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In this study, two-dimensional projectile motion is considered under the 

effect of a general power law model of air resistance. Classically, a 

projectile is treated as a point mass with mass m moving in a uniform 

gravitational field. The projectile is launched from the ground with an 

angle α to horizon.  the drag force is assumed to be proportional to the 

speed raised to the power n. The analysis of the problem is performed 

using Cartesian coordinates. A general exact parametrical solution 

(with respect to the angle of motion) is derived for any power n, 

following simple steps: 1) find the speed in the direction of the axis x 

(horizontal – no gravity); 2) find the vertical component of the speed; 
3) find the time; 4) find the horizontal position of the projectile; and 

finally,5) find the vertical position of the projectile. Steps 1) and 2) 

give explicit closed form equations and the rest are given by exact 

integrals which can be solved numerically. In this study spreadsheet 

calculation are performed using trapezoidal rule of integration. The 

cases of motion in avacuum and linear drag law are used to check the 

accuracy of the numerical calculations.The importance of the proposed 

study is three-fold: a) The method of the derived solution is new, and 

couldn’t be found elsewhere; b) The derived equations make it possible 

to use spreadsheets for presenting the subject (no programming is 

required), and thus, serve as a tool to enhance teaching; c) The derived 

equations are general for any power n; thus, the same procedure could 
be used to find the position of the projectile at any time. 

 
Copy Right, IJAR, 2023,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Motion of bodies in two dimensions with constant vertical acceleration and zero horizontal acceleration are called 
projectile motion [1]. Throwing a ball off of a tower, firing a cannon, driving a golf ball off of a tee, or shooting a 

basketball-these are just a few examples of projectile's motion [2].  

 

Projectile motion has a long history. Aristotle's theory of projectile motion was based on everyday life observation, 

for instance, if an object is moving, then, something must be moving it [3]. When guns were developed in the 14 th 

century, a more accurate theory was necessary to describeaprojectile's motion. It was not until Galileo and Newton 

worked on the problem that a better theory of ideal projectile motion was reached. [3]. 

 

According to [4], Galileo introduced inertia and the theory of projectile's motion, and thus he was the first in history 

to solveaprojectile's motion. He solved the problem for the ideal case of no air resistance. Furthermore, it was 
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known that projectile's motion was a special case of Newton's second law. The problem of a projectile's motion with 

air resistance was considered by Bernoulli [5, 6]. Forapro the linear case where the drag coefficient is proportional 

to the projectile's speed, there exists an analytic solution [7, 8]. For the general case where the drag coefficient is 

proportional to any power of the speed, there is no closed form solution. The quadratic drag case was studied 

extensively using different approaches including numericalcalculations; analytic approximations; simulations, and 
by introducing exact integrals. [5 – 7, 9 - 13]. The projectile's motion with a general power law of air resistance was 

studied by using path coordinates (aprojectile's speed and angle of motion) [13]. The projectile's position was 

presented parametrically using exact integrals. 

 

In this study, the two-dimensional projectile's motion with a general power law of air resistance model is 

reconsidered by using cartesian coordinates. The equations of motion were derived from Newton's second law. The 

horizontal velocity component and the angle of motion are used as the independent variables. This choice of 

variables made it possible to present the time and position of the moving body by exact integrals which are suitable 

for spreadsheet calculations. The benefits of this analysis are threefold: a new method of solution is presented; a 

general model is suggested to study a projectile's motion with a general power law of air resistance; and spreadsheet 

calculations are demonstrated as a pedagogical tool. 

 
The rest of the manuscript is arranged as follows: the problem statement and the derivation of the equations of 

motion are given in section 2, the general procedure to solve the equations of motion and special cases are 

considered in section 3, spreadsheet numerical examples are given in section 4, and finally, summary and 

conclusions are given in section 5. 

 

1. Two-dimensional Projectile motion with air resistance 

Two-dimensional motion of a projectile experiencing a constant gravitational force and an air drag force which is 

proportional to the n power of the projectile's speed, is considered. The projectile's motion is described by means of 

cartesian coordinates. Without loss of generality, the projectile's motion starts from the origin with initial velocity v0 

and directed with angle α above the horizontal (see figure 1). 

 
Figure 1:- Schematics of a projectile's motion under the effects of a constant gravitational force and an air resistance 

force which is proportional to the projectile's speed raised to the power n. 

