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Facial recognition is integral and essential in today's society, and the 

recognition of emotions based on facial expressions is already 

becoming more usual. This paper analytically provides an overview of 

the databases of video data of facial expressions and several approaches 

to recognizing emotions by facial expressions by including the three 

main image analysis stages, which are pre-processing, feature 

extraction, and classification. The paper presents approaches based on 

deep learning using deep neural networks and traditional means to 

recognizing human emotions based on visual facial features. The 

current results of some existing algorithms are presented. When 

reviewing scientific and technical literature, the focus was mainly on 

sources containing theoretical and research information of the methods 

under consideration and comparing traditional techniques and methods 

based on deep neural networks supported by experimental research. An 

analysis of scientific and technical literature describing methods and 

algorithms for analyzing and recognizing facial expressions and world 

scientific research results has shown that traditional methods of 

classifying facial expressions are inferior in speed and accuracy to 

artificial neural networks. This review's main contributions provide a 

general understanding of modern approaches to facial expression 

recognition, which will allow new researchers to understand the main 

components and trends in facial expression recognition. A comparison 

of world scientific research results has shown that the combination of 

traditional approaches and approaches based on deep neural networks 

show better classification accuracy. However, the best classification 

methods are artificial neural networks. 

 
Copy Right, IJAR, 2021,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Several facial expressions are displayed on the human face due to various emotions. These emotions are disgust, 

fear, happiness, surprise, sadness, anger, contempt, and neutral, which are deeply imprinted in our bodies. Our 

mirror-neuron systems effortlessly recognize these universal emotions in every human interaction we go through. To 

date, there are a large number of algorithms that can automatically recognize a person's emotions by facial 

expressions [1, 2, 3, 4]. However, the quality of emotion recognition systems based on facial expressions 

deteriorates due to the following problems: 

1. A small amount of training data. 

2. Ethnicity, gender, age. 

3. Affectation of emotions. 
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4. Intra-class difference and inter-class convergence. 

5. Occlusion. 

6. Different head rotation angle. 

7. Illumination level. 

8. Differences in facial proportions. 

 

Modern facial expression recognition (FER) systems include the following main stages [5]: 

1. Pre-processing of the image consists of finding the face area, cropping and scaling the located area, equalizing 

the face, and adjusting the contrast. 

2. Extraction of visual features. 

3. Classification of emotions. 

 
Figure 1:- Example of various facial expressions. 

 

Figure 1 shows various examples of a person's facial expression.  

 

Pre-processing allows you to cope with the problems described earlier [6, 7]. The face area's localization is 

performed at this stage, cropping and scaling the found area, changing the image's contrast. Feature extraction is 

based on the geometry and appearance of the face. By geometry, we mean the following components of the face: 

(their shape and location on the face), like the eyes, mouth, nose, etc., and under the appearance of the face is the 

skin's texture.  

 

The classification of features is aimed at the development of an appropriate classification algorithm for identifying 

facial expressions. 

 

This analytical review's primary purpose is to compare the methods of pre-processing facial images, extraction of 

visual features, and machine classification of emotions. This will allow us to determine the further direction of 

research for creating a new automatic system for recognizing human emotions by facial expressions. Figure 2 shows 

a general diagram of the image analysis method for identifying emotions based on a person's facial expression. 

 
Figure 2:- Diagram of the image analysis method for recognizing emotions from human facial expressions. 
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The paper presents a brief overview of the databases of facial expressions, the primary processing methods, 

extraction and classification of features used for the FER task, and the current results of some existing algorithms 

are presented, as well as a comparison of FER methods. 

 

Overview of facial expression databases 

Databases of emotional facial expressions are divided into static and dynamic images in a sequence of frames. Static 

images capture only the peak level of intensity of the emotion being experienced, while dynamic images capture 

facial expressions that change over time. To create FER systems, it is promising to use databases containing video 

sequences. Table 1 provides a summary of some existing databases. 

