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Cloud services are now indispensable to operate businesses; run 

educational institutions manage finances and even for governance of 

nations. Although cloud has simplified extremely complex operations, 

with additional comfort arises the need of extra caution. Both the 

consumer of the cloud and the Cloud Service Provider (CSP) are 

vulnerable to threats such as cloud outages, hacking, cyber thefts and 

disruptions in internet access. As a result, resorting to insurance to 

protect their financial status is a natural solution. The insurer on the 

other hand has to cleverly decide the premium to be charged 

particularly when he sells a policy to the CSP in order to prevent any 

capital erosion as claims can be massive in magnitude. In this paper, 

we consider various premium principles that can be adopted by the 

cloud insurer to decide an accurate premium depending on the 

situation at hand. We then utilize theseprinciplesto determine the 

premium for an insurer who assumes the celebrated Poisson model for 

outages. 
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Introduction:- 
The modern day world boasts of a digital revolution so much so that every piece of information that we come across 

today can be backed up or secured using what is known as the cloud. Cloud has indeed become sacrosanct for all 

enterprises, governments, banks, educational institutions and even a common man who keeps a record of his 

personal information like photographs, receipts, travel history and even maintains a diary using the cloud.The 

„Remote Working‟ regime post COVID-19 has magnified the dependence on IT infrastructure, services and the 

cloud (c.f. Tsohou et al. (2023)). However extreme convenience and ease are generally accompanied by threats so 

much so that even a small hiccup can jeopardize the entire set up. The same is true in respect of the cloud as the 

speed with which the IT industry and cloud services are evolving is mammoth but cybercrimes have 

exacerbatedwith an even greater rate. Whether they are ransomware attacks, espionage attempts, data breaches or 

mega outages, all have the potential to cause turmoil in the cloud services. As a result to safeguard the interests of 

the buyers of the cloud services, a well laid out contract called a „Service Level Agreement‟ (SLA) is chalked out 

between the CSP and the client. This contract offers guarantee compensation to the users in the event of failure of 

cloud services. The compensation offered in the case of long outages may be large enough to turn the balance sheet 

of the CSP upside down. He therefore resorts to insurance. Insurers on the other side have to be alert enough to be 

able to survey the cyber landscape in order to charge the correct amount of premium from the CSP so as to be able 

to protect their financial integrity. Catastrophic cyber events can actually wipe out an insurer from the market as the 
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cost of a massive outage to a hyperscale cloud provider could possibly inflate to trillions and the insurance industry 

would not be able to bear the economic costs of such an outage (c.f. Carnegie Endowment (2021)). 

 

Cloud insurance or cyber insurance is still in its embryonic stages and the insurance industry is still figuring out the 

methodology of setting the premiums that they need to charge for the cyber class of risks.A 2020 report by Allianz 

Global Corporate & Specialty (c.f. Allianz (2020)) highlights that cyber claims have been bulging steadily both in 

terms of their number and complexity. Further GAO (2021) emphasizes that there is an upward trend in the 

premiums charged by insurance companies for offering cyber insurance to its clients as shown in Figure 1 below. 

The report also notes that the demand for cyber insurance has inflated as the involved players are now in a better 

position to understand and respond to the rising cyber risks. In fact as noted in Aon (2022), the US domestic market 

recorded a huge direct written cyber insurance premium of $7.2 billion in 2022. 

 

In spite of playing such a significant role in the cyber security practices, the literature on determination of premium 

for the cloud insurer is negligible. To the best of our knowledge, this paper is indeed the first attempt to utilize well 

known premium principles available in actuarial literature to set up the premium for the cloud insurer.  

 

 
Figure 1:- Change in Cyber Insurance Premiums, 2017–2020. 

