation. The result of a 

representative experiment is presented. 

 

Doxorubicin exposure leads to protein aggregation in yeast:- 

Since one of the functions of Ydj1p is to prevent protein aggregation, we tested if doxorubicin was capable of 

inducing protein aggregation. We transformed wild type cells with a luciferase-GFP fusion construct (pFFL-GFP) 

that has been used to monitor and study protein aggregation in vivo [29]. Under non-stressed conditions (- Doxo, Fig 

2b) GFP is homogenously distributed throughout the cell. However, when wild type cells were exposed to 

doxorubicin, considerable aggregation was observed, as indicated by the uneven distribution of the GFP 

fluorescence, which appears punctuate rather than homogenous (+ Doxo, Fig 2b). This aggregation was not a 

consequence of cell dying from doxorubicin toxicity, since the concentration/exposure time used did not affect 

viability as indicated in the survival spot assay (Fig 2a, triplicate experiment shown). 

 

 
Figure 2:- Doxorubicin exposure leads to protein aggregation. The evaluation of doxorubicin-induced protein 

aggregation was performed in wild type strain using a model substrate of firefly luciferase (FFL) fused to green 

fluorescent protein (GFP) as described in the Materials and Methods. a) Serial dilutions of the control (- Doxo) and 

doxorubicin-exposed cells (+ Doxo) were plated onto Leu-drop out plates and incubated at 30°C to determine 

growth. b) Protein aggregation as determined by aggregation of the FFL-GFP fusion reporter. GFP and DIC images 

are presented for doxorubicin treated (- Doxo) and control (- Doxo) wild type cells. 

 

NEW1 is not required for thermotolerance:-  

The observation that new1Δ mutants are sensitive to doxorubicin, and the description of its disaggregase activity, we 

tested if NEW1 was required for thermotolerance. While the hsp104Δ strain was sensitive to heat-shock, the new1Δ 

strain was not affected, displaying similar survival to the wild type strain (Fig 3). This indicates that New1p is not 

required for disaggregation of heat-shock aggregates.  
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Figure 3:- HSP104 is not essential for protection of cells to doxorubicin. Cells were grown to exponential phase in 

YPD at 30C and switched to 39C to induce the heat-shock response. Aliquots were transferred to 50C and 

incubated for the indicated time, then placed on ice before spotting. Serial dilutions (5-fold) were spotted onto YPD 

plates and incubated at 30C. Cell growth was monitored daily and colonies were counted at day 3. 

 

Heat-shock defective strains are not sensitive to DNA double-strand breaks:- 

Doxorubicin mechanism of action involves the inhibition of topoisomerase II, which leads to the stabilization of 

DNA double-strand breaks (DSBs), as well as the generation of ROS. To investigate if the heat-shock response 

defective strains are sensitive to DNA DSBs we exposed ydj1Δ, ssz1Δ, zuo1Δ, hsp104Δ and new1Δ mutants to the 

topo II inhibitor etoposide. Unlike doxorubicin, etoposide lacks the quinone ring responsible for the generation of 

ROS, thus only generates DSBs. The homologous recombination mutant strain rad52Δ was used as a positive 

control. As shown in figure 4, none of the heat-shock mutant strains were affected by etoposide, while rad52Δ was 

sensitive, as expected. This data suggest that the heat-shock strains are not sensitive to the DSBs-inducing activity of 

anthracyclines. We further tested the sensitivity of the strains to other DNA damaging agents. While new1Δ was 

unaffected by ionizing radiation, zuo1Δ and ydj1Δ mutants were partially sensitive and ssz1Δ was highly sensitive 

(Table 1). DNA alkylating agent MNNG reduced the viability of zuo1Δ by 5-fold and ssz1Δ by 10-fold, while it did 

not affect ydj1Δ or new1 mutants (Table 1). Similarly, topoisomerase I inhibitor reduced the viability of zuo1Δ by 5-

fold and ydj1Δ and ssz1Δ mutants by 10-fold (Table 1). As expected, all strains were sensitive to the anthracycline 

daunorubicin (Table 1). 

 
Figure 4:- Heat-shock defective strains are not sensitive to DNA double-strand breaks generated by doxorubicin. 