 

Table 1:- A brief overview of databases containing emotional facial expressions 

Database Number of 

Samples 

Number 

of 

Subjects 

Resolution, Pixels Chromaticity Emotions Features 

KDEF 4900 70 562 ×562 RGB 7 Fixing the face 

in five angles 

JAFFE 213 10 256 ×256 Gray 7 Asian 

appearance 

CK+ 72939 123 640 ×490 

640 ×480 

RGB, Gray 8 Persons of 

different 

nationalities 

FER2013 35888 - 48 × 48 Gray 7 Images from 

the Internet 

SAVEE 480 audio-

video 

4 320 × 256 RGB 7 The presence 

of 60 markers 

on the 

face 

CREMA-D [8] 7442 

audio-

video 

91 480 × 360 RGB 6 Age from 20 to 

74 years, 

different 

nationalities, 

2443 

annotators 

RAVDESS [9] 4904 

audio-

video 

24 1280 × 720 RGB 7 Varying 

degrees 

of emotion 

intensity, 247 

annotators 

 

Image pre-processing 

Image pre-processing allows one to cope with such problems as a lack of data on facial expressions, intra-class 

differences and inter-class similarities, small changes in the face's appearance, changes in the head position, and 

illumination improve the accuracy of FER systems. Image pre-processing can include the following steps: localize 

the face area, crop and scale the found area, align the face and adjust the contrast. 

1. Localization of the face area allows one to determine the face's size and location in the image. The most 

commonly used localization methods: 

o Viola-Jones object detection (VJ) [10]. 

o Single shot multi box detector (SSD) [11]. 

o Histogram of directional gradients (HOG) [12] . 

o Max margin object detection (MMOD) [13]. 

2. Cropping and scaling the face area's found area is carried out according to the face area's localization methods' 

coordinates. Since the located areas of the face have different sizes, it is necessary to scale the image, i.e., bring 

all the images to the same resolution. For these tasks, the following are applicable. 

 Bessel's correction [14]. 

 Gaussian distribution.  
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For example, the application of these methods is presented in [15, 16]. 

3. Face alignment reduces intra- class differences. For example, for each facial expression, a reference image is 

selected and divided by color components or the most informative areas of the face (for example, the forehead, 

eyes). The remaining images are aligned relative to the reference images.  The following methods are used for 

this task. 

 Scale invariant feature transform (SIFT) [17]. 

 Region of interest (ROI) [18].  

Examples of the use of these methods are presented in [19, 20]. 

4. Contrast adjustment allows one to smooth out images, reduce noise, increase the contrast of the face image, and 

improve saturation, enabling you to cope. For example, with the problem of illumination. Methods of contrast 

adjustment are: 

 Histogram equalization [21]. 

 Linear contrast stretching [22]. 

 

Examples of the use of these methods are presented in [23].  

 

Various image manipulations, such as rotation or displacement, allow you to increase the diversity of images and 

expand databases. Extending the database with variable images is helpful for deep learning-based methods. While 

for traditional methods, it is more beneficial to use models based on face alignment, which, on the contrary, reduces 

the variability associated with changes in the head position, which allows you to minimize intra-class differences 

and increase inter-class similarities. In this case, we selected the following models for each class: it has its standard, 

according to which each class's images are aligned. Choosing a suitable pre-processing method takes a long time, as 

facial recognition speed and accuracy depend on it. 

 

Extracting visual features 

The next stage of the FER is the extraction of signs. At this stage, the elements that are most informative for further 

processing are found. Depending on the functions performed, methods for extracting informative visual features are 

divided into several main types. Each feature extraction method is described in detail below.  

1. Methods based on geometric objects allow one to extract information about geometric objects, such as the 

mouth, nose, eyebrows, and other objects and determine their location. With details about geometric objects and 

their locations, you can calculate the distance between the objects; the obtained distances and coordinates of the 

objects' positions are signs for further classification of emotions. Methods based on geometric objects include: 

 The Line Edge Map (LEM) descriptor [24] measure facial expressions' similarity based on objects' 

boundaries. An example of using the descriptor is presented in [25]. 