 

In the passing it is very important to decipher what exactly the word premium means for an insurance company. A 

premium is the payment that an insurance seeker; in our case the CSP makes for complete or partial; in our case 

complete protection or insurance cover against a risk. We generally denote a risk by X and when we consider the 

risk X, it actually means the non-negative random variable of all possible claims that arise from this risk and are 

presented to the insurance company. In the present context, we are dealing with the risk of cloud outages. Also when 

a cloud outage occurs, it results in a loss for the CSP in terms of the compensation amount that it would need to pay 

to its customers according to the clauses of the SLA. The CSP then considers the cumulative losses over a period 

and reports them as claims to the insurance company to which it paid a premium for indemnifying itself against 

outages. As a result the premium charged by the insurance company must be some function of X (c.f. Dickson 

(2005)).In fact, we denote the premium as 𝜋𝑋  and a rule that designates a numeric value to 𝜋𝑋  is referred to as a 

premium calculation principle. A premium principle is thus presented as 𝜋𝑋 = 𝑓 𝑥 ; where 𝑓(𝑥) denotes some 

function of x. In this paper we undertake the task of determining the correct premium 𝜋𝑋for the insurer providing 

coverage to the CSP. 

 

The paper is organized as follows: Section 2 presents the most well-known Poisson model that describes the 

functionality of the cloud. Section 3 glances on six well known premium principles and utilizes them to determine 

the premium formulae for the insurer who assumes a Poisson model for the outages. Section 4 then showcases the 

outlined theory for the Poisson model for the number of outages by presenting powerful numerical results. Section 5 

concludes the paper and highlights directions for future work. 
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The Poisson Model for Cloud Outages:- 

Any organization or infrastructure works smoothly when the cloud is „ON‟ and everything comes to a halt when the 

cloud is gone or „OFF‟. This principle is the key to devising models for cloud outages. As noted in the previous 

statement, we consider only two states for the working of the cloud, the functional or the „ON‟ state nomenclated as 

„S‟ and the non-functional or the „OFF‟ state denoted by „D‟. These are also referred to as „Uptime‟ and „Downtime‟ 

for the cloud working as shown in Figure 2. We ignore here the intermediate state set-up which is referred to as 

„Graceful Degradation‟, where some features of the cloud are operational while others fail to function. So in our 

case, the cloud keeps oscillating between the ON and OFF states. In order to present fruitful results on the working 

of the cloud, we have to consider appropriate distributions for the working and the non-working states. 

 

One can lay hand on a very scanty availability of statistical models in the literature that describe the Uptime or ON 

period and the downtime or OFF period. These are summarized below (c.f. Naldi and Mazzoccoli (2018) and 

Mastroeni et al. (2019)): 

(i) The Poisson Model (the Markov Model or Exponential-Exponential Model) 

(ii) The Exponential-Pareto Model  

(iii) The Pareto-lognormal Model 

 

These three models vary in terms of the probability distributions that describe the duration of the ON and OFF 

states. Out of these models, the Poisson model is the most popular and is described below.  

 

The Poisson model is the simplest out of the three where the duration of both the ON and OFF states of the cloud are 

described by an exponential distribution (c.f.Mastroeni and Naldi (2011), Naldi (2018) andNaldi and 

Mazzoccoli(2018)).We denote the parameters of the exponential distribution in the ON and OFF state as𝜆𝑆 and 𝜆𝐷 

respectively. Clearly then the cumulative distribution functions (c.d.f.s) are given by: 

 

 𝐹𝑆 𝑥 = 1 − 𝑒−𝑥𝜆𝑆  ;  𝑥 ≥ 0                                                                                                                            (1)    
and 

𝐹𝐷 𝑥 = 1 − 𝑒−𝑥𝜆𝐷  ;  𝑥 ≥ 0                                                                                                                            (2)    
 

In this case, the number of outages say 𝑁 over a time interval say 𝑇 follow Poisson distribution with parameter 𝜆𝑆𝑇. 

The use of Poisson distribution for number of outages has also been outlined in service level agreement decision 

making (c.f. Franke et al. (2013)).This implies 

 

𝑃 𝑁 = 𝑛 = 𝑒−𝜆𝑆𝑇
 𝜆𝑆𝑇 𝑛

𝑛!
 ;  𝑛 = 0,1,2, … ,                                                                                                 (3)    

 

which is essentially the probability law for the Poisson Distribution. 