 

Newton's second law for the projectile's motion is written as follows: 
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m𝐚 = −m𝐠 − 𝐅D = −mg − D𝐯n = −mg − Dvn v⃗⃗ 

v
= −mg − Dvn−1 v⃗       

     (1) 

Where v⃗ is the velocity vector and is given by: 

𝐯 = v⃗ = vxî + vy ĵ           

         (2) 

And the projectile's speed v is given by: 

v = |v⃗ | =  √vx
2 + vy

2        (3) 

 

After dividing by the mass m, equation (1) is rewritten for x components of the acceleration as follows: 
dvx

dt
= −Avn−1vx         (4) 

Where A is the proportionality constant D divided by the mass m and is given by: 

A =
D

m
          (5) 

Similarly, the y component of equation (1) for y component of the acceleration, and is given by: 
dvy

dt
= −g − Avn−1vy        (6) 

For convenience, nondimensional variables are used. The subscript sdenotes dimensional scales as specified in 

table1. 

 
Table 1:- Dimensionality factors and variables. 

Variable # variable Dimensional factor Non-dimensional variable 

1 v = v0 v
∗ v0 v∗ 

2 vx = v0 vx
∗ 𝑣0 𝑣𝑥

∗ 

3 𝑣𝑦 = 𝑣0 𝑣𝑦
∗ 𝑣0 𝑣𝑦

∗ 

4 𝑡 = 𝑡𝑠𝑡
∗ 

𝑡𝑠 =
2𝑣0

𝑔
 

𝑡∗ 

5 𝑥 = 𝑥𝑠𝑥
∗ 

𝑥𝑠 =
2𝑣0

2

𝑔
 

𝑥∗ 

6 𝑦 = 𝑦𝑠𝑦
∗ 

𝑦𝑠 =
2𝑣0

2

𝑔
 

𝑦∗ 

7 𝐴 = 𝐴𝑠𝐴
∗ 𝐴𝑠 =

𝑔

2𝑣0
𝑛 𝐴∗ 

8 𝑣𝑥0 = 𝑣0 𝑐𝑜𝑠 (𝛼) 𝑣0 𝑣𝑥
∗ = 𝑐𝑜𝑠 (𝛼) 

9 𝑣𝑦0 = 𝑣0 𝑠𝑖𝑛 (𝛼) 𝑣0 𝑣𝑦
∗ = 𝑠𝑖𝑛 (𝛼) 

 

Following the definitions that are given in table 1, equation (4) is rewritten in dimensionless form and is given by: 
𝑑𝑣𝑥

∗

𝑑𝑡∗ = −𝐴∗𝑣∗(𝑛−1)𝑣𝑥
∗        (7) 

Similarly, equation (6) is rewritten in dimensionless form and is given by: 
𝑑𝑣𝑦

∗

𝑑𝑡∗ = − 2 − 𝐴∗𝑣∗(𝑛−1)𝑣𝑦
∗       (8) 

In order to simplify the solution method, equation (7) is divided by 𝑣𝑥
∗and rewritten as follows: 

𝑑𝑙𝑛 (𝑣𝑥
∗)

𝑑𝑡∗ = −𝐴∗𝑣∗(𝑛−1)        (9) 

The same simplification is used as before such that equation (8) is divided by 𝑣𝑦
∗and rewritten as follows: 

𝑑𝑙𝑛 (𝑣𝑦
∗ )

𝑑𝑡∗ = −
2

𝑣𝑦
∗ − 𝐴∗𝑣∗(𝑛−1)             (10) 

By subtracting equation (10) from equation (9) and after proper mathematical manipulation, the following equation 

is derived: 

𝑑𝑙𝑛(
𝑣𝑥
∗

𝑣𝑦
∗ )

𝑑𝑡∗ = 
2

𝑣𝑦
∗           (11) 

Notice that the ratio between the speed components is given by: 
𝑣𝑥
∗

𝑣𝑦
∗ =

1

𝑡𝑎𝑛 (𝜃)
          (12) 
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Where θ is the angle of motion. By using the chain rule of differentiation (
𝑑(.)

𝑑𝑡∗
= 

𝑑(.)

