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The primary objective of this urban study is to identify the most 

effective forecasting method for highly seasonal time series data, using 

monthly rainfall records for Chennai from 1901 to 2021. The analysis 

begins with data visualization to uncover long-term trends and seasonal 

variations. We apply clustering techniques specifically to seasonal 

components of the rainfall data to group similar seasonal behaviours 

and reveal distinct rainfall regimes across different periods. The 

structure and distribution of data within each cluster are analyzed to 

better understand rainfall variability and recurring seasonal patterns. 

Following this, three forecasting models-ARIMA, STL decomposition, 

and seasonal naïve forecasting-are implemented. The performances of 

these methods are evaluated using the standard metrics of Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean 

Absolute Scaled Error (MASE). Among the models tested, STL 

decomposition performs the best, achieving the lowest MAE (67.99), 

RMSE (125.03), and MASE (0.67). Its ability to isolate trend, 

seasonality, and residuals allows for more accurate forecasting of 

complex and highly seasonal rainfall patterns. These findings 

demonstrate the value of integrating clustering with seasonal analysis 

and underscore the robustness of STL decomposition in environmental 

time series forecasting. Leveraging this finding, STL decomposition is 

utilized to forecast rainfall for the entire dataset. Forecasted values are 

merged with the original data to reapply K-means clustering and 

validate consistency in rainfall regimes. The analysis reveals a 

remarkable similarity in the distribution of data across the new clusters, 

indicated by an Adjusted Rand Index of 0.95.This shows that STL 

decomposition has effectively captured the underlying trends and 

patterns in this highly seasonal data. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 

with credit to the author." 

…………………………………………………………………………………………………….... 

Introduction:- 
Motivation 

Extreme rainfall events have become increasingly common due to global climate change, transforming urban floods 

from rare disasters into frequent crises [3]. Cities like Chennai, located on the southeast coast of India, are 

particularly vulnerable. Characterized by a tropical wet and dry climate, Chennai relies heavily on the monsoon 

season for agriculture, water management, and urban sustainability. However, rainfall variability— from intense 
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flooding to prolonged droughts—poses significant challenges for disaster preparedness, infrastructure planning, and 

resource allocation [4]. 

 

The uncertainty in flood forecasting stems from various sources: unpredictable rainfall, complex model structures, 

and variability in parameters. Machine learning and statistical approaches have been increasingly employed to 

address this complexity, yet forecast accuracy remains a key challenge, particularly for highly seasonal and non-

linear systems [1]. As highlighted by recent studies, improving forecast reliability is a pressing need for urban 

planning and disaster mitigation [9]. 

 

Objectives:- 
This study aims to develop a data-driven approach for understanding and forecasting rainfall in Chennai by: 

1. Analyzing over a century’s worth of monthly rainfall data (1901–2021) to identify long-term trends, cycles, and 

anomalies. 

2. Employing clustering techniques to group similar seasonal patterns, thereby uncovering latent structures within 

the data. 

3. Comparing multiple time series forecasting models—specifically SARIMA, STL decomposition, and seasonal 

naïve forecasting—for their ability to predict future rainfall patterns with high accuracy. 

4. Evaluating forecasting performance using metrics such as Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), and Mean Absolute Scaled Error (MASE) [2]. 

 

Contribution 

The primary contribution of this study lies in the integration of clustering with time series forecasting to enhance 

rainfall prediction for a highly seasonal dataset. By identifying homogenous clusters of rainfall behaviour, this 

approach aids in capturing distinct seasonal regimes, which improves the granularity and interpretability of 

forecasting models [5]. 

 

By combining statistical forecasting with unsupervised learning, this research advances methodologies for rainfall 

prediction in monsoon-dependent urban areas and provides a replicable framework for similar climate-vulnerable 

regions [1]. The use of time series modelling in climate forecasting, as supported by previous literature, shows 

promise for informed decision-making and sustainable development planning [6]. 