 

The covenants of the „Service Level Agreement‟ dictate that the remedial damage amount or compensation to be 

paid to the consumer of the cloud by the CSP should be proportional to the number of outages in a specified interval 

say 𝑇, not taking into account their duration. As a result 

 

𝑋 = 𝑐𝑁                                                                                                                                                                   (4)     
 

where X is defined in the previous section,𝑐 is the reparationto bepaid for each outage and 𝑁 is the number of 

outages. As seen above, 𝑁adheres to a Poisson law with parameter 𝜆𝑆𝑇. For brevity, we denote 𝜆𝑆by 𝜆. We further 

note that for a Poisson distribution with parameter 𝜆𝑇, the mean and variance coincide with the parameter. This 

implies: 

 

E[𝑋] = 𝑐𝜆𝑇                                                                                                                                                           (5)     
 

and 

 

V 𝑋 = 𝑐2𝜆𝑇.                                                                                                                                                       (6)     
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where E[X] and V[X]denote respectively the expectation and variance of the random variable X. We now turn our 

attention to the main focus of this paper viz. the premium principles and utilize them to compute the premium for the 

Poisson model of outages. 

 

 
Figure 2:- Cloud State Sequence. 

 

The Premium Principles and their Application to the Poisson Model for Cloud Outages:- 

The actuarial literature offers a plethora of premium principles for computation of the premium for the insurer. We 

stick to six popularly used premium principles stated below one by one. Good references for premium principles are 

Dickson (2005) and Lima Ramos (2017). 

 

1. The Pure Premium Principle 

Definition: The pure premium principle defines 

 

𝜋𝑋 = E[𝑋]                                                                                                                                              (7)     
 

It is the simplest premium principle but unattractive for the insurer due to absence of any loading for profit or for 

unfavourable claim experience which is quite common for a cyber-insurer. 

 

Pure Premium for the Poisson Model:Using equations (5) and (7), the pure premium in the case of Poisson model of 

outages is 

 

𝜋𝑋 = 𝑐𝜆𝑇                                                                                                                                              (8)     
 

As a result the pure premium is directly proportional to c, i.e., the compensation offered by the CSP to the customer 

for each outage as well as the average number of outages during time T viz. 𝜆𝑇. This seems obvious because as the 

compensation offered by the CSP for each outage increases or the average number of outages explode, the claim 

amount would bulge and so the insurer is liable to charge a higher premium. We explore the dependence of the pure 

premium on c and 𝜆𝑇numerically in the next section. 

 

2. The Expected Value Principle 

Definition: The expected value principle declares 

 

𝜋𝑋 = (1 + 𝛼)E[𝑋]                                                                                                                             (9)     
 

where 𝛼 > 0 is termed „the Premium Loading Factor‟ with 𝛼𝐸[𝑋] representing the loading. 

 

Again, like the pure premium principle, it is a very simple principle. However it suffers from the drawback that it 

ignores the variability of the risk distribution apparently assigning the same premium to all risks that have equal 
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means. Accounting for the dispersion of the risk distribution is crucial when dealing with highly uncertain events 

such as cloud outages. 

 

Premium for the Poisson Model: Using equations (5) and (9), the expected value premium principle yields the 

following premium in the case of Poisson model of outages: 

 

𝜋𝑋 = (1 + 𝛼)𝑐𝜆𝑇                                                                                                                                        (10)     
 

Thus, the premium is directly proportional to the loading factor 𝛼, the compensation offered by the CSP to the 

customer for each outage c, as well as the average number of outages during time T viz. 𝜆𝑇, all connected by a linear 

relationship. We undertake the dependence of the premium on 𝛼, c and  𝜆𝑇numerically in the next section. 

 

3. The Variance Principle 

Definition: The variance principle sets 

 

𝜋𝑋 = E 𝑋 + 𝛼V[𝑋]                                                                                                                                   (11)     
 

where 𝛼 > 0 is again „the Premium Loading Factor‟ as in the Expected Value Principle with 𝛼𝑉[𝑋] representing the 

loading which is proportional to 𝑉[𝑋]. 
 