Serial dilutions of heat-shock response mutants were plated onto etoposide-containing plates as described in the 

Materials and Methods. The rad52Δ sensitive strain was used as the control. Growth was scored after 3 days of 

incubation at 30°C. Sensitivity was assessed by comparison to growth of the strains on plates without etoposide. 
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Table 1:- Sensitivity of the heat shock response mutants to cytotoxic agents. 

a
Growth after irradiation was determined relative to wild type cells. Strains were classified as: not sensitive: +++ (≥ 

50% survival), slightly sensitive: ++ (10-50% survival), sensitive: + (1-10%) and hypersensitive: - (<1%). Survival 

of wild type cells was 50% after irradiation.  

 
b
Heat sensitive strains did not grow when patched onto YPD plates and incubated at 37°C for 3 days (indicated by 

an S). 

 
c
Sensitivity to MNNG, camptothecin and daunorubicin was calculated by determining cell survival and is expressed 

as fold reduction in viability. Survival of the wild type strain was >90% at the concentrations of drugs used. 

 

Strains defective in the heat-shock response are sensitive to agents that generate oxidative stress:-  
Doxorubicin is capable of generating ROS through its quinone ring. To determine if the heat-shock defective strains 

are sensitive to ROS, we determined their viability after exposure to menadione, a commonly used ROS generating 

agent, which shares rings C and D of the aglycone moiety of the anthracyclines [2], containing the quinone ring.  As 

shown in figure 5, ydj1Δ, new1Δ, ssz1Δ, and zuo1Δ mutants were highly sensitive to menadione, with a reduction in 

survival equivalent to that resulting from doxorubicin treatment. The positive control sod1Δ, which is defective in 

superoxide dismutase, is also highly sensitive as expected. Under the conditions tested, wild type cells presented a 5-

fold reduction in viability for doxorubicin and a 10-fold reduction in viability for menadione. The hsp104Δ mutant 

was not considerably affected displaying a 10-fold reduction in viability for both agents, similar to those of the wild 

type strain. 

 
Figure 5:- Strains defective in the heat-shock response are sensitive to agents that generate oxidative stress. Serial 

dilutions of heat-shock response mutants exposed to menadione were plated onto non-selective plates as described in 

the Materials and Methods. The sod1Δ sensitive strain was used as the control. Growth was scored after 3 days of 

incubation at 30°C, and sensitivity was assessed by comparison to the growth of the untreated cells (No Drug) and to 

cells grown on plates containing doxorubicin (+ Doxo). 

 

Discussion:- 
The results presented in this paper describe the basis for the sensitivity of the heat-shock defective strains to 

chemotherapeutic agent doxorubicin. It also provides evidence for doxorubicin-induced protein aggregation, as a 

consequence of the generation of reactive oxygen species. 

 

Strain 

Growth Sensitivity (fold)
c
 

Irradiation
a
 

(50 Gy) 

Heat
b
 

(37°C) 

MNNG 

(3  µM) 

Camptothecin 

(10  µM) 

Daunorubicin 

(10  µM) 

      

zuo1Δ +  5 5 1,000 

ydj1Δ + S  10 10,000 

new1Δ ++    1,000 

ssz1Δ -  10 10 1,000 
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We had previously identified ssz1Δ, zuo1Δ and ydj1Δ mutants in a genome-wide screen for strains that are 

hypersensitive to doxorubicin [15]. The role of the heat-shock response (HSR) in protecting cells from doxorubicin 

was confirmed by the rescue of the mutant strains sensitivity at high temperature. This effect is not limited to HSR 

factors, but it can also rescue homologous recombination mutant rad52Δ and the wild type strain. As expected, the 

ydj1Δ mutant which is sensitive to high temperatures was inviable, indicating a crucial role of Ydj1p in the survival 

response to doxorubicin.  

 

Ydj1p has also been shown to participate in protein disaggregation, as co-chaperone of the Hsp104p disaggregase. 

