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Reynolds equation is a partial differential equation, derived from the 

Navier-Stokes equations.Reynolds equation is the fundamental 

equations of the hydrodynamic lubrication theory.SolutionofReynolds 

equation describes the pressure distribution of the lubricant in a journal 

bearing with finite length. The parameters involved in the Reynolds 

equation are viscosity, density and film thickness of lubricant. 

However, an accurate analysis of the fluid film hydrodynamics 

obtained using many numerical solution of the Reynolds equation. 

Differential Transform Method (DTM) is one of the powerful 

numerical methods applied to solve linear and nonlinear part ial 

differential equations. This study aims to apply DTM to solve Reynolds 

equation in partial differential form to get pressure distribut ion of 

journal bearing.  Results obtained from the DTM compared with 

available solutions obtained using other numerical methods and show 

good agreement. The obtained results reveal that the technique used 

here is good, effective and convenient for such kind of problems. 
 

                 Copy Right, IJAR, 2018,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Most phenomena in  real world  are described through nonlinear equations. Nonlinear phenomena play important 

roles in applied mathemat ics, physics and in engineering problems in which each parameter varies depending on 

different factors. The importance of obtaining the exact or approximate solutions of nonlinear partial differential 

equations (NLPDEs) in physics and mathematics, itis still a hot spot to seek new methods to obtain new exact or 

approximate solutions. Large class of nonlinear equations does not have a precise analytic solution, so numerical 

methods have largely been used to handle these equations. 

 

 The concept of differential transform method was first introduced by Zhou [1] in 1986 and it was used to solve both 

linear and nonlinear in itial value p roblems in  electric circu it analysis.The main  advantage of this method is that it 

can be applied directly to NLPDEs without requiring linearizat ion, discretization, or perturbation. It is a semi 

analytical–numerical technique that formulizes Taylor series in a very different manner. This method constructs, for 

differential equations, an analytical solution in the form of a polynomial. Chen and Ho [2] solved Partial Differential 

Equations (PDE) is proposed in this study by using two-dimensional differential transform. First, the theory of two-

dimensional differential t ransform is introduced. Second, taking two-dimensional differential transform of a PDE 

problem, a set of difference equations is derived.Doing some simple mathematical operations on theseequations. 
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Finally, three PDE problems with constant and variable coefficients are solved by the present method . The 

calculated results are compared very well with those obtained by other analytical or approximate methods. 

 

Jang et al. [3] present the definition and operation of the two-dimensional differential transform. A distinctive 

feature of the differential transform is its ability to solve linear and nonlinear differential equations. Partial 

differential equation of parabolic, hyperbolic, elliptic and nonlinear types can be solved by the differential 

transform. Hassan [4] studied the differential transformat ion technique which is applied to solve eigenvalue 

problems and to solve partial d ifferential equations. First,usingthe one-dimensional differential transformation to 

construct the eigenvalues and the normalized eigenfunctions for the differential equation  of the second- and the 

fourth-order. Second,using the two-dimensional differential transformat ion to solve P.D.E. of the first - and second-

order with constant coefficients. In both cases, a set of difference equations is derived and the calculated results  are 

compared closely with the results obtained by other analytical methods.  

 

Ayaz [5] studied two-dimensional d ifferential transform method of solution of the initial value p roblem for part ial 

differential equations. New theorems have been added and some linear and nonlinear PDEs solved by using this 

method. The method can be easily applied to linear or nonlinear problems and is capable of reducing the size of 

computational work. Ayaz [6] introduced three-dimensional differential transform method and fundamental 

theorems have been defined for the first time. Moreover, as an application of two and three-dimensional differential 

transform, exact solutions of linear and non-linear systems of partial d ifferential equations have been investigated. 

The results of the present method are compared very well with those obtained by decomposition method. 

Differential transform method can easily be applied to linear or non-linear problems and reduces the size of 

computational work.  