The variance principle eliminates the drawback of the expected value principle and incorporates the variability of 

the risk distribution leading to a more accurate pricing. However, even risks having identical first two moments may 

be worlds apart in the insurer‟s perspective especially when losses follow a highly skewed distribution.  This 

advocates considering premium computation principles that incorporate the entire probability distribution of the risk 

X rather than encompassing just a few statistical properties (c.f. Denuit (1999)). This is particularly true in the 

context of unpredictable and emerging risks such as cyber risks. Many such principles exist in the actuarial literature 

such as the Orlicz principle (c.f. Haezendonck, J., and Goovaerts, M. (1982)), the Esscher Principle (c.f. Esscher 

(1932)) and the risk adjusted premium principles (c.f. Wang (1996)). Out of these, we undertake the 

Esscherpremium principle as the last premium calculation principle in our discussion here. 

 

Premium for the Poisson Model: Using (5), (6) and (11), the variance principle yields the following premium in the 

case of Poisson model of outages: 

 

𝜋𝑋 = (1 + 𝛼𝑐)𝑐𝜆𝑇                                                                                                                                      (12)     
 

Equation (12) displays a quadratic relationship between the premium 𝜋𝑋  and the compensation offered for each 

outage c. This means that the insurer is very sensitive to increases in the remedial amount offered by the CSP to the 

user for each outage. Weinvestigate the dependence of the premium on 𝛼, c and 𝜆𝑇with numbers in the next section. 

 

4. The Standard Deviation Principle 

Definition: The standard deviation principle defines 

 

𝜋𝑋 = E 𝑋 + 𝛼 V[𝑋]                                                                                                                               (13)     
 

where 𝛼 > 0 is again „the Premium Loading Factor‟ with𝛼 𝑉[𝑋] representing the loading which is proportional to 

the standard deviation of the loss distribution. 

 

The standard deviation principle echoes the variance principle and incorporates the variability of the risk distribution 

leading to a more reliable premium value. 

 

Premium for the Poisson Model: Using (5), (6) and (13), the standard deviation premium principle leads to the 

following premium in the case of Poisson model of outages: 

𝜋𝑋 = ( 𝜆𝑇 + 𝛼)𝑐 𝜆𝑇                                                                                                                             (14)     
 

We consider the behaviour of the premium with changing values of𝛼, c and  𝜆𝑇 in the next section. 
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The first four principles are based on the moments of the loss distribution. The next principle delves on „Expected 

Utility Theory‟: an extremely important concept in actuarial science and insurance. 

 

5. The Principle of Zero Utility 

The utility concept was a brainchild of Daniel Bernoulli (1738) (c.f. Bernoulli (1953)) which led to the germination 

of „Expected Utility Theory‟. Bernoulli had the belief that the value that an individual attaches to a given monetary 

amount is not the monetary value itself but indeed its „moral‟ value, importance or utility. Quoting him  

 

“(…) an item‟s value must not be idealized upon its price but the utility it provides to his owner. An item‟s price 

depends on the item alone, it is the same to everyone; its utility though depends on the individual circumstances of 

the subject who assesses it.” (Bernoulli, 1738). 

 

This led to the formulation of the utility function (u.f.) 𝑢(𝑥), which can be portrayed as a function that numeralizes 

the value or utility that an individual or an organization assigns to the monetary amount x(c.f.Preet Singh Kapoor 

and Jain (2011)). More precisely, utility is a function 𝑢:ℝ0
+ → ℝ0

+
 that declares a utility to each monetary amount of 

the domain.The utility function complies with the principle of non-satiation, i.e.𝑢′ 𝑥 > 0. This means that 𝑢 𝑥 is 

an increasing function of wealth 𝑥 such that individuals have preference for more wealth to less. In insurance and 

financial sector, the investor preferences are influenced by their attitude towards risk, which can be realized in terms 

of properties of utility functions. Three possibilities arise: risk-averse, risk-neutral or risk-loving investors (c.f. 