𝑑𝜃

𝑑𝜃

𝑑𝑡∗), equation (11) is rewritten 

respectively and is given by: 
𝑑𝜃

𝑑𝑡∗ = −
2 𝑐𝑜𝑠 (𝜃)

𝑣∗           (13) 

 

Similarly, by using the chain rule of differentiation (
𝑑(.)

𝑑𝑡∗
= 

𝑑(.)

𝑑𝜃

𝑑𝜃

𝑑𝑡∗), and by using equation (13), equation (7) is 

rewritten after proper mathematical manipulations and is given by: 
𝑑𝑢

𝑑𝜃
= −

𝐴∗

2
𝑣∗(𝑛−1)         (14) 

Where 𝑢 =  𝑣𝑥
∗ = 

𝑑𝑥∗

𝑑𝑡∗ and 𝑣∗ = 
𝑢

𝑐𝑜𝑠 (𝜃)
. 

Equation (14) is rewritten in terms of u and θ and is given by: 
𝑑𝑢

𝑑𝜃
= −

𝐴∗

2

𝑢𝑛+1

(𝑐𝑜𝑠(𝜃))𝑛+1       (15) 

by repeating the same arguments, equation (13) is rewritten in terms if u and θand is given by: 
𝑑𝜃

𝑑𝑡∗ = −
2 (𝑐𝑜𝑠(𝜃))2

𝑢
        (16) 

 

It is important to note that by solving equations (15) and (16) the speed in the horizontal direction and time are 

derived as a function of the angle θ. Then the vertical component of the speed is found by using equation (12). 

Finally, by knowing the time and the speed, the position of the projectile is calculated by integrating the velocity 

components with respect to time. 

 

The results derived in this section are used as building blocks for the general model of two-dimensional projectile 

motion. 

 

2. A general model of a projectile's motion in two dimensions 
In this section the procedure to find the position of the projectile versus time is outlined in subsection 3.1. 

 

3.1 general procedure 

1) Solve equation (15) for u. The solution canbe found by the method of separation of variables. The 

differential equation for u is given by: 
𝑑𝑢

𝑢𝑛+1 = −
𝐴∗

2

𝑑𝜃

(𝑐𝑜𝑠(𝜃))𝑛+1      (17) 

The general solution for u as a function of θis given by: 
𝑢−𝑛

−𝑛
 = −

𝐴∗

2
(
(𝑠𝑒𝑐(𝜃))𝑛−1 𝑡𝑎𝑛(𝜃)

𝑛
+ 

𝑛−1

𝑛
∫(𝑠𝑒𝑐(𝜃))𝑛−1 𝑑𝜃) + 𝑐𝑜𝑛𝑠𝑡     

     (18) 

2) Solve equation (16) for time by the method of separation of variables. The non-dimensional time is given 

by: 

𝑡∗ = -∫
𝑢

2 (𝑐𝑜𝑠(𝜃))2
𝑑𝜃

𝜃

𝛼
      (19) 

3) Solve for 𝑥∗by using the definition of u. The non-dimensional horizontal position is given by: 

𝑥∗ = ∫ 𝑢𝑑𝑡∗𝑡∗

0
       (20) 

and finally,  

4) Solve for𝑦∗by using u, equation (12) and the definition of vertical component of the speed. The non-

dimensional vertical position is given by: 

𝑦∗ = ∫ 𝑢𝑡𝑎𝑛 (𝜃) 𝑑𝑡∗𝑡∗

0
      (21) 

 

3.2Special cases 

In this subsection, several cases are considered including motion ina vacuum and motion under air resistance with 
n=1, and 2. The first two cases are used to check the numerical accuracy. Furthermore, the last case could be solved 

semi-numerically and fully numerically by means of Microsoft excel spreadsheet. These calculations 

enableestimatingthe accuracy of the calculations. 
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3.2.1 Case 𝑨∗ = 𝟎, no air resistance 

3.2.1.1 Analytic calculation: 

From equation (7) it is deduced that the horizontal speed component is constant (the classical result) and is given by: 

𝑣𝑥
∗ = 𝑐𝑜𝑠 (𝛼)        (22) 

By substituting equation (22) in equation (20), it is shown that the non-dimensional horizontal position is given by: 

𝑥∗ = 𝑐𝑜𝑠(𝛼) 𝑡∗        (23) 

Similarly, the vertical speed component is calculated from equation (8). The non-dimensional vertical speed is given 

by: 

