
ISSN:(O) 2320-5407, ISSN(P) 3107-4928 Int. J. Adv. Res. 13(07), July-2025, 924-928

924

Journal Homepage: - www.journalijar.com

Article DOI: 10.21474/IJAR01/21400

DOI URL: http://dx.doi.org/10.21474/IJAR01/21400

RESEARCH ARTICLE

DESIGN AND IMPLEMENTATION OF UART USING VERILOG: PARALLEL-IN-

SERIAL-OUT AND SERIAL-IN-PARALLEL-OUT MODULES

 Punam Chati

1
, Ketan Shrirao

2
, Hemant Pise

2
, Sagar Mallik

2
 and Ayush Bobde

2

1.

Assistant Professor

2.Students Research Scholar, Department of Electronics and Telecommunications, Priyadarshini College of

Engineering, Nagpur, India

……………………………………………………………………………………………………....

Manuscript Info Abstract

……………………. ………………………………………………………………
Manuscript History

Received: 14 May 2025

Final Accepted: 17 June 2025

Published: July 2025

Key words:-
UART, Verilog, PISO, SIPO, Parallel-

to-Serial Conversion, Serial-to-Parallel
Conver.

The Universal Asynchronous Receiver-Transmitter (UART) is a key

component in digital communication, enabling efficient serial data

transmission with minimal hardware overhead. This paper presents the

design and implementation of a UART module using Verilog Hardware

Description Language (HDL). The focus is on two essential component

s: Parallel In Serial Out (PISO) and Serial In Parallel Out (SIPO) modul

es, which facilitate data conversion for transmission and reception.The

PISO module converts parallel data into a serialized format for transmis

sion, while the SIPO module reconstructs serial data into parallel form

upon reception. Both modules are designed with modularity and scalabi

lity in mind, ensuring efficient resource utilization and adherence to

communication protocols.To ensure robust operation, the design incorp

orates start and stop bits, as well as clock synchronization to handle

varying baud rates.The proposed design was verified through simulatio

ns under diverse conditions, demonstrating accurate functionality and

reliability. Synthesis results confirmed compliance with timing constrai

nts and efficient hardware resource usage, making the design suitable

for FPGA implementation. The design was implemented and synthesis

in QUARUS II .This paper provides a comprehensive approach to

UART design, offering insights into its practical applications in embed

ded systems and digital communication. The modular design ensures

ease of integration into complex systems while maintaining high

performance and reliability

"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed

with credit to the author."

……………………………………………………………………………………………………....

Introduction:-
The Universal Asynchronous Receiver-Transmitter (UART) facilitates serial communication between devices by

converting data between parallel and serial forms. Its operation involves two main processes: data transmission and

data reception. These processes rely on synchronization, framing, and optional error-checking mechanisms to ensure

reliable communication.

Corresponding Author:- Punam Chati

Address:- Assistant Professor

http://www.journalijar.com/

ISSN:(O) 2320-5407, ISSN(P) 3107-4928 Int. J. Adv. Res. 13(07), July-2025, 924-928

925

1.Data Transmission:

The transmitter in UART converts parallel data into a serial bitstream using the Parallel-In-Serial-Out (PISO)

method. Before transmission, the data is encapsulated into a frame that includes:

 Start Bit: A single bit, always set to 0 (low), that signals the beginning of the data frame to the receiver.

 Data Bits: The actual data to be transmitted, typically 5 to 8 bits per frame, depending on the configuration.

 Stop Bits: One or more bits, set to 1 (high), indicating the end of the data frame.

The serial data is transmitted over the TX (transmit) line. The transmitter ensures that the data rate matches the

agreed baud rate to maintain synchronization with the receiver.

2. Data Reception:

The receiver in UART processes incoming serial data on the RX (receive) line using the Serial-In-Parallel-Out

(SIPO) method. It performs the following tasks:

 Start Bit Detection: The receiver continuously monitors the RX line and begins decoding upon detecting a start

bit (low signal).