Dickson (2005)). For a risk-averse (risk-loving) investor an incremental increase (decrease) in wealth is of less 

interest than an incremental decrease (increase). Accordingly, the utility function 𝑢 𝑥  is strictly concave (convex), 

that is, 𝑢" 𝑥 <  > 0 for a risk averse (risk loving) investor. A risk- neutral investor is unaffected by risk and for 

him, 𝑢′ 𝑥 > 0and𝑢" 𝑥 = 0. The form of the utility function can be chosen to model an individual's preferences 

according to whether or not, he likes, dislikes or is indifferent to risk. The greater the curvature of 𝑢 𝑥 , the more 

marked will be the risk aversion calculated by the coefficient of risk aversion defined as: 

 

𝑟 𝑥 = −
𝑢"(𝑥)

𝑢′ 𝑥 
                                                                                                                         (15)     

 

𝑟 𝑥 is also known as the Arrow-Pratt measure of absolute risk-aversion (ARA) (c.f. Arrow (1971) and Pratt 

(1964)).The absolute risk aversion can be increasing or decreasing abbreviated as IARA and DARA respectively 

based upon on the nature of𝑟 𝑥 . In case if 𝑟 𝑥 is a constant and does not vary with the monetary amount 𝑥, then the 

utility function is said to be adhering to „Constant Absolute Risk Aversion (CARA)‟. 

 

Further, thereare several utility functions that are used in actuarial, financial and economic literature.The most 

popular among them are (c.f. Dickson (2005) and Lima Ramos (2017)): 

 

1. Exponential with parameter 𝛽: 𝑢 𝑥 = −𝑒𝑥𝑝⁡(−𝛽𝑥); 𝛽 > 0. 

 

2.Quadratic with parameter𝛽: 𝑢 𝑥 = 𝑥 − 𝛽𝑥2; 𝑥 <
1

2𝛽
, 𝛽 > 0. 

 

3. Logarithmic with parameter𝛽: 𝑢 𝑥 = 𝛽 log 𝑥; 𝑥 > 0, 𝛽 > 0. 

 

4.Fractional with parameter 𝛽: 𝑢 𝑥 = 𝑥𝛽 ; 𝑥 > 0,0 < 𝛽 < 1. 

 

5.Linear: 𝑢 𝑥 = 𝑥. 

 

The CARA property defined above is indeed characteristic of the exponential utility function and due to this reason 

exponential utility function has been extensively harnessed in the cyber insurance literature (c.f. Mazzoccoli and 

Naldi (2020), Naldi and Mazzoccoli(2018), Martinelli et al. (2017), Marotta et al. (2017) and Böhme and Schwartz 

(2010)). 

 

We now define the principle of zero utility. 

Definition: The principle of zero utility stipulates that the minimum premium 𝜋𝑋  that an insurer with initial wealth, 

w, should allocate to provide full insurance coverage against a risk X should satisfy the following equation. 
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𝑢 𝑤 = E[𝑢 𝑤 + 𝜋𝑋 − 𝑋 ]                                                                                                                        (16)     
 

As a result the premium will in general depend on the insurer‟s surplus or wealth w. However an exception occurs 

when we employ the exponential utility function given in (1) in the list of u.f.s above. Then  

 

𝜋𝑋 =
1

𝛽
ln 𝑀𝑋 𝛽                                                                                                                                        (17)     

 

where 𝑀𝑋 𝛽  denotes the moment generating function (m.g.f.) of the loss random variable 𝑋 with parameter 𝛽 such 

that: 

 

𝑀𝑋 𝛽 = E 𝑒𝛽𝑋                                                                                                                                            (18)     
 

provided the expectation exists.It is important to note that 𝛽 also happens to be the coefficient of risk aversion 

defined above. In this case the principle of zero utility is called the exponential principle. As this principle is based 

on the m.g.f. of the loss distribution, it embodies more information about X than any principle considered till now.  

 

To compute the premium for the Poisson model of cloud outages we will consider the exponential u.f. and therefore 

stick to the exponential principle.  

 

Premium for the Poisson Model: Using equations (17) and (4), the exponential premium principle yields the 

following premium in the case of Poisson model of outages: 

 

𝜋𝑋 =
𝜆𝑇(𝑒𝑐𝛽 − 1)

𝛽
                                                                                                                                     (19)     

 

where equation (19) is obtained by utilizing the basic properties of m.g.f. and the fact that the m.g.f. of a Poisson 

random variable say Y having a Poisson distribution with parameter 𝜆 is given by: 

 

𝑀𝑌 𝑡 = 𝑒𝜆(𝑒 𝑡−1)                                                                                                                                        (20)     
 

where t is parameter of the m.g.f. In our case 𝑡 = 𝑐𝛽. 