𝑣𝑦
∗ = 𝑠𝑖𝑛(𝛼) − 2 𝑡∗       (24) 

Then, the non-dimensional vertical position is derived by substituting equation (24) in equation (21), and completing 

the integration, thus, the y* is given by: 

𝑦∗ = 𝑠𝑖𝑛(𝛼) 𝑡∗ − 𝑡∗2       (25) 

 

3.2.1.2 Calculations based on the equations of the general model 

By substituting 𝐴∗ = 0 in equation (18), the non-dimensional horizontal speed is shown to be a constant and is given 

by: 

𝑢 = 𝑐𝑜𝑠 (𝛼)         (26) 

Then, by means of equation (12), the vertical speed is given by: 

𝑣𝑦
∗ = 𝑐𝑜𝑠(𝛼) 𝑡𝑎𝑛 (𝜃)       (27) 

The parametric relation between the nondimensional time and the angle θ is derived by means of equation (19) and 

is given by: 

𝑡∗ = 
𝑐𝑜𝑠 (𝛼)

2
(𝑡𝑎𝑛 (𝛼) − 𝑡𝑎𝑛 (𝜃))     (28) 

By eliminating 𝑡𝑎𝑛 (𝜃), equation (28) is rewritten in the form: 

tan(θ) = tan(α) - 
2 𝑡∗

𝑐𝑜𝑠 (𝛼)
       (29) 

after substituting equations (26) and (29) in equation (27), equation (24) is retrieved and thus, the projectile's 

position is given by equations (23) and (25) for the horizontal and vertical coordinates respectively. 

 

3.2.1.3 Finding the position by spreadsheets 

By following the general procedure, the horizontal speed is calculated from step 1, then the time and projectile's 

position are calculated by using Microsoft excel spreadsheet. The analytic formulas are used to check the accuracy 

of the calculations. It is shown that the accuracy depends on the step size of integration and on the quadrature used. 

As was stated before, the trapezoidal quadrature rule is used in this study. Visual demonstrations of the calculations 

are given in the next section. 

 

3.2.2 Case 𝑨∗ ≠ 𝟎, 𝒏 = 𝟏 

3.2.2.1 Analytic calculation 

In this case, the horizontal acceleration after substituting n = 1 in equation (7), is given by: 
𝑑𝑣𝑥

∗

𝑑𝑡∗ = −𝐴∗𝑣𝑥
∗        (30) 

Similarly, the vertical acceleration after substituting n = 1 in equation (8), is given by: 
𝑑𝑣𝑦

∗

𝑑𝑡∗ = − 2 − 𝐴∗𝑣𝑦
∗        (31) 

By integrating equation (30) and using the appropriate initial condition (entry 8 in table 1), the horizontal speed is 

given by: 

𝑣𝑥
∗ = 𝑐𝑜𝑠(𝛼) 𝑒−𝐴∗𝑡∗

       (32) 

Similarly, by integrating equation (31) and using the appropriate initial condition (entry 9 in table 1), the vertical 

speed is given by: 

𝑣𝑦
∗ = 𝑠𝑖𝑛(𝛼) 𝑒−𝐴∗𝑡∗

−
2

𝐴∗
(1 − 𝑒−𝐴∗𝑡∗

)     (33) 

Now, starting at the origin, the horizontal position of the projectile is derived by integrating equation (32) and is 

given by: 

𝑥∗ = 𝑐𝑜𝑠(𝛼)
1

𝐴∗
(1 − 𝑒−𝐴∗𝑡∗

)      (34) 

By repeating the same procedure, the vertical position of the projectile is derived by integrating equation (33) and is 
given by: 

𝑦∗ = (
𝑠𝑖𝑛 (𝛼)

𝐴∗ + 
2

𝐴∗2
) (1 − 𝑒−𝐴∗𝑡∗

) −
2

𝐴∗ 𝑡
∗    (35) 
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3.2.2.2 Calculations based on the equations of the general model 

By applying the procedure of the general model for the case n = 1, the horizontal speed is found from equation (18) 

and is given by (step 1): 

u = 
1

1

𝑐𝑜𝑠 (𝛼)
+

𝐴∗

2
(𝑡𝑎𝑛(𝛼)−𝑡𝑎𝑛 (𝜃))

      (36) 

Based on step 2, the non-dimensional time is calculated from the following integral (after substituting the expression 

for u): 