 Active Shape Model (ASM) [26] detects objects' edges using facial landmarks, representing a chain of 

sequences of feature points. 

 Active appearance model (AAM) [27] is an extended version of ASM, which also forms the textual 

features of facial expressions. In [28], examples of using the methods are presented ASM and ASM. 

 HOG allows you to compare facial expressions by the direction of the gradients. An example of using 

HOG is shown in [6]. 

 Curvelet Transform [29] transmits information about the object's location and spatial frequency. An 

example of using the transformation is shown in [30]. 

2. Methods based on appearance models will allow you to extract information about the textural features of the 

face. For example, the different number of wrinkles in the eye area indicates different facial expressions, so 

using methods based on appearance models is the most informative for classifying emotions. Methods based on 

appearance models include: 

 The Gabor filter [31] is a classical method of distinguishing facial expression features, allowing you to 

select different deformation models for each emotion.  

 Local Binary Patterns (LBP) [32] allow you to represent the image pixel areas in binary code 

containing the distinctive features of both local and global (texture) areas of facial expressions. 

 Local Phase Quantization (LPQ) is resistant to ISO blurring. The method is based on short-term 

Fourier transformation, which allows us to identify periodic components in images of facial 

expressions and assess their contribution to the initial data formation. Examples of using the LBP and 

LPQ methods are presented in [33]. 
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 The Weber local descriptor [34] extracts features in two stages. The first stage divides the image into 

local areas (such as mouth and nose) and normalizes the images. The second stage extracts distinctive 

textural features using the gradient orientation describing facial expressions. An example of using this 

method is provided in [35]. 

 Discrete wavelet transform (DWT) [36] extracts texture features by splitting the original image into 

low-and high-frequency sections. For example, the authors of the article [37] use this descriptor. 

3. Methods based on global and local objects are:  

 The Principal Component Analysis (PCA) method [38] extracts the distinctive features of facial 

expressions from the covariance matrix, reducing the vectors' dimension.  

 Linear discriminant analysis (LDA) [38] searches for vectors with the most significant differences 

between classes and groups the same class's features. Examples of using the methods in PCA and LDA 

are presented in [1]. 

 The optical flow (OF) [39] assigns a velocity vector to each pixel, so information about the facial 

muscles' movement is extracted from the sequence of images, which allows us to consider the 

deformation of the face in dynamics. For example, the authors [40] use this method. 

 

From the presented feature extraction methods, appearance-based methods are the more different methods since they 

allow extracting textural features of appearance, which are essential parameters for FER, but they are less adapted to 

occlusions. Methods based on geometric objects are better adapted to occlusion, and the distance between facial 

landmarks is more characteristic of inter-class differences. The use of hybrid methods to extract features of facial 

expressions increases the accuracy of classification. 

 
Figure 3:- Systematization of methods for extracting visual features. 

 

Classification of emotions 

Classification is the last stage in FER. The extracted features are classified into facial expressions: happiness, 

surprise, anger, fear, disgust, sadness, and neutrality. Methods of machine classification of emotions are divided into 

traditional methods and artificial neural networks. In Figure 4, you can see the methods of machine classification of 

emotions. Each method of machine classification of emotions is described in detail below. 

1. Traditional methods: 
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 Hausdorff Distance [41] allows you to measure the distance between areas of interest and compare the 

resulting distances between classes. An example of using the method is presented in [7]. 

 Minimum distance classifier (MDC) minimizes the distance between classes. The smaller the 

distance, the greater the similarity between classes. An example of using the method is presented 

in [2]. 

 The k-nearest neighbor algorithm (KNN) [42] classifies facial emotions by the first k-elements 

whose distance is minimal. An example of using the method is presented in [3]. 

 LDA presents matrix data in the form of a scatter plot, which allows you to separate the features of 

classes visually. For example, the authors [43] use the LDA method. 

