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This study quantifies flood exposure across historical HOLC redlining 

zones in New York City using Sentinel-1 SAR imagery and Google 

Earth Engine. We analyzed six heavy-rainfall events (2018–2021) and 

projected future risk under moderate and extreme scenarios from the 

NYC Storm water Resiliency Plan.―Hazardous‖neighborhoods exhibited 

2.30–4.40% flooded pixels per event—about double the 0.99–1.51% in 

―Best‖ areas—and face over fourfold higher future flood exposure.Flood 

prevalence positively correlates with social vulnerability and crime rates 

and inversely with household income.These findings underscore endurin

g socioeconomic racism and the need for equity-focused climate 

resilience planning. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 
with credit to the author." 

……………………………………………………………………………………………………... 

Introduction:- 
Geography of New York City 

Located in the northeastern United States, New York City is one of the most populous and diverse cities in the entire 

world. In fact, more than eight million people live across the five boroughs of the Bronx, Brooklyn, Manhattan, 

Queens, and Staten Island. Urbanization over the past centuries has replaced natural permeable surfaces with roads, 

buildings, roofs and other impervious surfaces — increasing flood intensity in urban areas (Pielke and Downton, 

2000). Importantly, New York City is located on the coast in a region that is subject to severe precipitation events that 

can cause both coastal and inland street flooding (González et al., 2019). As Earth’s climate continues to change, 

storm events are predicted to intensify, putting areas such as New York City at greater risk of severe flooding 

disasters (NCA 2018). Since the twentieth century, there has been an increasing trend towards more extreme 

precipitation in New York City. In fact, the upper range of regional precipitation is expected to increase by 

approximately 10% by the 2020s, 13% by the 2050s, 19% by the 2080s, and 25% by 2100 (Horton et al., 2015). 

 

History of Redlining 

Redlining was a process that was systematically implemented in the United States to prohibit minority populations 

from receiving loans to buy houses in majority-white neighborhoods that were meant to be preserved as ―safe.‖ 

Between 1935 and 1940, the Home Owners’ Loan Corporation (HOLC), established as part of President Franklin D. 

Roosevelt’s New Deal, created color-coded maps for major cities all across America. Within each map, 

every residential neighborhood would receive a grade: 'A' corresponded to a ranking of ―Best‖ and the color green, 
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'B' corresponded to a ranking of ―Still Desirable‖ and the color blue, 'C' corresponded to a ranking of ―Definitely 

Declining‖ and the color yellow, and 'D' corresponded to a ranking of ―Hazardous‖ and the color red. 

As displayed in Figure 1, New York City was one of the cities included in the residential security map survey. In a 

trend seen across the entire nation, the majority of black and low-income households were concentrated within 

heavily redlined areas due to the history of discrimination that restricted them to residing in economically-

disadvantaged communities. Even today, black homeowners are five times as likely to own real estate in formerly 

redlined neighborhoods than greenlined ones (Lerner, 2020). In consequence, the practice of redlining effectively 

served to clasp the framework of inequality in place (Fishback et al., 2020). In this paper, geospatial data for the 

redlining maps created by the Home Owners’ Loan Corporation were digitally provided by Mapping Inequality 

(Nelson et al., 2021). 

 

 
 

Figure 1:- The spatial distribution of HOLC graded areas in New York City for the four-category rating system using 

geospatial data generated by Mapping Inequality. 

 

Earth Observation Applications 

Remote sensing is the acquisition of information about an object and its environment from a distance. In the case of 

Earth observations, remote sensing often takes place in the form of satellite measurements that can cover large spatial 

and temporal scopes at a relatively low cost. 

 

While there are many applications utilizing remote sensing for monitoring flood extent, multiple challenges can arise 

that include data accessibility, temporal resolution, and delineating flood boundaries — differentiating water pixels 

from land pixels when examining the boundary where they meet (Schumann et al., 2009). All these challenges are 

magnified when attempting to detect water pixels on the diverse terrain of urban environments like New York City, 
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which oftentimes includes multiple surface types concentrated in a single area (Acharya et al., 2018). Previous studies 

have also shown that the use of widely applied indices such as the Normalized Difference Vegetation Index (NDVI) 

do not perform well for monitoring flood extent in urban environments. In response, progress has been made in 

developing indices that are more specific to this type of application, such as the Modified Normalized Difference 

Water Index (MNDWI), which can enhance the detection of water features and suppress noise from the built 

environment (Xu, 2006). However, given the unique urban landscape of major metropolitan areas, these indices also 

face the challenge of varying surface types. Therefore, this paper endeavors to address the gap facing the remote 

sensing field in the detection of flooded areas in urban settings. 