𝑡∗ = -∫
1

2 (𝑐𝑜𝑠 (𝜃)2

1
1

𝑐𝑜𝑠 (𝛼)
+

𝐴∗

2
(𝑡𝑎𝑛(𝛼)−𝑡𝑎𝑛 (𝜃))

𝑑𝜃
𝜃

𝛼
    (37) 

By completing the integration, the non-dimensional time is given by: 

𝑡∗ = 
1

𝐴∗ 𝑙𝑛 (

1

𝑐𝑜𝑠 (𝛼)
+

𝐴∗

2
(𝑡𝑎𝑛(𝛼)−𝑡𝑎𝑛 (𝜃))

1

𝑐𝑜𝑠 (𝛼)

)     (38) 

In fact, after substituting equation (36) in equation (38), the expression for the horizontal speed (see equation (32)) is 

retrieved. 

The vertical speed component is obtained by dividing equation (33) by equation (12). The output result is a relation 

between the vertical speed component and the angle of motion.  In order to write the relation of the vertical speed as 

a function of time, equation (38) is rearranged such that tan(θ) is given by: 

𝑡𝑎𝑛(𝜃) = 𝑡𝑎𝑛(𝛼) + 
2

𝐴∗𝑐𝑜𝑠 (𝛼)
(1 − 𝑒𝐴∗𝑡∗

)    (39) 

At this point, by using equations (12), (36) and (39), and by performing proper mathematical manipulations, the 

expression for the vertical speed is shown to be given by equation (33). 

To complete the calculations, the projectile's position is found exactlyas was done in the previous subsection and the 

position is specified by equations (34) and (35). 

 

3.2.2.3 Finding the position by spreadsheet calculations 

As was done in section 3.2.1.3 and by following the general procedure, the horizontal speed is calculated from step 

1, then the time and projectile's position are calculated by using Microsoft excel spreadsheet. The analytic formulas 

are used to check the accuracy of the calculations. Visual demonstrations are given in the next section. 

 

3.2.3 Case 𝑨∗ ≠ 𝟎, 𝒏 = 𝟐 

3.2.3.1 Semi-numerical calculation 

For cases of 𝑛 ≥ 2 the general procedure to calculate the parameters of the projectile's motion is followed as was 

described previously (steps 1-4). The semi-numerical calculation is made of two parts: analytic (step 1), such that 

the velocity components are calculated based on analytic formulas and; a numeric part (steps 2-4) which is based on 

the analytic results. 

The horizontal speed for the case of n = 2 is found from equation (18) and is given by: 

1

𝑢2 = 
1

𝑐𝑜𝑠 (𝛼)2
+ 

𝐴∗

2
(𝑡𝑎𝑛(𝛼) 𝑠𝑒𝑐(𝛼) − 𝑡𝑎𝑛(𝜃) 𝑠𝑒𝑐(𝜃) + 𝑙𝑛 (|

𝑡𝑎𝑛(𝛼)+𝑠𝑒𝑐 (𝛼)

𝑡𝑎𝑛(𝜃)+𝑠𝑒𝑐 (𝜃)
|))     

  (40) 

The vertical component of the velocity vector is calculated by using equation (12), and the numerical integration is 

performed by means of the trapezoidal rule method. 

 

3.2.3.2Numerical calculation 

The calculation of the previous section is repeated, but this time the right-hand side of equation (17) is performed 

numerically as before (by means of the trapezoidal rule). This calculation enables comparison between the result 
achieved in both subsections for n = 2. Numericalexamples are given in the next section. 

 

For further checking, the numerical calculations could be performed by using Runge-Kutta 4th order method (RK4) 

for solving ordinary differential equations (odes). An implementation of RK4 to projectile's motionis given in 

Appendix 1, in which there are more details which are given for the convenience of the reader. 

 

3. Spreadsheet calculations 

In this section, the aforementioned general procedure is implemented in Microsoft spreadsheet to calculate the time 

and space coordinates both analytically when is it possible and numerically (just estimating the integrals by 
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trapezoidal quadrature rule). The relative error (exact value – approximate value)/exact value*100% is reported for 

two cases, motion in vacuum (no air resistance) and for motion in air(with air resistance with power n=1). 