 

Kurnaz et al. [7] solved partial differential equations (PDEs) using the generalization of the differential 

transformation method to n-dimensional case. A distinctive practical feature of this method is its ability to solve 

especially nonlinear d ifferential equations efficiently. The results  applied to a few init ial boundary-value problems 

to illustrate the proposed method. Hassan [8] compared the differential transformation method DTM and adomian 

decomposition method ADM to solve partial differential equations (PDEs). A distinctive practical feature of the 

differential transformation method DTM is ability to solve linear or nonlinear differential equations. Higher-order 

dimensional differential t ransformat ions are applied to a few some initial value problems to show that the solutions 

obtained by the proposed method DTM coincide with the approximate solution ADM and the analytic solutions.  

 

Murat DUZ and UgurILTER. [9] givedifferential transforms of first, second and third derivatives of a complex 

function. Later, third order complex equations  were solved using two dimensional differential transform.Kangalg il 

and Ayaz [10] present a reliable algorithm in o rder to obtain exact and approximate solutions for the nonlinear 

dispersive KdV and mKdV equations with initial p rofile. The approach rest mainly on two-dimensional differential 

transform method which is one of the approximate methods. The method can easily be applied to many linear and 

nonlinear problems and is capable of reducing the size of computational work. Exact solutions can also be ach ieved 

by the known forms of the series solutions.  

 

Elrod-Adams model [11-12] is not straightforwardly accomplished with the FEM formulat ion. Essentially, the main 

difficult ies arise in the discretization of the convective term of the modified equation, as well as in the enforcement 

of the flow conservation on the cavitation boundaries throughout the lubricated contact. 

 

Elrod and Brewe [13] developed a numerical reduction approach to solve the Reynolds equation coupled with the 

2D energy equation with Dirich let boundary conditions. Temperature and flu idity (inverse of viscosity) are 

approximated by third order Legendre polynomials across the fluid film thickness. Elrod used Lobatto point 

quadrature method to discretize and calcu late the integral quantities across the film thickness. The pressure and 

temperature are discretized using the classical fin ite difference methods in the other directions. The method showed 

good agreement with classical approaches.  

 

Elrod [14] improved the precision of the method by approximat ing the temperature and the fluid ity using arbitrary 

orders Legendre polynomials. In 2005, Moraru [15] extends the approach presented by Elrod [14] to compressible 

flu ids and takes also into account a temperature-dependent density. In his work, a 2D formulation of the energy 

equation neglecting the axial heat conduction is used. In contrast to [13] and [14], the density is also approximated 
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by Legendre polynomials across the fluid film thickness. The governing partial differential equations are so lved by 

fin ite difference methods with upwind scheme for numerical stability.  

 

In 2009, Feng and Kaneko [16] used the same approach as Moraru to calculate the temperature and the pressure 

distributions in a multi-wound foil bearing while taking into account foil deflections. Unlike Moraru, Feng and 

Kaneko solved the energy equation on a 3D computational domain using finite d ifference methods. In 2015, Mahner 

et al. [17] used the reduction approach to analyze steady state performances of thrust and slider b earings operating 

with a compressible fluid. The authors used the Quadrature Method, the Modified Quadrature Method, Lobatto 

Point Collocation Method and the Galerkin Method in order to reduce number of unknowns of the discretized 

equations. According to the authors, all these methods yielded a significant time reduction compared to the classical 

methods. 

 

Silun Zhang et al. [18] present numerical solution of the Reynoldsequation coupled with the energy transport 

equation. A Spectral approach named Lobatto Point Collocation Method (LPCM) is studied. The combination of 

LPCMwith two different film rupture/reformat ion models is validated using numerical results published in 

theliterature in the cases of 1D slider.Sfyris and Chasalevris [19] solve the Reynolds equation for the pressure 

distribution of the lubricant in a journal bearing with finite length analytically. Using the method of separation of 

variables and compare the results with past numerical solutions. 

 

Nomenclature: 

P resulting pressure of the lubricant 
0 attitude angle of the journal 

x axial coordinate of the bearing 
rC bearing radial clearance 

 angular coordinate of the bearing e journal eccentricity 

h fluid film thickness e journal eccentricity rate of change 

R journal radius  journal eccentricity ratio  

 journal rotational speed  journal eccentricity ratio rate of  change 

 lubricant dynamic viscosity 
bL bearing/journal length 

 

Mathematical modeling: 

The problem of the lubrication of journal bearings with fin ite length is defined in this work as the calculation of the 

pressure distribution of the Newtonian lubricant that is assumed to flow under laminar, isoviscous, and isothermal 

conditions in between the rotating journal and the static bearing. The journal o f radius R and length Lb is assumed to 

be rotating with a constant rotational speed and to be constantly located in a point of eccentricity e with respect to 

the geometric center of the bearing of radius R+Crand length Lbafteran application of a virtual vertical load W as 

shown in Fig. 1. 