 

Remote sensing has also been previously utilized alongside redlining data to determine the extent to which redlined 

areas face an increase in vulnerability to the impacts of climate change. A recent research study reported that 94% of 

the redlined areas experienced greater land surface temperatures than non-redlined neighborhoods, with the national 

average showing that land surface temperatures in redlined areas are approximately 2.6°C warmer than non-redlined 

areas (Hoffman et al., 2020). Similar results from corresponding studies also show the strong correlation between 

redlined areas and higher land surface temperatures on a regional scale (Li et al., 2021, Saverino et al., 2021, Wilson, 

2020). Nevertheless, flood detection from remote sensing has never been utilized before in conjunction with redlining 

data to quantify the magnitude of present-day environmental racism. Consequently, this paper also serves to lead the 

environmental justice field in determining whether redlined areas are more vulnerable to flooding events than non-

redlined areas. 

 

In the next section, a novel methodology is introduced using a combination of remote sensing and in-situ data that can 

effectively classify and extract flood pixels after large precipitation events. The conditions of each HOLC area are 

then compared with one another to determine if there are significant differences detected in the amount of exposure to 

urban flooding between the four categories of ―Best,‖ ―Still Desirable,‖ ―Definitely Declining,‖ and ―Hazardous.‖ 

 

What began as an urban planning strategy to determine locations ideal for the security of home loans during the Great 

Depression has potentially placed millions of Americans more at risk of exposure to climate hazards. 

 

Methodology:- 
Urban Flooding Workflow 

The urban flooding analysis in New York City involves two distinct scenarios for assessing risk in redlined areas: (1) 

Current Flood Risk (2) Future Flood Risk. Figure 2 summarizes the research workflow that was followed for both 

scenarios. 

 

Current Flood Risk 

Remote sensing data from the European Space Agency’s Sentinel-1 Satellite was used for quantifying the extent of 

current flood risk. In particular, the study took advantage of the synthetic-aperture radar (SAR) aboard Sentinel-1 that 

produces an energy signal and then records the amount of energy reflected back to the radar system in order to 

generate two-dimensional images of the Earth’s surface. The main benefit of utilizing SAR data was that the system 

functioned in nearly all weather conditions, which became especially helpful for analyzing precipitation events that 

brought heavy cloud coverage in the sky. 

 

In order to identify days for potential flood events, data from ground-based weather stations were accessed throughout 

New York City to collect precipitation data from the National Oceanic and Atmospheric Administration (NOAA) 

Climate Data Online Database. In total, there were sixteen local stations available for the analysis, with at least one 

station in each borough. For each of the weather stations, dates were identified that had one inch or greater of total 

accumulated precipitation. Figure 3 displays one of the sixteen stations that was considered for the analysis. 
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Figure 2:- The research workflow utilized for assessing both current flood risk and future flood risk for each of the 

HOLC graded areas in New York City. 
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Figure 3:- The Central Park Weather Station precipitation data acquired from NOAA Climate Data Online. A 

threshold of at least one inch of precipitation was set for the analysis, as delineated with all values above the red line. 

The complementary fifteen weather stations are denominated by the following identifications: Bronx 1.5 NE, 

Brooklyn 3.1 NW, Howard Beach 0.4 NNW, Jackson Heights 0.3 WSW, JFK International Airport, LaGuardia 

Airport, Middle Village 0.5 SW, New York 8.8 N, Queens 2.1 NE, Queens 3.4 NNW, Queens 3.7 N, Queens 4.7 SW, 

Staten Island 1.4 SE, Staten Island 4.5 SSE, and Stuyvesant Square Park 4.9 NNW. 

 

 
Figure 4: Screenshots of flooded streets in New York City that were collected from various social media platforms 

and incorporated into the analysis as a source of in-situ data to verify areas where flooding was known to have 

occurred. 

