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The present paper describes to obtain the system reliability of n-

cascade system. For this estimation Lindley stress and exponential 

strength have been considered. Under this assumption the reliability 

expression of n-cascade system Rn is given. Here stress-strength are 

considered as random variables with  the given density function. Some 

numerical values of reliabilities are given in tabular form for some 

selected values of the parameters. 
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Introduction:- 
Many authors such as Hanagal [3], Kapur and Lamberson [5], Bhowal [1], have studied different models in 

reliability without taking time into consideration. They have studied only single impact systems. Cascade system 

were first developed and studied by Pandit and Sriwastav [6]. A Cascade system is a type of n-standby system [6] 

where the stresses on subsequent components are attenuated by a factor ‘k’, called attenuation factor. This factor is 

generally assumed to be a constant for all the components or parameter having different fixed values for different 

components. But an attenuation factor may be a random variable also [2]. Most of the discussions of interference 

models assume that the parameters of stress and strength distributions are constants. But in many cases this 

assumption may not be true and the parameters may be assumed themselves (parameters) to be random variables. 

For example, solutions corrosive action may be highly influenced by variation in its temperature [4] and hence the 

distribution of stress (corrosive action) may have different parametric values which vary randomly with temperature 

or in other words, the stress parameter may be taken as a random variable. 

 

Let nXXX ,...,, 21  be the strengths of n-components in the order of activation and let nYYY ,...,, 21  are the 

stresses. In Cascade system every after failure the stress is modified by a factor k which is also called attenuation 

factor  such that 
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  etc. 

 

In stress strength model the reliability, R of a component (or system) is defined asthe probability that its strength X, 

is not less than the stress Y working on it, where X and Y are random variables. 

i.e. R = Pr( X ≥ Y) 

 

In this paper n-cascade system have been considered with this model. The basic aim of this paper is to obtain the 

system reliability nR with this model where the strength is considered as one-parameter exponential distribution and 
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stress is Lindley distribution. The paper is organized as follows. In section 2 the general model is developed for n-

cascade system. In section 3 the reliability expressions for n-cascade system is calculated when the stress-strength of 

the components follow particular distributions. In section 3.1 the expressions of nR , is obtained when strength is 

considered as one-parameter exponential distribution and stress is Lindley distribution. The reliabilities R(1), R(2) 

and R2 are tabulated with some numerical values for each cases in section 4. Results and Discussions are discussed 

at the end of the paper. 

 

Mathematical Formulation 

Let us consider n -cascade system where n components are numbered from 1 to n  in their order of activation. Let 

iX  be the strength of the i
th

 component, in the order of activation, and when activated faces the stress iY , i =1,2,…,

n . In case of cascade system with attenuation factor ‘ K ’ (constant). 

niYKY i

i ,...,2,1,1

1  
                                                                                               (2.1) 

The system reliability is given by 

nR = )(...)2()1( nRRR                                                                                              (2.2)                                                

Now the marginal reliability )1(R , )2(R , )3(R ,…, )(nR  may be obtained as 
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Similarly, 
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where r th
 component marginal reliability is given by 
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Stress-Strength follows Specific Distributions 

When Stress-Strength follows particular distributions the expression (2.6) can be evaluated and then the system 

reliability is obtained. In the following sub-section different particular distributions have been considered for all the 

Stress-Strength involved and obtain expressions of system reliability. 

 

Strength follows Exponential Distribution and Stress follows Lindley Distribution 

Let us consider the strengths of n  components be i.i.d. with p.d.f. )(xf  which follows  one parameter exponential 

distribution with mean /1  and the p.d.f. of 1Y be Lindley density with parameter   i.e 
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then from (2.3) to (2.6) we get 
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Similarly, 
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The numerical values of 2)2(,)1( RandRR are tabulated in Table 1 for different values of the parameters. 

 

Numerical Evaluation 
The marginal reliabilities R(1), R(2) and system reliability R2  are calculated for some particular values of the 

parameters which are given in the following table. 

 

Table 1:- Values of R(1), R(2) and R2  when stress strength are Lindley and Exponential variates. 

    K R(1) R(2) R2 

1 

1 

1 

1 

2 

3 

1 

2 

3 

.4550 

.6726 

.8731 

.1729 

.0986 

.0612 

.6279 

.7712 

.9333 

2 

2 

2 

1 

2 

3 

1 

2 

3 

.2312 

.4197 

.5434 

.1342 

.0818 

.0246 

.3654 

.5015 

.5680 

3 

3 

3 

1 

2 

3 

1 

2 

3 

.1863 

.3600 

.4725 

.0846 

.0559 

.0321 

.2709 

.4159 

.5046 

 

Results and Discussions:- 

The marginal reliabilities )1(R , )2(R  and system reliability 2R  have been calculated for some specific values of 

the parameters from their expressions obtained in Sub-Section 3.1.From the Table 1, it is seen that  if the stress 

parameter  increases then the system reliability 2R  increase. When the strength parameter   remain constant 

then  1R  increases but )2(R  decreases. For instance, if  =1,   4550.01 R  and if   2312.01,2  R . 

In general we see that when k,  increases and for fix value    then )1(R  and 2R  will increases i.e. but )2(R

decrease. 
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