 The Support vector machine (SVM) method [44] builds a hyperplane separating the sample 

objects. The greater the distance between the separating hyperplane and the shared classes' objects, 

the lower the classifier's average error. For example, the authors in [1, 3, 4] use the SVM method. 

 The Hidden Markov model (HMM) [45] extracts pixels with a scanning window, converting them 

into observation vectors, facial expressions classify the resulting vectors. For example, the authors 

of the article [1] use the HMM method. 

 The Decision tree [46] assigns the value of emotion to the image according to predefined rules, 

depending on what features the image contains. An example of using the method is presented in 

[4]. 

2. Artificial neural networks: 

 The multilayer perceptron (MLP) [47] has three layers: an input layer, a hidden layer, and a 

processing layer. Each layer contains neurons that have their unique weight value. This perceptron 

type is called multilayer because its hidden (trainable) layer can consist of layers. Examples of the 

use of MLP are presented by the authors of the articles [3, 4]. 

 Deep neural networks (DNN): 

o The multilayer direct neural network (Multilayer feed forward neural network 

(MLFFNN) [48] is a relationship of per-centers, where the number of layers in the neural 

network is the number of perceptrons. The authors in [5] present an example of using 

MLFFNN. 

o Convolutional neural network (CNN) is a classification method with three layers: a 

convolution layer, a subsample layer, and a fully connected layer. CNN captures textures 

on small areas of images. CNN is trained on still images. Examples of using CNN are 

presented in [5, 6]. 

o Recurrent neural network (Recurrent neural network (RNN) uses contextual information 

about previous images. So, one training set contains a sequence of images, the class-

fixing of the entire set will correspond to the classification of the last image. 

o The combination of convolutional and recurrent neural networks can extract local data 

and use temporal information for more accurate image classification. For example, the 

authors in [49] use a combination of convolutional and recurrent neural networks. 

 

Other DNNs are modifications of the presented neural networks. The following metrics are used to analyze 

classification methods' effectiveness: completeness, accuracy, and F-measure. With a good set of training data, the 

best classification method is deep neural networks. They automatically study and extract features from the input 

images and detect emotions on the face with higher accuracy and speed than other methods.  
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Figure 4:- Systematization of methods of machine classification of emotions. 

 

Comparison of facial expression recognition algorithms 

Since the FER algorithms' accuracy depends on the database used for training and testing, it is correct to compare 

different methods on the same data sets. So, to compare the methods, the results obtained from the FER2013 

database were studied on static images. The SAVEE database was used to evaluate the recognition algorithms for 

dynamic changes in facial expressions. To compare the research results, the databases widely used by researchers 

for this task were selected. 

 

Comparison of results on the FER2013 dataset 

The authors in [6] compared the FER algorithms with feature extraction using the HOG and CNN methods. They 

found that with a small 48 × 48 image expansion and low image quality, the HOG and CNN methods' results are not 

adequate compared to CNN. The authors in their work [5] experimented with CNN parameters. As a pre-processing 

method, the authors used the Viola-Jones method. As a result, the localized areas of the face had a resolution of 48 × 

48 pixels. Figure 4 shows the CNN architecture proposed by the authors in [5]. 

 

The authors of the article [49] proposed to use a multilayer maxout activation function (MAP), which allows coping 

with such a problem in deep learning as a gradient explosion. To extract visual features, the authors used CN and 

RN with long short-term memory (LSTM). The combination of models also allows us to obtain information about 

the dynamic characteristics of facial expressions. The authors used SVM to classify emotions. All images were 

randomly cropped to 24 × 24 pixels. 

 

The authors in [50] used the JAFFE data set as a set of k-means training data. This was necessary to obtain a set of 

cluster centers. The k-means method is a clustering method used to divide n observations into k-clusters. 