 
Fig.1:-Defin ition ofthecoordinatesystemandoftheparametersofoperationand design inaplain cylindrical 

journalbearing. 

 

The load is not used as a parameter in this work since no forces are evaluated or expressed and the unique „„inputs‟‟ 

in the pressure evaluation are considered to be the eccentricity e and its rate of change e . The journal and the 

bearing are supposed to be in parallel (aligned bearing) and the fluid film thickness h becomes a function of the 
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unique independent parameter  for a time moment of constant e and e  which means that the function for the fluid 

film thickness is cos( )rh C e    and its time derivative is cos( )h t e     . The dynamic v iscosity of the 

lubricant is assumed to be constant and equal to  through the entire control volume (notified with shadow in Fig. 

1) that is defined from the bearing and the journal surfaces. The attitude angle of the journal is defined as 
0 with 

respect to the vertical coordinate axis (see Fig. 1). The starting point is the equation of Reynolds which is expressed 

as 

3 3

2

(x, ) 1 (x, )
2

6 6

h P h P h h

x x R t

 

    

        
      

        
(2.1) 

 

After substituting the fluid film thickness function of Eq. (2.2) into Eq. (2.1) and performing the derivations one will 

arrive at Eq. (2.3): 

cos( )rh C e   (2.2) 

3 2 32 2

2 2 2 2

( cos( )) 3( cos( )) sin( ) ( cos( ))( , ) ( , ) ( , )
-

6 6 6

r r rC e C e e C eP x P x P x

x R R

     

    

    
 

  
 

sin( ) 2 cos( )e e     (2.3) 

The Boundary conditions are 

( ,0) ( ,2 ) (0, ) (L, ) 0p x p x p p     
and 

0
p

x




  at the outlet 

Eq. (2.3) is the one that we are going to work with.  

 

Basic ideas of the differential transform method 

The basic definitions and fundamental operations of the two-dimensional differential transform are defined in [2-9]. 

Consider a function of two variables ( , )p x  be analytic in the domain  and let 0 0( , ) ( , ) x x  in this 

domain. The function ( , )p x isthen represented by one series whose center at located at 0 0( , )p x
. 

The 

differential transform of the function is the form  

0 0( , )

1 ( , )
(k,h)

! !

k h

k h

x

p x
P

k h x






 
  

  
                                                          (3.1)

 

where ( , )p x is the original function and (k,h)P  is the transformed function. The differential inverse 

transform of (k,h)P is defined as 

0 0

0 0

( , ) (k,h)( ) ( )k h

k h

p x P x x  
 

 

  
                                               (3.2) 

The relations (3.1) and (3.2) imply that 

0 0

0 0

0 0 ( , )

1 ( , )
( , ) ( - ) ( - )

! !



   



 

 

 
  

  


k h
k h k h

k h
k h x

p x
p x x x x

k h x
             (3.3)

 

 

In a real application, and when 0 0( , )x are taken as (0,0) , then the function ( , )p x is expressed by a finite 

series and Eq. (3.2) can be written as 

 
0 0

( , ) ( , )  
 


m n

k h

k h

p x P x x

                                                                 (3.4) 
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in addition Eq. (3.4) implies that  
1 1

( , ) 
 

   

  k h

k m h n

P x x
 

is negligib ly small. Usually, the values of m and n are decided by convergences of the series coefficients.  

The fundamental mathematical operations performed by two-dimensional differential transform method are listed in 

Table 1. 

 

Table 1:-The operations for the two-dimensional differential transform method. 