 

Arbitrarily, the range of the angle is started from the initial value of 
𝜋

4
  until -1 radian. In all calculation the initial 

angle is 45 degrees and the projectile is launched from the origin. The air resistance coefficient (drag coefficient) 

depends on the projectile's speed and properties (shape, size, cross sectional area) and air density. In this study, a 

baseball example with 0.145 kg mass and diameter of 0.075 m [14] were considered for which values of A*fall in 

the range 0.1 – 3.0 (see appendix 2 for more details).  

 

These calculations and comparisons are necessaryand essential steps towards trusting the calculations, especially for 

cases where no closed form formulas are found. 

 

4.1 Motion in a vacuum  

For the ideal case, projectile's motion in vacuum or without air resistance, the time and position are calculated 
analytically and numerically. The relative error% is calculated and presented in figures 2-4. The accuracy depends 

on the step size of the numeric calculations. In the current study, step size of 0.001 radian was used for the angle. 

Figures 2-4 address the relative errorin % appropriately: in calculating time (figure 2); in calculating horizontal 

position (figure 3); and in calculating vertical position (figure 4). 

Figure 4 shows the relative error% in non-dimensional time calculations. By repeating the calculations with smaller 

integration step sizes, it is shown that the relative error depends on the integration step, such that smaller errors are 

achieved by using smaller integration step.  

 

 
Figure 2:- Projectile motion in a vacuum: the relative error % in calculating time analytically using equation (28) 

and numerically using equation (19). The calculations are based on 0.001 radian step size. 
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It is important to note that for the motion in a vacuum, the horizontal speed is a constant, thus the error in finding the 

x coordinate is the same as the error in calculating the time. This is depicted in figure 3. 

 

 
Figure 3:- Projectile motion in vacuum: the relative error % in calculating horizontal position analytically using 

equation (23) and numerically using equation (20). The calculations are based on 0.001 radian step size. 

 

Finally, the relative error % in calculating the non-dimensional vertical position is shown in figure 4. 

 
Figure 4:- Projectile motion in vacuum: the relative error % in calculating vertical analytically using equation (25) 

and numerically using equation (21). The calculations are based on 0.001 radian step size. 
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It is important to note that calculating the speed components were based on analytic formulas equations (22) and 

(27). 

 

4.2 Linear air resistance model, n = 1 

For the linear air resistance model with power n = 1 the time is calculated analytically and numerically. The relative 
error% is calculated and presented in figure 5. As was stated in the previous section, the accuracy depends on the 

step size of the numeric calculations. In fact, step size of 0.001 radian was used for the angle. In addition, the values 

of A* affects the accuracy of the calculations; a fact that was verified numerically. 

 

Figure5 addresses the relative error%in calculating the non-dimensional time for the linear air resistance model with 

n = 1. 

 
Figure 5:- Linear air resistance model with n = 1. The relative error % in calculating time analytically using 

equation (38) and numerically using equation (19). The calculations are based on 0.001 radian step size. The error 
depends on the no-dimensional air resistance coefficient A*. 

 

The projectile's position depends on the non-dimensional air resistance coefficient. Figure 6 shows the non-

dimensional horizontal position as a function non-dimensional time. 
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Figure 6:- Horizontal position vs. time for the linear air resistance model. 

 

Similarly, Figure 7 shows the non-dimensional vertical position as a function non-dimensional time.   

 
Figure 7:- Vertical position vs. time for the linear air resistance model. 

 

Finally, the vertical position is plotted vs. horizontal position. It is important to note that this plot has a parabolic 

shape for a projectile's motion in a vacuumonly, as was discovered by Galileo. 
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Figure 8:- Vertical position vs. horizontal position for the linear air resistance model. 

 
As was pointed out early, the accuracy depends on the step size. In addition, the accumulated error depends on the 

length of flight time passed and the air resistance parameter. The following table shows relative error values 

calculated at angle -1 radian (see table 2). Maximum values are reached at the end of flight time interval. 

 

Table 2:- Maximum relative error values (ME), T - time, X - horizontal position and Y - vertical position, for the 

linear model with n = 1. 

A* MET% MEX% MEY% 

0.1 -4.61716E-05 -4.57806E-05 -9.36418E-05 

10 -0.000240069 -0.000551681 -0.000956021 

50 -0.002876372 -0.010973745 -0.013122853 

100 -0.009489196 -0.04270971 -0.04747993 

150 -0.019408972 -0.095145954 -0.102789086 

It is clear from the table that the relative error increases with higher values of A*, andincreases with longer flight 

time. 