 

Equation (19) offers an interesting relationship between the premium 𝜋𝑋and the average number of outages during 

time T viz. 𝜆𝑇, c, i.e., the compensation offered by the CSP to the customer for each outage and the parameter 𝛽 of 

the exponential u.f. It is clear that as c and 𝛽 alleviate, an exponential magnification is recorded in the premium.We 

undertake the dependence of the premium on these quantities numerically and graphically in the next section. 

 

We now move to the Esscher premium principle which embodies the m.g.f. of the loss distribution in determination 

of the premium for the insurer. 

 

5. The EsscherPrinciple 

The Esscher premium principle proposed by Bühlmann, H. (1980) based on the Esscher transform developed by the 

famous Swedish actuary F. Esscher in 1932 (c.f. Esscher (1932)) involves a transform that modifies the probability 

law of the risk distribution and then sets the premium to be the pure premium for the transformed distribution (c.f. 

Dickson (2005)). 

 

Suppose that the risk random variable X is a continuous random variable on 0,∞  with probability density function 

(p.d.f.) f. We then define the p.d.f. for a new transformed random variable 𝑋  as 𝑔  by applying the following 

modification: 

 

𝑔 𝑥 =
𝑒ℎ𝑥𝑓(𝑥)

 𝑒ℎ𝑦𝑓(𝑦)𝑑𝑦
∞

0

, ℎ > 0                                                                                                        (21)     
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where the denominator is essentially the m.g.f. of the original random variable X, with parameter h, i.e.,𝑀𝑋 ℎ , with 

m.g.f defined in equation (18). The density 𝑔 is indeed a weighted version of density f. This can be seen by 

rewriting equation (21) as: 

 

𝑔 𝑥 = 𝑤(𝑥)𝑓(𝑥)                                                                                                                                  (22)     
where  

 

𝑤 𝑥 =  
𝑒ℎ𝑥

𝑀𝑋 ℎ 
.                                                                                                                                      (23)     

 

Further, one can see that as ℎ > 0, therefore 𝑤 ′(𝑥) > 0 and hence increasing weights are allocated with alleviation 

in x. Next from equation (21), the distribution function (c.d.f.) of the transformed random variable 𝑋  is given by: 

 

𝐺 𝑥 =
 𝑒ℎ𝑦𝑓(𝑦)𝑑𝑦

𝑥

0

𝑀𝑋 ℎ 
, ℎ > 0.                                                                                                       (24)     

 

In fact the distribution function G is known as the Esscher transform of the original distribution function F with 

parameter h and it is from here that this premium principle derives its name. Next the m.g.f. of the transformed 

random variable𝑋  takes the following form: 

 

𝑀𝑋  𝑡 =  
𝑀𝑋 𝑡 + ℎ 

𝑀𝑋 ℎ 
.                                                                                                                                  (25)     

 

Finally the expectation of the transformed random variable 𝑋  is given by: 

 

 E 𝑋  =
 𝑥𝑒ℎ𝑥𝑓 𝑥 𝑑𝑥
∞

0

 𝑒ℎ𝑦𝑓 𝑦 𝑑𝑦
∞

0

=
𝐸 𝑋𝑒ℎ𝑥  

𝐸 𝑒ℎ𝑥  
=

𝐸 𝑋𝑒ℎ𝑥 

𝑀𝑋 ℎ 
.                                                                                (26)     

 

This means that if one can recognize the distribution of the transformed random variable 𝑋 , by using the uniqueness 

theorem of m.g.f., one can easily lay hand on E 𝑋  . 
 

We now define the Esscher premium principle. 

 

Definition: The Esscher premium principle prescribes 

 

𝜋𝑋 =
𝐸 𝑋𝑒ℎ𝑥  

𝐸 𝑒ℎ𝑥 
 =

𝐸 𝑋𝑒ℎ𝑥 

𝑀𝑋 ℎ 
,                                                                                                                 (27)     

 

which is essentiallyE 𝑋  , as can be seen from equation (26). It can be easily seen that the Esscher principle augments 

the probabilities of large values and reduces the probabilities of small values. 