Original function Transformed function 

( , ) ( , ) ( , )   p x u x v x  ( , ) ( , ) ( , ) P k h U k h V k h  

( , ) ( , )  p x u x  ( , ) ( , ), P k h U k h  is constant 

( , )
( , )









u x
p x

x
 

( , ) ( 1) ( 1, )  P k h k U k h  

( , )
( , )











u x
p x  

( , ) ( 1) ( , 1)  P k h h U k h  

( , ) ( , ) ( , )  p x u x v x  
0 0

( , ) ( , ) ( , )
 

   
k h

r s
P k h U r h s V k r s  

( , )  m np x x  ( , ) ( - , - ) ( - ) ( - )   P k h k m h n k m h n  

where 
1, ,

( - )
0, ,

k m
k m

k m



 



1,
( - )

0,

h n
h n

h n



 


 

( , )
( , )









 

r s

r s

u x
p x

x
 

( , ) ( 1)( 2) ( )( 1)( 2)     P k h k k k r h h  

( ) ( , )h s U k r h s     

( , ) sinp x  
 

1
( , ) sin( )

! 2

h
P k h

h




 

( , ) cosp x  
 

1
( , ) cos( )

! 2

h
P k h

h




 

 

Mathematical solution: 

Taking the two-d imensional transform of Eq . (2.3) by using the related definitions in Table 1, we have 
3 2

2 3 2 2 3 2

3
2 2 2

3
3 2 2 3 2

3 3 3
( ) [3 2 3 ] cos( )( 1)( 2) ( 2, )

2 4 2 4 ! 2

3 1 1 3 2
[(3 ) sin( ) 6 cos( )sin( ) cos( )sin( )](h 1)

2 ! 2 ! ! 2 2 2 ! ! 2 2

3 3 3
( , 1) [ 3 2

2 4 2 4

h h

r r r r

h

r r

h

r r r r

e R h
R C C e C e C e k k U k h

h

h h h e h h
C e e C e

h h h h h

e
U k h C C e C e C e



    

       

    

       

 2 2

1
3 ] cos( )(h 1)(h 2) (

4.

, 2)
! 2

1 1
6 sin( ) 12 cos( )

! 2 2
1

!

h h
U k h

h

h h
R e R e

h h



 
 

  

    

By applying the two-dimensional transform of boundary conditions by using therelated definitions in Table 1, we ha

( ,0) ( ,2 ) (0, ) ( , ) 0, ( ,1) 0 (4.2)U k U k U h U L h U k     then 

substitute Eq.(4.2) in Eq.(4.1) with / re c  , 0.001
e

R






  and by recursive method we can calculate 

another values of ( , )U k h . 



ISSN: 2320-5407                                                                                    Int. J. Adv. R es. 6(11), 729-737 

734 

 

 
0 0

( , ) ( , )

(0,0) (1,0) (0,1) (1,1) ... ( , )

m n
k h

k h

m n

p x U h k x

U U x U U x U m n x

 

  

 



     


 

 

 

Results:-  

  

  
Fig.2:-the resulting pressure p(x, θ) along angular coordinate θ in the axial center o f bearing (x=0) for variable 

values of eccentricity ratio.  (a) Ɛ=0.3, (b) Ɛ =0.5,(c) Ɛ =0.7,(d) Ɛ =0.9 and L/D=1 in all diagrams. 
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Fig.3:-the resulting pressure p(x, θ) along angular coordinate θ in the axial center of bearing (x=0) for variable 

values of eccentricity ratio.  (a) Ɛ=0.5 and L/D=0.25, (b) Ɛ=0.5 and L/D=4,(c) Ɛ=0.7 and L/D=0.25,(d) Ɛ=0.7 and 

L/D=4,(e) Ɛ=0.9 and L/D=0.25,(f) Ɛ=0.9 and L/D=4  

 

Results of the proposed numerical technique applied to Reynolds equation of lubrication are shown inFigs. 2and 

3.The DTM numerical method results presentedshow good agreement with exact solution in [19]. There are some 

differences in the maximum values of pressure but also in the domain of maximum values.Comparing now the DTM 

results with the exact analytical result. In (Fig. 2a) we can see in exact analytic solution that the maximum value of 
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P= 0.765 at angle θ=2.15 (rad) and in DTM method the maximum value of P=0.745   at angle θ=2.35 (rad).In (Fig. 