 Data Bit Extraction: It reads the data bits at intervals defined by the baud rate, reconstructing the original

parallel data.

 Stop Bit Validation: The receiver confirms the presence of stop bits to ensure the frame's completeness.

Synchronization and Baud Rate:
UART communication is asynchronous, meaning it does not use a shared clock signal. Instead, both the transmitter

and receiver must operate at the same baud rate Any mismatch in baud rate can lead to data corruption.

 Fig 1. UART Module Block Diagram

Asynchronous Communication:

In asynchronous communication, data is sent one bit at a time at a constant rate, without a shared clock. The receiver

uses the agreed-upon baud rate to sample incoming bits and synchronize using start and stop bits. This eliminates the

need for a dedicated clock line, simplifying hardware connections.

Transmission:

1. Data Preparation: Parallel data is loaded into the UART.

2. Framing: The UART frames the data with a start bit, data bits, an optional parity bit, and one or more stop bits.

3. Serial Transmission: Framed data is sent serially over the communication line, bit by bit.

Reception:

1. Bit Synchronization: The receiving UART identifies the start bit to align with the data stream.

2. Frame Processing: Data bits are extracted, verified using parity (if enabled), and start/stop bits are discarded.

3. Parallel Output: Serial data is converted back into parallel form for the receiving device.

UART's asynchronous nature and efficient framing make it ideal for low-speed communication in embedded

systems and microcontrolle

ISSN:(O) 2320-5407, ISSN(P) 3107-4928 Int. J. Adv. Res. 13(07), July-2025, 924-928

926

PISO (Parallel-In Serial-Out) Shift Register

Functionality:

A PISO shift register takes multiple bits of data as parallel input and converts them into a serial output, allowing

data to be transmitted over a single line. This is especially useful for reducing the number of connections required in

communication systems or digital circuits.

1. Data Loading: Data is loaded simultaneously into all flip-flops of the register through the parallel input lines

when a control signal (e.g., a "load" signal) is activated.

2. Data Shifting: After loading, the register shifts the data serially, one bit at a time, to the output with each clock

pulse.

3. Control Signals: Typically requires control signals like "Load" (to enable parallel loading) and "Shift" (to

enable serial shifting).

Key Applications:

A Serial-In Parallel-Out (SIPO) shift register is commonly used to deserialize serial data for parallel processing,

making it useful in communication systems where data is transmitted serially but needs to be processed in parallel.

It's also widely employed to expand microcontroller I/O capabilities, allowing control of multiple output devices—

such as LEDs, relays, or displays—using just a few microcontroller pins. Additionally, SIPO registers serve as

temporary data storage buffers in digital systems, helping manage data flow and synchronization between

components operating at different speeds..

SIPO (Serial-In Parallel-Out) Shift Register

Functionality:

A SIPO shift register takes data in serial form, shifts it through a chain of flip-flops with each clock pulse, and then

outputs it in parallel. This is used to convert data received over a single line into a parallel format for processing.

1. Data Input: Data is provided one bit at a time through the serial input line, synchronized with a clock.

2. Data Shifting: Each clock pulse shifts the data into successive stages of the register.

3. Parallel Output: Once the entire sequence is shifted in, the parallel output lines hold the complete data set.

Key Applications:

SIPO shift registers are widely used for serializing parallel data for efficient transmission over communication lines.

In protocols like UART (Universal Asynchronous Receiver/Transmitter), data is often converted from parallel to

serial form (and vice versa) to match the requirements of serial communication. Additionally, SIPO shift registers

help in reducing the number of pins needed when interfacing microcontrollers with external devices such as LED

arrays or display drivers. Instead of assigning multiple GPIO pins for each data line, a single serial line can be used

to shift data into the register and then output it in parallel, thereby optimizing resource usage in embedded systems.