Furthermore, the cluster centers' obtained values were fed as the convolution kernel's initial values in the CNN. The 

classification in the algorithm proposed by the authors was performed by SVM. For pre-processing, the authors used 

Viola-Jones, resulting in localized areas the faces had a resolution of 48 × 48 pixels. 

 

Table 2 summarizes the FER methods used and the classification accuracy on the FER2013 dataset, presented in [5, 

6, 49, 50]. 
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According to the final (Table. 2), it can be noted that the authors used the Viola-Jones pre-processing method. We 

used methods based on geometric objects (ASM, HOG, SIFT), global and local objects (PCA) to extract features. In 

some of the papers presented, CNN and the CNN + LSTM combination were the preferred feature extraction 

methods. The authors used SVM, KNN, and CNN as classifiers. However, the authors showed the highest result [5] 

using the Viola-Jones method and CNN, experimenting with CNN parameters. The accuracy of the analysis was 

89.78 %. From this, we can conclude that CNN copes with classification more accurately than traditional 

classification methods, such as SVM and KNN. 

 

Table 2:- Results of facial emotion recognition based on the FER2013 database. 

Author, Year Pre-processing 

Method 

Feature Extraction Method Classifier Accuracy % 

Sahar et al., 2019 [6] - HOG CNN 70.00% 

- CNN 72.00% 

Cao et al., 2019 [50] VJ CNN KNN 72.86% 

- CNN 77.43% 

CNN SVM 78.86% 

K-means CNN + SVM 80.29% 

An et al., [49] - MMAF CNN 84.50% 

MMAF + CNN + LSTM SVM 86.60% 

Isha et al., 2019 [5] VJ - CNN 89.78% 

 

 
Figure 5:- Neural network architecture in the emotion recognition system [5]. 
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Comparison of results on the SAVEE dataset 

As mentioned earlier, the FER2013 database consists of static images, but since facial expressions change 

dynamically, it is necessary to compare the results obtained on a database containing video recordings. A database 

will be used to compare the FER algorithms SAVEE. 

 

The authors in [51] use a new hybrid structure called Tandem modeling (TM), which consists of two hierarchically 

connected neural networks with a direct connection of the same type. The first network is a Not Fully Connected 

Neural Network (NFCN), the second is a standard fully connected neural network (FCN). Both networks use a 

hidden bottleneck connection layer that allows all outputs to be combined. As a preliminary treatment, the authors 

used the following methods: Viola-Jones localization, as a result of which the localized areas of the face had a 

resolution of 128 × 128 pixels, LBP was used on three orthogonal planes (Local binary patterns on three orthogonal 

planes, LBP-TOP). Other LBPs matrices of each class were independently distributed through 5-layer MLP and fed 

to the neural network. 

 

Table 3 summarizes the FER methods used and the classification accuracy on the SAVEE dataset, as presented by 

the authors in [33, 40, 51]. 

 

The authors [40] used the following approach in their work.  Rough and precise networks with an automatic encoder 

were responsible for pre-processing (coarse-to-fine auto-encoder networks, CFAN), allowing them to gradually 

optimize and align facial expression images. As a result, the localized areas of the face had a resolution of 64 × 64 

pixels. Two sets of functions were responsible for extracting global features: CNN and Gist, which use Gabor filters. 

Local features were extracted by LBP and LPQ-TOP. The authors used a discriminative multiple canonical 

correlation analysis (DMCA) to determine these indicators' characteristics to combine local and global. To reduce 

the functions' dimension, the Kernel entropy component analysis (KECA) algorithm was used. The SVM classifier 

terminates the algorithm. 

 

The authors [40] used the methods OF and Cumulative OF to extract the features. optical flow, AOF). 3D CNN was 

chosen by the authors because it allows us to extract features from spatial and temporal dimensions. In 3D CNN, the 

core moves in three directions, and the input and output data in this network are 4-dimensional. To select a suitable 

set of hyperparameters, the authors chose a Bayesian optimizer. The Viola-Jones methods and histogram 

equalization (HE) were applied to pre-process the image, resulting in those localized areas of the face had a 

resolution of 64 × 64 pixels. 