2b) we can see in exact analytic solution that the maximum value of  P= 1.79  at angle θ=2.3 (rad)  and in DTM 

method the maximum value of  P=1.82   at angle θ=2.3 (rad).In (Fig. 2c) we can see in exact analytic solution that 

the maximum value of  P= 4.73  at angle θ=2.60 (rad)  and in DTM method the maximum value of  P=4.62   at angle 

θ=2.70 (rad). In (Fig. 2d) we can see in exact analytic solution that the maximum value of P= 32 at angle θ=2. 80 

(rad) and in DTM method the maximum value of P=34   at angle θ=2.75 (rad).In (Fig. 3a) we can see in exact 

analytic solution that the maximum value of P= 0.23 at angle θ=2.50 (rad) and in DTM method the maximum value 

of P=0.22 at angle θ=2.65 (rad). In (Fig. 3b) we can see in exact analytic solution that the maximum value of  P= 

3.65  at angle θ=2.250 (rad)  and in DTM method the maximum value of  P=3.8   at angle θ=2.35 (rad). In (Fig. 3c) 

we can see in exact analytic solution that the maximum value o f P= 0.92 at angle θ=2.750 (rad) and in DTM method 

the maximum value of P=0.91   at angle θ=2.750 (rad). In (Fig. 3d) we can see in exact analytic solution that the 

maximum value of P= 7.5 at angle θ=2.60 (rad) and in DTM method the maximum value of P=7.7   at angle θ=2.70 

(rad). In (Fig. 3e) we can see in exact analytic solution that the maximum value of P= 12 at angle θ=2.80 (rad) and 

in DTM method the maximum value of P=11.1 at angle θ=2.75 (rad). In (Fig. 3e) we can see in exact analytic 

solution that the maximum value of  P= 32.5 at angle θ=2.850 (rad)  and in DTM method the maximum value of  

P=43 at angle θ=2.78 (rad) which converges to the exact solution. 

The differences of the DTM solution in comparison to the exact pressure solution are minimalfor all  of these four 

cases of eccentricity ratio, which correspondto a heavy loaded bearing, to a lightly loaded bearing and also 

tointermediate cases. The DTM solution seems to slightly under-estimate the exact pressure in the cases of Ɛ= 0.3 

(Fig. 2a), Ɛ=0.7 (Fig. 2c), Ɛ=0.5 (Fig. 3a) and Ɛ=0.7 (Fig. 3d), while in the case of Ɛ=0.5 (Fig. 2b), Ɛ= 0.9(Fig. 2d), 

Ɛ=0.5 (Fig. 3b) and Ɛ=0.9 (Fig. 3f) the DTM solution seems to overestimate the exact pressure. 

 

In Fig. 3we presenttwocases of L/D rat io corresponding to a short (L/D=0.25) and a long(L/D=4) bearing  with 

evaluating the pressureprofile under the use of the exact analytical solution, the FDM,and the Short/Long bearing 

approximation fo r three differentcases ofƐ=0.5, Ɛ=0.7 and Ɛ=0.9. As shown in Fig. 3b, d and f,the long bearing 

approximation yields results of almost absoluteagreement with the exact analytical solution and with 

slightdifferences to the numerical results. The short bearing approximat ion,see Fig. 3a, c and e, appeared with a very 

goodagreement in cases of eccentricity ratioƐ=0.5 and Ɛ=0.7, andonly slight differences are noticed in the 

maximumpressure ofthe heavy loaded short bearing in Fig. 3e. However, in all cases these slight differences 

presented between thepressure distributions could be expla ined as a matter of thedifferences in the nature of the 

solutions (DTM,analyticalexact).  

 

Conclusion:- 

In this work, we have successfully developed DTM to obtain an approximation to the solution of the Reynolds 

equation. It is apparent that this method is  a very influential and efficient technique. There is no need for 

linearization or perturbations; large computational work and round-off errors are avoided. The results obtained 

demonstrate the reliability of the algorithm and its applicability to some partial differential equations. It provides 

more realistic series solutions that converge very rapidly in real physical problems. It may be also concluded that 

DTM is very powerful and reliab le in finding analytical as well as numerical solutions for wide classes of nonlinear 

differential equations. 
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