 

 
Figure 1.1:- Geographical area of the study. 
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Methodology:- 
Sarima 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA) is an extension of ARIMA model that 

incorporates seasonality in addition to non-seasonal components. [10] 

 

STL decomposition 

Seasonal-Trend decomposition using LOESS (Locally weighted regression and scatter plot smoothing) is a method 

used to decompose the time series into 3 components seasonal, trend and remainder components.[11] 

 

Seasonal Naïve Forecasting 
The idea behind seasonal naïve forecasting is to use the observation from the previous season as forecast for the 

corresponding season in the future. [12] 

 

Performance Metrics of forecasting models 

In this paper, performance of the forecasting models is assessed using 3 metrics MAE, RMSE, MASE. The lower 

values of this metrics indicate better performance of the model. 

 

Mean Absolute Error (MAE) 
MAE measures the mean of the errors between actual value and forecasted value. It can be mathematically 

expressed as, 

𝐌. 𝐀.𝐄 =
𝟏

𝐧
 |

𝐧

𝐢=𝟏

 𝐘 𝐢 − 𝐘𝐢|                                                                                  . . . . . . . . . . . . . . . (2.1) 

Here, n is the number of observations, Y i   is the forecasted value and Yi is the actual value.[12] 

2.4.1. Root Mean Squared Error (RMSE) 

RMSE is similar to MAE but it penalises large errors more heavily because of the squaring of errors. It is expressed 

mathematically as, 

𝐑. 𝐌. 𝐒. 𝐄 =  
𝟏

𝐧
 (𝐘 𝐢 − 𝐘𝐢)𝟐

𝐧

𝐢=𝟏

                                                                          . . . . . . . . . . . . . . . (𝟐.𝟐) 

Here, n is the number of observations, Y i   is the forecasted value and Yi is the actual value.[12] 

 

Mean Absolute Scaled Error (MASE) 

MASE is a normalized version of MAE that compares the performance of a forecasting model to that of a naive 

model. It's particularly useful when dealing with data that has seasonality. It is expressed mathematically as,  

𝐌. 𝐀. 𝐒.𝐄 =
𝐌.𝐀. 𝐄

𝟏
𝐧 − 𝐦

 |𝐘𝐢 − 𝐘𝐢−𝐦|𝐧
𝐢=𝐦+𝟏

                                                         . . . . . . . . . . . . . . . (𝟐.𝟑) 

Here, n is the number of observations, m is the seasonal period,𝑌𝑖  is the actual value at i, 𝑌𝑖−𝑚  is the actual value at 

(i-m) and M.A.E is mean absolute error.[12] 

 

K-Means Clustering for Seasonal Rainfall Analysis 

K-means clustering was chosen over other unsupervised learning methods, such as DBSCAN and hierarchical 

clustering, due to its efficiency, scalability, and suitability for continuous numerical data like monthly rainfall 

records. Unlike DBSCAN, which is sensitive to the selection of parameters like epsilon and can struggle with 

varying densities, K-means performs well when clusters are relatively spherical and similar in size, conditions that 

align with seasonal rainfall groupings. Hierarchical clustering, while useful for capturing nested relationships, 

becomes computationally intensive with large datasets and lacks scalability compared to K-means. Additionally, K-

means provides clear, non-overlapping cluster assignments and centroids that are interpretable in terms of average 

seasonal patterns. These characteristics make it a pragmatic and effective choice for identifying distinct rainfall 

regimes across the long-term dataset used in this study.[13,14] 

 

 

 

 



ISSN: 2320-5407                                                                        Int. J. Adv. Res. 13(03), 1061-1072 

1064 

 

Adjusted Rand Index (ARI) 

ARI is a measure of similarity between two data clusters. It accounts for chance agreement between the clusters.ARI 

returns a value between -1 and 1, where 1 indicates perfect agreement between clusters,0 indicates that the clustering 

is no better than random and negative values indicate disagreement worse than random[15] 

 

Results and Discussion:- 
Monthly rainfall data for Chennai city for the years 1901 to 2021 have been obtained from https://data.opencity.in. 