 

4.3 Quadratic air resistance model, n = 2 
In the previous subsections, it was possible to compare analytic with numeric calculations. It is shown that good 

accuracy could be achieved by choosing proper integration step size. Although explicit formulas are not available, it 

might control the error by performing sensitivity analysis. For the general case, it is possible to solve the motion 

equations by performing different estimates. As was stated previously, error estimation could be based on 

comparison between semi-analytic calculations and numeric calculations. Based on this estimation method, the 

relative error in calculating the position coordinates is given in table 3. 

 

Table 3:- Relative errors MEX%  and MEY for quadratic air resistance model with n = 2.  

A* MEX% MEY% 

0.1 2.26187E-06 6.2023E-06 

10 2.65921E-05 1.82751E-05 

50 3.49184E-05 3.69187E-05 

100 3.77288E-05 4.13289E-05 
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150 3.91624E-05 4.33517E-05 

 

For illustrating the use of the general procedure, the non-dimensional horizontal coordinate is plotted vs. non-

dimensional time for several values of the non-dimensional air resistance coefficient. It is observed that the 

horizontal coordinate is inversely related to friction with air (see figure 9). 

 
Figure 9:- Horizontal position vs. time for the quadratic air resistance model. 

 

Similarly, the non-dimensional vertical coordinate is plotted vs. non-dimensional time for several values of the non-

dimensional air resistance coefficient. Again, it is observed that the horizontal coordinate is inversely related to 

friction with air (see figure 10). 
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Figure 10: - Vertical position vs. time for the quadratic air resistance model. 

 

Finally, the vertical coordinate is plotted vs. the horizontal coordinate to n = 2 (see figure 11). 

 
Figure 11: - Vertical position vs. horizontal position for the quadratic air resistance model. 

 
The general procedure could be used as a tool for education. For example, one might ask: "What is the time elapsed 

for reaching maximum height?" 
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By consulting equations (19) and (40), two limits are recognized: at zero A*, the value of the ideal case is retrieved; 

and at large values of A*, the time at maximum height is inversely related to the square root of A*. Based on the 

spread sheet calculations the following results are achieved (see table 4): 

 

Table 4:- Non-dimensional time as a function of non-dimensional air resistance coefficient for the case n = 2. 

 

For the convenience of the reader, the values given in table 4 are plotted in figure 12 (see figure 12). 

 
Figure 12:- t* vs. A* for the case on n = 2. 

 

Summary and Conclusions: - 
The projectile's motion with a general power law model of air resistance was studied using Cartesian coordinates. 

The equations of motion were derived from Newton's second law. The acceleration equations in the horizontal and 

vertical directions are non-linear and coupled ordinary differential equations. 

 

The solution of these equations is simplified by a proper choice of the independent variables. In fact, decoupling the 

equations of motion was achieved by choosing the horizontal velocity and the angle of motion as independent 

variables. It is shown that the velocity components were derived analytically (see step 1 in the general procedure). 

The time (see step 2), the horizontal coordinate (see step 3) and the vertical coordinate (see step 4) were obtained by 

solving exact integrals. Trapezoidal rule quadrature was used to estimate the integrals. 
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Three cases of motion were considered: motion in a vacuum; motion under air resistancewithn = 1; andmotion under 

air resistancewithn = 2. 

 

The first two cases of motion were used to estimate the accuracy of the calculations. Furthermore, semi-analytic 

calculations and RK4 method were used to increase confidence in the accuracy estimates of the numerical 
calculations. 

 

The time at maximum projectile's height was calculated for several values of the air resistance model for the case n 

= 2. It is shown that at large values of A*, the time at maximum height is proportional to the inverse of the square 

root of A*. 