 

Total, based on the results obtained from the database SAVEE (table. 3), we can conclude. The following methods 

were used at the preliminary image processing stage: Viola-Jones, histogram alignment, and CFAN. The following 

methods were used at the feature extraction stage: LBP, LPS, OF, CNN, and Gist. The following methods are 

selected to classify facial expressions: SVM, MLP, TM, 3D CNN. Thus, the highest accuracy was obtained by the 

authors of the work [51], the recognition accuracy was 100 %. The authors used the Viola-Jones method for image 

pre-processing. The method is a local binary pattern on three orthographic surface planes and was selected at the 

feature extraction stage. Next, tandem modelling was used. 

 

Table 3:- Results of facial emotion recognition on the SAVEE database. 

Author, Year Pre-Processing 

Method 

Feature Extraction 

Method 

Classifier Accuracy % 

Fan et al., 2018 [34] CFAN CNN SVM 62.3% 

Gist SVM 62.7% 

LPQ-TOP SVM 64% 

LBP SVM 68.5% 

LBP+LPQ-TOP SVM 73.33% 

CNN+Gist SVM 75% 

All methods SVM 85.83% 

Zhao et al., 2018 

[40] 

VJ, HE OF 3D CNN 86% 

AOF 3D CNN 90.8% 

- 3D CNN 97.92% 

Salma et al., 2019 VJ LBP-TOP MLP 95.08% 
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[51] LBP-TOP TM 100% 

 

As a result of comparing the FER algorithms on the SAVEE and FER2013 databases, we can conclude: 

1. At the stage of preliminary processing, the Viola-Jones localization method is preferred. 

2. At the stage of feature extraction, the following methods were used: 

 Based on geometric objects (ASM, HOG, SIFT). 

 Based on appearance (Gabor filter, LBP). 

 Based on global and local objects (PCA, OF). 

 CNN. 

3. At the classification stage, the authors used SVM, MLP, CNN, and FCN.  

 

The accuracy of the FER is high and is mainly achieved by artificial neural networks. However, the articles' authors 

did not conduct experiments of the trained models they obtained with other datasets, indicating that the trained 

models are not universal. 

 

Conclusion:- 
Automatic facial expression recognition is an essential component of multimodal interfaces of human-computer 

interaction and computer paralinguistics systems. For accurate recognition of emotions from facial expressions, it is 

necessary to choose suitable methods for pre-processing the image, extracting visual features of facial expressions, 

and classifying emotions. Today, traditional classification methods are inferior in speed and accuracy to artificial 

neural networks. However, despite the large number of experiments carried out, the accuracy of the algorithm's 

facial expression recognition is still not high enough for various input parameters, so the task of creating a universal 

algorithm remains relevant. 

 

For further research, the authors plan to combine the SAVEE databases, CREMA-D, and RAVDESS, which will 

solve the problem of lack of data for training models. In addition, it will train the classifier to automatically 

recognize emotions regardless of ethnicity, age, or gender. To localize the face area, it is assumed to use an active 

shape model, which will allow you to divide the edges of objects using facial landmarks. This method shows high 

speed and accuracy face area detection. The images will be scaled with a resolution of 48 × 48, 64 × 64, 128 × 128, 

224 × 224 pixels, which will allow us to conclude about the effect of resolution on the accuracy of facial expression 

recognition. Also, to adjust the contrast, the histogram equalization method will be used, which will reduce the noise 

and the dependence of the facial expression recognition algorithm on the illumination. Using the active shape model 

will also allow you to extract features about the distance between the face landmarks and the center of mass, and the 

angle turning the head. It is planned to use CNN to classify emotions based on the obtained pixel arrays with 

different resolutions.  

 

It is planned to use FCN and SVM methods to classify emotions based on the extracted features (the coordinates of 

the facial orientations, the distance to the center of mass, and the angle of rotation of the head). 
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