This extensive dataset offers a valuable resource for understanding the historical precipitation patterns in one of 

India's major urban centers. Over the course of more than a century, these records encapsulate the fluctuations and 

trends in rainfall that have impacted Chennai's environment. 

 

The data from January 1901 to December 2021 is plotted in the figure 3.1. This figure depicts the fluctuation in 

rainfall for the city. This visualization provides valuable insights into the temporal variability of rainfall patterns, 

highlighting periods of abundance and scarcity. 

 
Figure 3.1:- Graph of Rainfall. 

 

The rainfall data is subjected to a K-means clustering algorithm, resulting in the classification of the dataset into 

seven distinct clusters. These clusters represent groups of data points with similar patterns or characteristics in terms 

of rainfall variability[13]. Figure 3.2 – Figure 3.8 visually presents these clusters, providing a graphical 

representation of how the data points are grouped together based on their respective rainfall patterns. These 7 

patterns are then used to investigate the rainfall data in a very comprehensive way. This graph clearly shows that 

pattern 2 is associated with low rainfall and pattern 6 is associated with high levels of rainfall.  

https://data.opencity.in/
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Fig. 3.2:- Diagrammatic representation of pattern 1. 

 

 
Fig. 3.3:- Diagrammatic representation of pattern 2. 
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Fig. 3.4:- Diagrammatic representation of pattern 3. 

 

 
Fig. 3.5:- Diagrammatic representation of pattern 4. 
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Fig. 3.6:- Diagrammatic representation of pattern 5. 

 

 
Fig. 3.7:- Diagrammatic representation of pattern 6. 
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Fig. 3.8:- Diagrammatic representation of pattern 7. 

 

Table 3.1:- Characteristics of each cluster. 

Descriptive 

Statistics 

C1 C2 C3 C4 C5 C6 C7 

Data count 224 637 75 48 309 18 141 

Data percent 15.43 

 

43.87 

 

5.17 

 

3.31  

 

21.28 

 

1.24 

 

9.71 

 

Min 95.22 

 

0  

 

285.19 

 

435.03 

 

35.21 

 

674.19 

 

173.93 

 

Max 171.82 

 

34.31 

 

426.35 

 

639.64 

 

94.69  

 

1061.64  

 

280.46 

 

Mean 127.61 

 

7.64 

 

344.68 

 

515.36 

 

62.63 

 

817.22 

 

219.55 

 

Median 126.04 

 

2.21  

 

336.48 

 

501.13 

 

61.12 

 

778.08  

 

214.22 

 

Mode 95.22 0  

 

285.19 

 

435.03 

 

35.21 

 

674.19  

 

173.93 

 

 

Standard Deviation 22.21 

 

9.97 

 

40.53 

 

65.63 

 

17.05 

 

139.35 

 

30.67 

 

Variance 493.25 

 

99.42 

 

1642.57 

 

4307.47 

 

290.71 

 

19417.4 

 

940.6 

 

IQR 37.28 

 

13.53 

 

59.16 

 

106.79 

 

27.38 

 

198.20 

 

48.21 

 

Skewness 0.3 

 

1.18 

 

0.40 

 

0.39 

 

0.22 

 

0.66 

 

0.45 

 

Kurtosis 1.9 

 

3.14 

 

2.08 

 

1.84 

 

1.90 

 

2.08 

 

2.08 

 

In table 3.1, C1, C2, ….., C6 corresponds to cluster 1, cluster 2,….., cluster 6.The inference drawn from Figure 3.2 

is true since heavy rainfall is associated with C6 with a mean rainfall of 817.22 while C2 is associated with low 

rainfall with a mean rainfall of 7.64.  
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We can comment about the distribution of each cluster using the table. For example, Cluster 1 represents a moderate 

rainfall level, with values between 95.22 and 171.82. The rainfall distribution in this cluster is approximately 

symmetric, as indicated by the skewness and kurtosis values close to zero. The value of mode in this cluster is 95.22. 