 

All dates identified as having one inch or more of accumulated precipitation from the weather station data were 

matched with Sentinel-1 imagery from the Alaska Satellite Facility. In total, forty-one Sentinel-1 snapshots matched 

with the initial search criteria. Along with rainfall, however, the precipitation levels measured by the local weather 

stations from NOAA Climate Data Online also took into account precipitation from snowfall. Therefore, in order to 

validate the presence of urban flooding, each date was subsequently cross-referenced with information from the 

National Weather Service and local news articles detailing reports of flash flooding events in New York City. After 

the aforementioned secondary search was completed, six Sentinel-1 snapshots remained and were categorized as the 

post-flooding images. 

Additionally, the analysis also applied imagery that represented baseline conditions without precipitation. In order to 

perform this step, NOAA Climate Data Online was utilized to identify dates that had zero inches rainfall. Based on 

this criteria, forty-three Sentinel-1 images were pinpointed and categorized as the pre-flooding images. 

 

From there, I coded a program in Google Earth Engine with JavaScript that could automatically classify pixels as 

either flooded or non-flooded. To begin with, each Sentinel-1 image was imported into Google Earth Engine, where it 

was automatically preprocessed with GRD border noise removal, thermal noise removal, radiometric calibration, and 

terrain correction. In order to refine the initial raster data, areas of high slope, as calculated from a digital elevation 

model of New York City, were masked out of each image. 

Following all the image preprocessing, the forty-three pre-flooding images were mosaiced together by the mean value 

of each overlapping pixel and afterwards clipped to a boundary shapefile of New York City. Each of the six post-

flooding images were also clipped to the same boundary shapefile of New York City. Afterwards, a backscatter 

change detection algorithm between each of the six post-flooding images and the single mosaiced pre-flooding image 
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was executed, resulting in a difference layer. Once a circle smooth filter of twenty-five meters was applied to remove 

potential speckles in the data, the script then calculated the percentiles of pixel values within the difference layer. 

 

In order to validate and determine the specific threshold associated with flooded or non-flooded pixels, images and 

videos from social media were incorporated into the analysis as in-situ data to assess the specific areas where 

flooding was known to have occurred. After geotagging the exact location of where each social media post took 

place, the surrounding reflectance values from the SAR satellite signal were collected and compared amongst the 

other flooding locations. 

Using the difference layer, a threshold criteria was applied for values within two standard deviations (i.e., less than 

the 5th percentile or greater than the 95th percentile) to be marked as flooded. Extreme values displaying flooded 

pixels were marked with a value of 1 and highlighted in dark blue, while all other values within two standard 

deviations, the non-flooded areas, were marked with a value of 0. After the threshold was applied to all six post-

flooding images, they were subsequently exported from Google Earth Engine and imported into ArcGIS. Figure 5 

shows the main inputs and outputs from the Google Earth Engine algorithm. 

 

 
 

Figure 5:- The Sentinel-1 SAR data layers used as inputs and outputs to classify flooded pixels in NYC. The images 

in the college include top left: a mosaic of forty-three Sentinel-1 SAR images that represent days with no precipitation 

(the pre-flooding image, top right: an image captured on August 11th, 2018 after flooding in New York City that 

exceeded one inch of accumulated rainfall (the post-flooding image), bottom left: the smoothed difference between 

the pre-flooding image and post-flooding image layers, bottom right: the areas highlighted in dark blue that were 

classified as flooded pixels based on Google Earth Engine algorithm. 
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Future Flood Risk 

The percentage of each redlining grade at risk of future flooding was determined using a dataset provided from the 

City of New York Stormwater Resiliency Plan, which was created by urban planners with extensive knowledge of 

New York City’s existing drainage system (New York Mayor’s Office of Resiliency, 2019). Moderate flood risk is 

defined as two inches of rain falling in one hour combined with 2.5 feet of sea level rise. Extreme flooding is defined 

as approximately 3.5 inches of rain falling in one hour combined with 4.8 feet of sea-level rise. A selection of the 

New York City Stormwater Flood Map is presented in Figure 6. 

 
Figure 6:- A selection of the Stormwater Flood Map from the City of New York Stormwater Resiliency Plan. It is 

important to note that the model only takes into account ground-level flooding across the city. 