 

Finally, the general procedure of the solution of the projectile's motion could be used as a convenient educational 

tool for spreadsheet calculations. 
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Appendix 1 

RK4 - model 

Dim alfa As Double 

Sub rk4() 

Dim h, hf, t As Double 

Dim x1, x2, x3, x4 As Double 
Dim k1, k2, k3, k4 As Double 

Dim l1, l2, l3, l4 As Double 

Dim m1, m2, m3, m4 As Double 

Dim n1, n2, n3, n4 As Double 

x1 = 0 

a = Atn(1) 

MsgBox a 

t = 0 

x2 = Cos(a) 

x3 = 0 

http://arxiv.org/abs/1804.00716
https://dynref.engr.illinois.edu/afp.html
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x4 = Sin(a) 

h = 0.001 

hf = h / 2# 

alfa = 3 

For i = 0 To 2000 
Cells(2 + i, 1) = t 

Cells(2 + i, 2) = x1 

Cells(2 + i, 3) = x2 

Cells(2 + i, 4) = x3 

Cells(2 + i, 5) = x4 

k1 = h * x1dot(t, x1, x2, x3, x4) 

l1 = h * x2dot(t, x1, x2, x3, x4) 

m1 = h * x3dot(t, x1, x2, x3, x4) 

n1 = h * x4dot(t, x1, x2, x3, x4) 

 

k2 = h * x1dot(t + hf, x1 + k1 / 2, x2 + l1 / 2, x3 + m1 / 2, x4 + n1 / 2) 

l2 = h * x2dot(t + hf, x1 + k1 / 2, x2 + l1 / 2, x3 + m1 / 2, x4 + n1 / 2) 
m2 = h * x3dot(t + hf, x1 + k1 / 2, x2 + l1 / 2, x3 + m1 / 2, x4 + n1 / 2) 

n2 = h * x4dot(t + hf, x1 + k1 / 2, x2 + l1 / 2, x3 + m1 / 2, x4 + n1 / 2) 

 

k3 = h * x1dot(t + hf, x1 + k2 / 2, x2 + l2 / 2, x3 + m2 / 2, x4 + n2 / 2) 

l3 = h * x2dot(t + hf, x1 + k2 / 2, x2 + l2 / 2, x3 + m2 / 2, x4 + n2 / 2) 

m3 = h * x3dot(t + hf, x1 + k2 / 2, x2 + l2 / 2, x3 + m2 / 2, x4 + n2 / 2) 

n3 = h * x4dot(t + hf, x1 + k2 / 2, x2 + l2 / 2, x3 + m2 / 2, x4 + n2 / 2) 

 

k4 = h * x1dot(t + h, x1 + k3, x2 + l3, x3 + m3, x4 + n3) 

l4 = h * x2dot(t + h, x1 + k3, x2 + l3, x3 + m3, x4 + n3) 

m4 = h * x3dot(t + h, x1 + k3, x2 + l3, x3 + m3, x4 + n3) 
n4 = h * x4dot(t + h, x1 + k3, x2 + l3, x3 + m3, x4 + n3) 

t = t + h 

 

x1 = x1 + (k1 + 2 * k2 + 2 * k3 + k4) / 6# 

x2 = x2 + (l1 + 2 * l2 + 2 * l3 + l4) / 6# 

x3 = x3 + (m1 + 2 * m2 + 2 * m3 + m4) / 6# 

x4 = x4 + (n1 + 2 * n2 + 2 * n3 + n4) / 6# 

 

Next i 

End Sub 

Function x1dot(t, z1, z2, z3, z4) As Double 

x1dot = z2 
End Function 

Function x2dot(t, z1, z2, z3, z4) As Double 

x2dot = -alfa * z2 * Sqr(z2 * z2 + z4 * z4) 

 

End Function 

Function x3dot(t, z1, z2, z3, z4) As Double 

x3dot = z4 

End Function 

Function x4dot(t, z1, z2, z3, z4) As Double 

x4dot = -2 - alfa * z4 * Sqr(z2 * z2 + z4 * z4) 

End Function 
 

Appendix 2 

Based on [14] the following data are used: 

Air density ρ =1.225 kg/m3. 

Baseball massm =0.145 kg. 
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Baseball diameter D= 0.075 m. 

Air resistance coefficient:𝑐 =
1

2
𝑐𝐷𝜋

𝐷2

4
 

And the specific air resistance coefficient is calculated as 𝐴 =
𝑐

𝑚
. 

Reynolds number 𝑅𝑒 =  
𝜌𝑣𝐷

µ
 

(Density of air * speed * baseball diameter / dynamic viscosity of air). 

For a speed of 40 m/s, the Reynolds number approximately 200000. 
A*=3.0 (entry 7 in table 1). 

In the numerical calculations we use A* values in the range 0. – 3.0. 


	Introduction:-