The mean rainfall in this cluster is approximately 127.61, close to the median value of 126.04, indicating a relatively 

balanced distribution. Given a standard deviation of 22.21, the data points are relatively close to the mean, there is 

only a moderate level of variability in the rainfall. 

 

From both Figure 3.2 to Figure 3.8, as well as the data presented in Table 3.1, stakeholders can draw meaningful 

conclusions and gain a general understanding of the rainfall behaviour during each time period associated with the 

respective clusters predicted using the K-means clustering algorithm. This enables data-driven insights into seasonal 

trends and variability, which can be useful for planning and decision-making. 

 

ARIMA, STL Decomposition and Seasonal Naïve Forecasting methods are used to predict the rainfall. The best 

predictive model has been obtained by splitting the data into two sets. The one set of data will contain the rainfall 

data from January 1901 to December 2010, while the second set will contain the rest of the data from January 2011 

to December 2021.We used the first set of data to forecast the rainfall during Jan 2011 – Dec 2021 using the three 

methods and find the actual vs. forecasted value plot as well as the residual to find the metrics of Mean Absolute 

Error (MAE),Root Mean Squared Error (RMSE) and Mean Absolute Scaled Error (MASE).The method with least 

values of this metrics is the best method for this case.   

 

Table 3.2:- Best method for forecasting. 

 ARIMA STL Seasonal naive 

MAE 90.73846 

 

67.99901 

 

95.83648 

 

RMSE 150.7801 

 

125.0251 

 

154.3388 

 

MASE 0.8951691 

 

0.6708358 

 

0.945463 

 

 

It is observed from table 3.5 that because of the low values of MAE, RMSE and MASE for STL decomposition that 

STL decomposition is the best method for forecasting in this case. 

 

Now, STL decomposition is used to forecast for the entire data. The STL decomposition graph for the data is given 

in figure 3.9. 

 

 
Figure 3.9:- STL Decomposition of Rainfall. 
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Figure 3.10 gives the plot of the forecast for the entire data using STL decomposition for the time period of January 

2022 to December 2026 (ie,5 years) 

 
Figure 3.10:- Forecast using STL Decomposition method. 

 

The final forecasted value is combined with the original data to form a combined new data and K-means clustering 

is done in this combined data to form 7 patterns and investigation is done on this and the original 7 clusters. The 

Adjusted Rand Index (ARI) between the existing and the forecasted pattern is 0.950. This indicates a high level of 

agreement between the actual and predicted patterns. This indicates that STL decomposition effectively captured the 

underlying patterns in the historical data.[15] 

 

Conclusion:- 
In this case study, we attempted to predict rainfall patterns in an urban city context, with a focus on Chennai. The K-

means clustering algorithm was employed to classify the city's monthly rainfall from 1901 to 2021 into seven 

distinct clusters. Each cluster represented a unique pattern of rainfall behaviour, and the distribution and 

characteristics of rainfall within each were analyzed in depth. 

 

An extensive comparative study of forecasting methods—SARIMA, STL decomposition, and seasonal naïve 

forecasting—was conducted to determine the most effective model for highly seasonal data. Based on the 

performance metrics MAE, RMSE, and MASE, STL decomposition emerged as the best-performing technique. This 

method was then used to forecast future rainfall, and the resulting predictions were merged with the original data. 

Upon reapplying clustering to this enriched dataset, it was observed that the properties of the clusters, particularly 

measures of variability, showed minimal divergence, confirming that the STL decomposition effectively preserved 

the underlying seasonal patterns of the historical data. 