The given code implements a Parallel Input Serial Output (PISO) shift register. Initially, a 4-bit register q is declared

to hold input data, and a 1-bit output v is used to transmit the serial data. The inputs include a 4-bit parallel data d, a

selection signal sel, a clock signal clk, and an active-high reset signal. On every rising edge of the clock, the system

first checks the reset condition. If the reset signal is high, the register q is cleared by setting all bits to zero. If not in

reset, the behavior depends on the value of sel. When sel is low (0), it indicates a parallel load operation, so the 4-bit

input d is loaded into the register q. When sel is high (1), the module enters serial output mode: it assigns the least

significant bit of q to the output v and shifts all bits of q one position to the right. This process continues on each

clock cycle, effectively shifting out the 4-bit data serially through v.

ISSN:(O) 2320-5407, ISSN(P) 3107-4928 Int. J. Adv. Res. 13(07), July-2025, 924-928

927

The Serial-In Parallel-Out (SIPO) shift register algorithm operates based on three main inputs: a serial data input

(`din`), a clock signal (`clk`), and an active-high reset signal (`reset`). It produces a 4-bit parallel output (`dout`)

using an internal 4-bit register `s` that stores the shifted bits. Initially, the contents of the register `s` are undefined.

However, whenever the `reset` signal is high, the register is cleared, and all bits of `s` are set to zero. The behavior

of the module is triggered on the rising edge of the `clk` signal or whenever the `reset` signal becomes active. If

`reset` is high, the register is cleared immediately, and no shifting takes place during that clock cycle. If `reset` is

low on a rising clock edge, the shift operation is performed: each bit in `s` is shifted one position to the left (`s[3]`

ISSN:(O) 2320-5407, ISSN(P) 3107-4928 Int. J. Adv. Res. 13(07), July-2025, 924-928

928

takes the value of `s[2]`, `s[2]` takes `s[1]`, `s[1]` takes `s[0]`), and the new serial input bit (`din`) is loaded into the

least significant bit `s[0]`. After the shift operation, the contents of the register `s` are assigned to the parallel output

`dout`. This process repeats with every clock pulse or reset event, enabling the serial input to be captured and output

as parallel data over time.

Fig 3. UART SIPO Module

Output:

Fig 3.Simulation result of receive

This waveforms display changes in signal states, helping to analyze how data is transferred bit by bit. Engineers and

students use these results to check if the UART is working correctly—whether it's sending and receiving data as

expected. This is useful for debugging, verifying baud rates, and ensuring proper timing between transmitted and

received sign

 Conclusion:-

In this project, we successfully designed and simulated a UART system using Verilog, focusing on Parallel-In-

Serial-Out (PISO) and Serial-In-Parallel-Out (SIPO) modules. Our implementation showed how UART plays a key

role in serial communication by efficiently converting data between parallel and serial formats. While we faced

challenges like timing synchronization and ensuring accurate data sampling, troubleshooting these issues deepened

our understanding of digital communication. In the future, this design can be extended by adding error detection,

adjustable baud rates, or integrating with other protocols. Overall, this project enhanced our practical skills in

hardware design and Verilog coding.

References:-
 1.Tianjun Zhan "Verilog HDL-based implementation of UART design", Proc. SPIE 13552, International

Conference on Physics,Photonics, and Optical Engineering (ICPPOE 2024), 135523A (7 March 2025).

2.S. Saha, M. A. Rahman, A. Thakur, “Design and Implementation of a BIST Embedded High Speed RS- 422

Utilized UART over FPGA,” Fourth International Conference on Computing, Communications Networking

Technologies (ICCCNT), pp. 1-5, 4-6 July 2013.

4.Dhanadravye AD, Thorat SS. A review on implementation of UART using different techniques. International

Journal of Computer Science and Information Technologies. 2014 Jan.

5.Du, Zihang, et al. "Verilog implementation of configurable UART module." Second International Conference on

Statistics, Applied Mathematics, and Computing Science (CSAMCS 2022). Vol. 12597. SPIE, 2023.