 

Premium for the Poisson Model: We first obtain the m.g.f. of the transformed random variable 𝑋  in the Poisson 

case. Utilizing equations (25) and (4), and the basic properties of m.g.f., we see that: 

 

 

 

𝑀𝑋  𝑡 =  
𝑀𝑐𝑁 𝑡 + ℎ 

𝑀𝑐𝑁 ℎ 
=

𝑀𝑁 𝑐(𝑡 + ℎ) 

𝑀𝑁 𝑐ℎ 
= 𝑒𝜆𝑇𝑒𝑐ℎ(𝑒𝑐𝑡−1) = 𝑀𝑁′ 𝑐𝑡 = 𝑀𝑐𝑁′ 𝑡                    (28)     

where  𝑀𝑁′ 𝑐𝑡  denotes the m.g.f. with parameter ct of a Poisson random variable N’with parameter 𝜆𝑇𝑒𝑐ℎ. Further 

it is straightforward to see that 

 

𝑋 = 𝑐𝑁 ′                                                                                                                                                  (29)     
 



ISSN: 2320-5407                                                                        Int. J. Adv. Res. 13(02), 1515-1531 
 

1523 
 

and so  

 

E[𝑋 ] = 𝑐𝜆𝑇𝑒𝑐ℎ                                                                                                                                    (30)     
 

 

Using equations (26), (27) and (30), the Esscher premium principle yields the following premium in the case of 

Poisson model of outages: 

 

𝜋𝑋 = 𝑐𝜆𝑇𝑒𝑐ℎ, ℎ > 0.                                                                                                                          (31)     
 

Equation (31) offers a fascinating relationship between the premium 𝜋𝑋and the average number of outages during 

time T viz. 𝜆𝑇, c, i.e., the refund offered by the CSP to the customer for each outage and the parameter ℎ of the 

Esscher transform. It is clear that as c and ℎbulge, an exponential amplificationwould be seen in the premium. We 

explore the dependence of the premium on these quantities numerically and graphically in the next section. 

 

Premium Calculation Examples for the Poisson Model for Cloud Outages:- 

Having presented six most popularly used premium calculation principles, we now turn our attention to 

determination of premium in each case.  

 

For the premium loading factor we use: 𝛼 = 0.1. We present the variation in premium with the change in the values 

of the quantities involved. We undertake the behavior of the premium in response to 𝜆𝑇 and cforthe pure premium 

and expected value principles together. 

 

1. The Pure Premium and the Premium based on the Expected Value Principle 

We first portray the pure premium and the premium based on the expected value principle by fixing the 

compensation per outage, i.e., we set𝑐 = 100 and vary the average number of outages during the time T, i.e. 𝜆𝑇from 

0 to 50 in Figure 3 below. It is evident from this figure that for a fixed 𝛼and c, as the value of 𝜆𝑇 increases, the 

difference between pure premium and the premium calculated by the expected value principle starts inflating. 

 

Next in Figure 4 we depict the aforesaid premiums by fixing 𝜆𝑇 = 10 and varying c from 100 to 1000 and a similar 

trend as in Figure 3 starts emerging. 

 

2. The Premium based on the Variance Principle 

We follow the same pattern for the premium based on the variance principle. We first illustrate the behaviour of this 

premium for a constant compensation of 100 for an outage, i.e. 𝑐 = 100 by increasing𝜆𝑇 from 0 to 50 and present 

the results in Figure 5. A clear increasing linear trend is visible. Next in Figure 6 we depict the variance premiums 

by fixing 𝜆𝑇 = 10 and varying c from 100 to 1000 and obtain a parabolic curve as from equation (12) it can be seen 

that the variance premium is essentially a second degree polynomial in c. 