 

However, the study is not without limitations. The reliance on monthly data limits the granularity and 

responsiveness of the analysis. To conduct a high-resolution and more actionable study, daily or hourly rainfall data 

is essential—it would allow for more precise detection of short-term anomalies, better modelling of extreme events, 

and stronger support for real-time urban infrastructure planning. Furthermore, the analysis does not explicitly 

account for external changes such as urban development. 

 

The practical implications of identifying seven distinct rainfall clusters are significant. For urban planners, this 

classification supports the development of tailored flood mitigation infrastructure, water storage planning, and 

improved drainage design based on specific rainfall regimes. For meteorologists and disaster management 
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authorities, the cluster-based insights provide a data-driven foundation to refine seasonal forecasts, identify extreme 

rainfall patterns early, and enhance overall preparedness for climate-related disasters. 

 

Supplementary Material 

1.SARIMA 

SARIMA model is represented as  

 

ARIMA (p, d, q) (P, D, Q) [m] 

Where the 1
st
 bracket represents the non-seasonal components and the 2

nd
 bracket represents the seasonal 

components and ‘m’ is the number of observations per year or the period of the model.  

p = Number of Auto-regressive terms of the non-seasonal component 

d = Number of the differencing of raw observations to allow the time series to become stationary 

q = Number of Moving Average terms of the non-seasonal component 

P = Number of seasonal AR terms. This component captures the relationship between the current value of the series 

and its past values, specifically at seasonal lags. 

D = Number of seasonal differences. Similar to the non-seasonal differencing, this component accounts for the 

differencing required to remove seasonality from the series. 

Q = Number of Seasonal Moving Average terms this component models the dependency between the current value 

and the residual errors of the previous predictions at seasonal lags. 

For example, the ARIMA (0,0,0) (2,0,0) [12] can be expressed mathematically as, 

𝑌𝑡 = 𝑐 + 𝛷1𝑌𝑡−12 + 𝛷2𝑌𝑡−24+∈                                                                            . . . . . . . . . . . . . . . (1) 

Where 𝑌𝑡  is the time series data at time t 

Intercept is represented by c. 

The auto-regressive parameters at lags 12 and 24 are represented by 𝛷1 and 𝛷2  respectively.[10] 

 

2.STL Decomposition 

The formula for STL decomposition is 

 𝑌𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡                                                                                                                                                  . . . . . . . . . . . . . . . ( 2) 

Here the trend component 𝑇𝑡  is calculated using the formula, 

𝑇𝑡 = 𝐿𝑂𝐸𝑆𝑆 𝑌𝑡                                                                                                        . . . . . . . . . . . . . . . ( 3) 

LOESS stands for locally weighted regression and scatter plot smoothing. 

Now, 

𝑌𝑡 − 𝑇𝑡 = 𝑆𝑡 + 𝑅𝑡                                                                                                                                           . . . . . . . . . . . . . . . (4) 

Use moving average method to the RHS of the above equation i.e., 𝑆𝑡 + 𝑅𝑡  to obtain the seasonal component of the 

time series 

𝑆𝑡 = 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑡 + 𝑅𝑡                                                                         . . . . . . . . . . . . . . . (5) 

Use this seasonal component to obtain the remainder component. 

𝑅𝑡 = 𝑆𝑡 + 𝑅𝑡 − 𝑆𝑡                                                                                                  . . . . . . . . . . . . . . . (6) 

After having obtained trend, seasonal and remainder component forecast for each component using appropriate 

forecasting method. [11]Then combine this forecast to obtain the required forecast, 

Y t = T t + S t + R t                                                                                                  . . . . . . . . . . . . . . . (7) 

 

3. Seasonal naive forecasting 

Mathematically, this can be given as, 

Y t+h = Y
t+h−k(m|_

h
m

_|)
                                                                                           . . . . . . . . . . . . . . . (8) 

Here, k is the number of seasons ago, is the length of the seasonal cycle (here since the data is monthly, m = 

12),Y t+h  is the forecast for time period t+h [12]. 
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