 

Geospatial Analysis in ArcGIS 

An individual shapefile for each of the four redlining grades of each of the five boroughs were generated, yielding a 

total of twenty separate boundaries. Since the project is only focused on ground-level flooding, all buildings were 

masked out of the difference layer using a footprint shapefile from the New York City Department of Information 

Technology and Telecommunications. In effect, all water pixels detected from rooftops were removed from the 

analysis, allowing the results to focus specifically on flooding that impacted people most directly. For each of the 

twenty shapefiles, a raster calculation was performed to compute the total amount of pixels identified as flooded 

areas. From there, the proportion of pixels identified as flooded to the total amount of pixels were calculated for each 

redlining grade. 
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Figure 7:- HOLC graded areas in the borough of Brooklyn both before building footprints were removed (left), and 

after building footprints were removed (right) using the 2D Building Footprints provided by the New York City 

Department of Information Technology and Telecommunications. 

 

Results:- 
Current Flood Risk 

The percentages of each redlining grade across New York City for each of the six flood images are displayed in 

Figure 8. For all of the dates, the ―Hazardous‖ neighborhoods consistently had the highest percentage of flooded 

streets, while the ―Best‖ neighborhoods consistently had the lowest percentage of flooded streets. 

 

Future Flood Risk 

The percentages of each redlining grade across New York City within areas predicted to face moderate and extreme 

floods in the future are shown in Figure 9. The ―Hazardous‖ neighborhoods have the highest percentage of future 

flood exposure for both the moderate and extreme scenarios, whereas the ―Best‖ neighborhoods have the lowest 

percentage of street surface area predicted to experience moderate or extreme flooding. 

 

Socioeconomic Status and Criminal Offenses 

In a supplementary analysis, the flooding data for New York City was applied to determine whether there was a 

positive or negative relationship between the percentage of flooded pixels in a given area and the following three 

variables: Social Vulnerability Index, Median Household Income, and Crimes Reported. 

 

Relationship Between Percentage of Flooded Pixels and Social Vulnerability Index 

y = 0.36845 + 638.40841x 
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Figure 8:- The percentage of flooded pixels for each redlining grade for six flood event days (February 12th, 2018; 

July 18th, 2018; August 11th, 2018; December 21st, 2018; October 17th; 2019; July 2nd, 2021). The t-value is -

6.22107 and the p-value is < 0.00001 when comparing the proportion of flooding in the ―Hazardous‖ and ―Best‖ 

neighborhoods, indicating that the results for the present-day flooding analysis are statistically significant. 
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Figure 9:- The percentage of flooded pixels for each redlining grade for future flood risk based on the New York 

City Climate Resiliency Stormwater Data. The t-value is -2.71527 and the p-value is 0.013221 when comparing 

the proportion of moderate future flooding in the ―Hazardous‖ and ―Best‖ neighborhoods. The t-value is -3.72365 

and the p-value is 0.00292 when comparing the proportion of extreme future flooding in the ―Hazardous‖ and ―Best‖ 

neighborhoods. Since p < 0.05 for both scenarios, the results for the future flooding analysis are considered to be 

statistically significant. 

 

 
Figure 10:- The relationship between the percentage of flooded pixels in New York City Census Tracts and Social 

Vulnerability Index. Based on data generated by the Regional Plan Association, the Social Vulnerability Index was 

created to reflect an individual's vulnerability to disasters by taking an average of eight variables: child care, elder 

care, financial restrictions, language barriers, social structure, housing density, housing uncertainty, and evacuation 
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aid. For the Social Vulnerability Index, 0 represents the least vulnerable populations and 1 represents the most 

vulnerable populations (Regional Plan Association, 2015). 

 

Relationship Between Percentage of Flooded Pixels and Median Household Income 

y = 65127.42184 - 43620425.97643x 

 

 
Figure 11:- The relationship between the percentage of flooded pixels in New York City Census Tracts and Median 

Household Income. The income data employed in this analysis was collected by the United States Census Bureau. 