In fact, we found that exposure of yeast cells to doxorubicin resulted in protein aggregation, as determined by a 

firefly luciferase-GFP fusion reporter. The absence of a requirement for HSP104 in the response to doxorubicin 

exposure was intriguing, considering the observation of doxorubicin-induced protein aggregation. However, a strain 

defective in NEW1, an ATP binding cassette protein proposed to be a prion in S. cerevisiae [30], presented high 

sensitivity to doxorubicin. New1p, which has been shown to be capable of dispersing Sup35 amyloid fibers, in fact 

acting as a disaggregase [25], may be a good candidate to perform this function in doxorubicin-induced protein 

aggregates. Interestingly, this observation suggests that cells can effectively distinguish between heat-induced 

protein aggregates and those generated by other types of stresses.  In fact, oxidative damage to protein can result in 

various modifications, including carbonyl derivatives, oxidized groups and protein fragmentation [31] not occurring 

in heat-denatured proteins. While there is substantial evidence of a partnership between Ydj1p and HSP104p in the 

disaggregation of heat-denatured proteins, we do not know at this time, if YDJ1p and NEW1p work in conjunction 

in doxorubicin-induced protein aggregates. Similarly, the requirement for an HSP70 in this process is not clear. 

Single, double and triple deletions strains of ssa1Δ, ssa2Δ and ssa3Δ were constructed, tested and found to be not 

hypersensitive to anthracyclines.  

 

Anthracyclines are complex drugs that exert different effects in the exposed cells. Two well-known effects are the 

generation of DSBs through the inhibition of DNA topoisomerase II and the generation of ROS, mediated by the 

anthracycline quinone ring. To investigate which of these injuries resulted in reduced viability of the HSR mutants, 

we exposed the strains to agents which exclusively caused DSBs by inhibition of topoisomerase II (etoposide), or 

generated ROS through a quinone ring identical to that present in anthracyclines (menadione). The HSR mutants did 

not display significant sensitivity to etoposide, or to other types of DNA damaging agents, such as alkylating agent 

MNNG and the topoisomerase I inhibitor camptothecin (a 5 to 10-fold increase). However, ssz1Δ, ydj1Δ and zuo1Δ 

mutants did display sensitivity to ionizing radiation. Considering that the majority of the damage to cellular 

components caused by ionizing radiation is due to the generation of ROS [32] [33], is possible that, upon irradiation, 

cellular proteins suffer oxidative damage similar to that generated by anthracyclines. The requirement for these HSR 

factors in the response to oxidative stress is observed when the deletion strains are exposed to menadione, a quinone 

ring-containing compound that closely resembles rings C and D of anthracyclines [2], responsible for the generation 

of ROS. 

 

Interestingly, Ssz1p and Zuo1p have previously been shown to activate pleiotropic drug resistance [26]. This 

function is distinct from their role as endoplasmic reticulum (ER) chaperones, and is independent from ribosome 

binding [26], consistent with a response needed in different cellular compartments not limited to the ER. The ssz1Δ 

and zuo1Δ mutant strains were also sensitive to menadione, suggesting that they also participate in the response to 

ROS-induced protein denaturation. 

 

Significant effort is currently devoted to reducing side effects of cytotoxic chemotherapy. For anthracyclines, 

chronic cardiomyopathy is the most serious undesired effect resulting from cumulative toxicity and limits their 

therapeutic use. Attempts to redesign the drug to analogs with lower toxicity results in compounds with lower 

therapeutic efficacy [2] [34]. In the search for alternatives to improve cytotoxic chemotherapy, the option of 

sensitizing tumors is an attractive one. In the case of anthracyclines, in addition to increasing efficacy, the use of 

lower doses would concomitantly result in reduced side effects to sensitive tissue such as the heart. Modulating the 

HSR for this purpose may be an option, as well. In fact, the HSR is already a therapeutic target in cancer 

chemotherapy [22-24]. This may be accomplished by activating the HSR to protect normal tissue from the toxicity 

of anthracyclines. Currently, the accepted option for reducing the risk of cardiotoxicity involves the use of 

dexrazoxane, an iron chelator intended to reduce the load of ROS by blocking Fe-dependent ROS formation [35].  
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We are currently devoting significant effort to identify the mammalian counterparts of the yeast genes. If found, they 

will provide potential new targets for tumor sensitization to chemotherapy as well as a potential alternative for 

modulating the response of normal tissue to the cytotoxicity of ROS-generating agents, such as anthracyclines.  

 

Conclusion:- 
 Exposure to doxorubicin in the yeast S. cerevisiae results in increased reactive oxygen species that lead to protein 

aggregation. The heat-shock response proteins Ydj1p, Ssz1p and Zuo1p are critical for the survival to the 

anthracycline, while the disaggregase Hsp104p is not.  This role appears to be performed by the novel disaggregase 

New1p.   
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