 

3. The Premium based on the Standard Deviation Principle 

We follow essentially a similar approach for the premium based on the standard deviation principle. We first 

consider how the premium varies with altering 𝜆𝑇for a constant remedial amount of 100 for an outage, i.e. 𝑐 = 100 

and the findings are displayed in Figure 7. A clear increasing trend is visible. Next in Figure 8 we demonstrate the 

premiums based on standard deviation principle for varying c and a constant 𝜆𝑇 = 10 and observe an increasing 

linear trend which is obvious from equation (14). 
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Figure 3:- Pure Premium and Expected Value Premium for 𝑐 = 100 and 𝛼 = 0.1. 

 

 
Figure 4:- Pure Premium and Expected Value Premium for 𝜆𝑇 = 10and 𝛼 = 0.1. 
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Figure 5:- Premium based on the Variance Principle for 𝑐 = 100 and 𝛼 = 0.1. 

 

 
Figure 6:- Premium based on the Variance Principle for 𝜆𝑇 = 10and 𝛼 = 0.1. 
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Figure 7:- Premium based on the Standard Deviation Principle for 𝑐 = 100 and 𝛼 = 0.1. 

 

 
Figure 8:- Premium based on the Standard Deviation Principle for 𝜆𝑇 = 10and 𝛼 = 0.1. 
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4. The Premium based on the Exponential Principle 

Here we consider an insurer who resorts to the exponential utility function with parameter𝛽 defined above. We 

invoke equation (19) and at first examine the response of the premium to a change in the average number of outages 

during the time T, i.e.  𝜆𝑇, keeping the other two quantities viz. the compensation per outage, c and the parameter of 

the exponential utility function viz. 𝛽 fixed such that we set 𝑐 = 100 and 𝛽 = 0.01. As dictated by equation (19), a 

clear increasing linear trend is visible in Figure 9. 

 

Next we display the behaviour of the premium to the altering values of the parameter𝛽 of the exponential utility 

function keeping 𝜆𝑇and c fixed. As noted before, 𝛽 also signifies the risk aversion coefficient of the insurer. As 𝛽 

appears in the exponent in equation (19), the premium starts to explode exponentially with an elevation in its values. 

This observation is apparent in Figure 10. 

 

Finally in Figure 11,we portray the demeanour of the exponential premium to the variation in the compensation 

offered for each outage. Interestingly just like the previous case an exponential increase in premium is recorded as 

the values of c increase from 100 to 650 which is obvious as an insurer is likely to study the service level agreement 

minutely to estimate the magnitude of claims that can arise and only then will prescribe the premium. A higher 

compensation amount would mean higher claims and therefore higher premiums. 

 

5. The Premium based on the Esscher Principle 

We follow the same approachas above for the premium based on the Esscher principle by replacing the 

parameter𝛽of the exponential utility function by the parameter h of the Esscher transform. Invoking equation (31), 

we decipher similar behavioural pattern as above as can be seen from Figures 12-14. This is indeed attributed to a 

striking similarity in equations (19) and (31). 

 

 
Figure 9:- Premium based on the Exponential Principle for 𝑐 = 100 and𝛽 = 0.01. 

 

Conclusion:- 
In this paper we have presented a methodology for determination of premium for cloud insurance invoking six 
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research to help them devise competent policies with optimum premiums, safeguarding them against a possible 

financial avalanche in case of catastrophic claims arising due to multiple cloud outages. Depending on the 

information about past history of the cloud service provider (CSP), the insurer can cleverly compute the premium by 

choosing the most appropriate principle. In this research we have exploited the Poisson model of cloud outages. In 

our forthcoming research we are working on the exponential-Pareto and the Pareto-lognormal models of cloud 

outages. 

 
Figure 10:- Premium based on the Exponential Principle for 𝜆𝑇 = 10and 𝑐 = 1000. 

 

 
Figure 11:- Premium based on the Exponential Principle for 𝜆𝑇 = 10and 𝛽 = 0.01. 
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Figure 12:- Premium based on the Esscher Principle for 𝑐 = 100 and ℎ = 0.01. 

 

 
Figure 13:- Premium based on the Esscher Principle for 𝜆𝑇 = 10and𝑐 = 1000. 
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Figure 14:- Premium based on the Esscher Principle for 𝜆𝑇 = 10and𝑕 = 0.01 
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