 

Relationship Between Percentage of Flooded Pixels and Crimes Reported 

y = 102.76417 + 252434.42524x 

 
Figure 12:- The relationship between the percentage of flooded pixels in New York City Census Tracts and Crimes 

Reported. Utilizing public complaint information collected by the New York City Police Department, the dataset 

includes all valid felony, misdemeanor, and violation crimes reported to the police beginning from November 2018 

until October 2021 (New York City Police Department, 2021). 
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Figure 13:- The spatial distribution of current flooding risk in New York City based on the percentage of flooded 

pixels in each Census Tract. Areas with the greatest amount of flooding, such as the South Bronx, generally 

correspond with areas that were graded ―Hazardous‖ or ―Definitely Declining.‖ 

 

Discussion and Conclusion:- 
Climate Resiliency Planning 

Currently, more than half of the world’s population live in cities, with the amount projected to increase to two-thirds 

by 2050 (Rosenzweig et al., 2018). As a result, the concentration of people and infrastructure in urban areas makes 

cities particularly vulnerable to the impacts of climate change. Given New York City’s large population density, the 

impact of stronger weather events is projected to cause several hundred billions of dollars in infrastructure damage, 

including the destruction of roads, airports, electricity supply, water supply, and sewage disposal systems if sufficient 

climate adaptation strategies are not enforced (Solecki 2012). 

 

In addition to widespread economic damage, flooding events can also have major consequences on public health. First 

and foremost, death and injury can occur due to high stream flow velocity. Contact with water can lead to respiratory 

diseases, hypothermia, and cardiac arrest. Contact with polluted water can lead to wound infections, conjunctivitis, 

gastrointestinal illnesses, ear infections, nose infections, throat infections, and severe waterborne diseases. Even ill 

health in the form of physical and emotional stress may persist for months to years following a flood, causing an 

increase of susceptibility to psychosocial disturbances and cardiovascular incidents (World Health Organization, 

2002). 
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In general, the ability of a community to recover from extreme weather events is determined by the risk of exposure 

and access to the resources needed for recovery (Hampstead et al., 2021). Therefore, the flood detection algorithm 

discussed in this paper is exceptionably applicable, as it can be utilized to determine the areas that are most vulnerable 

to current flooding events. 

 

New York City especially requires updates to its current climate resiliency plan. Due to the damages from flooding 

that ensued because of Hurricane Ida, legislation has recently been approved requiring the city government to make a 

comprehensive plan that will protect every neighborhood from the threats of climate change (Barnard, 2021). Now 

that the most at-risk locations for urban flooding can be easily identified with my Google Earth Engine algorithm, 

communities can better protect themselves for future events. 

 

Regarding flood prevention, protection, and preparedness specifically, there are a multitude of solutions currently 

available that can minimize damages to both human health and the economy through a combination of gray 

infrastructure and green infrastructure. Gray infrastructure practices that protect against flooding in urban settings 

include the construction of channels, storm surge defenses, and barriers. Correspondingly, green infrastructure 

practices that enhance infiltration include the expansion of natural flood plains, urban green spaces, rain gardens, 

bioswales, and permeable pavements (Environmental Protection Agency). Again, the results from my methodology 

allow policymakers to target the neighborhoods where these flood adaptation measures would have the greatest 

positive impact. 

 

Environmental Racism 

The resilience approach for climate adaptation requires collating the characteristic features of adaptation measures 

with an emphasis on taking into account multiple perspectives (Radhakrishnan et al., 2017). For this reason, 

scientists, policymakers, urban stakeholders, and everyday citizens have to work in conjunction with one another to 

determine the best plan forward for communities combating climate change. In addition to detecting areas most prone 

to flooding with the use of remote sensing, the results from this paper have important implications for how to 

approach climate resiliency planning in a more equitable manner. 

 

Out of the four redlining categories, ―Hazardous‖ neighborhoods are consistently the most vulnerable to flooding 

events. In fact, neighborhoods identified as ―Hazardous‖ are around twice as likely to experience chronic flooding 

today than areas identified as ―Best.‖ The results are even more desolate in regards to vulnerability for future flooding 

events, with neighborhoods identified as ―Hazardous‖ being more than four times as likely to be impacted by extreme 

future flooding than areas identified as ―Best.‖ Furthermore, neighborhoods containing a higher percentage of flooded 

areas are more vulnerable on the Social Vulnerability Index, have lower median household incomes, and experience 

more criminal activity compared to neighborhoods containing a lower percentage of flooded areas. 

 

By taking environmental justice into account for climate resiliency planning, communities can better understand pre-

existing inequities in our society and how the impacts of climate change can continue to exacerbate these devastating 

effects. 
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