
ISSN:(O) 2320-5407, ISSN(P) 3107-4928                Int. J. Adv. Res. 13(09), September-2025,  01-08 

 

1 

 

Journal Homepage: - www.journalijar.com 

    

 

 

 

Article DOI: 10.21474/IJAR01/21681 

DOI URL: http://dx.doi.org/10.21474/IJAR01/21681 

 

RESEARCH ARTICLE 

 

AI FOR DISABILITY SUPPORT: A SECURE FRAMEWORK USING GENERATIVE 

MODELS, RL, AND FL 

 
Manisha Bhimrao Mane 

…………………………………………………………………………………………………….... 

Manuscript Info   Abstract 

…………………….   ……………………………………………………………… 
Manuscript History 

Received: 05 July 2025 

Final Accepted: 07 August 2025 

Published: september 2025 

 

Key words:- 
GenerativeAI;ReinforcementL

earning;FederatedLearning;Pri
vacy-PreservingAI;Assistive 

Technology; Healthcare 

Security. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Artificial Intelligence (AI) is revolutionizing personalized healthcare by 

offering promising solutions for individuals with disabilities. However, 

persistent challenges remain—particularly in ensuring data privacy, 

real time adaptability,and inclusivity.This review explores how combini

ng three AI paradigms—Generative AI, Reinforcement Learning (RL), 

and Federated Learning (FL)—can address these limitations. Through 

thematic analysis of over 50 peer-reviewed studies published between 

2018 and 2024, we identify the unique and synergistic contributions of 

these technologies in enhancing healthcare delivery for disabled 

populations. 

We propose a novel, secure, and adaptive framework that integrates: 

 Generative AI for inclusive multimodal interfaces and synthetic 

health data generation 

 Reinforcement Learning to enable real-time system adaptation 

based on user interaction 

 Federated Learning to ensure privacy-preserving, decentralized 

data processing 

The framework is illustrated with practical applications in mobility, 

sensory,and cognitive support.This review aims to guide future researc

h toward building AI driven healthcare systems that are secure, inclusiv

e, and responsive to the diverse needs of the disabled community. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 
with credit to the author." 

…………………………………………………………………………………………………….... 

Introduction:- 
Related research article: 

Even though AI is developing quickly in the healthcare industry, there are still significant barriers to its use for 

services tailored to specific disabilities. First, there are serious privacy risks associated with the centralized nature of 

many AI models, such as the possibility of data leakage and re-identification (Haripriya et al., 2025). 

 

 Second, static algorithmic models are unable to continuously adjust to users' changing engagement patterns or 

health statuses. Individual variability, such as variations in motor coordination or cognitive fatigue, is not taken into 

account by the majority of current systems, which function on a one-size-fits-all basis (Rathee et al., 2025). Third, 

usability across a wide range of disabilities is limited by the absence of assistive interfaces, such as voice input for 

the visually impaired or simplified text for users with dyslexia (Alowais et al., 2023).This exacerbates healthcare 
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disparities for already marginalized populations by producing biased or non-generalizable AI outcomes (Gao & Li, 

2024). 

 

Objectives:- 
This review aims to: 

1. Critically evaluate the role of Generative AI, Reinforcement Learning, and Federated Learning in enhancing 

healthcare systems for individuals with disabilities. 

2. Propose a secure and adaptive AI framework that integrates the three technologies to deliver privacy-

preserving, real-time, and personalized care. 

3. Identify existing gaps in research and practice, with a focus on ethical, technical, and regulatory challenges, 

particularly in data protection, accessibility, and clinical integration. 

 

In the context of disability healthcare, there is still a noticeable lack of integration between the three paradigms, 

despite the fact that the individual contributions of federated learning, reinforcement learning, and generative artificial 

intelligencehaveallbeenthoroughly examined. Fewstudies offer a cohesivearchitecturethat capitalizes on the 

advantages of each paradigm, specifically FL for privacy preservation, RL for real-time adaptation, and 

GenerativeAIfor accessibilityandpersonalization(Ratheeet al., 2025). Furthermore, themajority of frameworks have 

only been validated using simulations or artificial datasets, and there are few real-world deployment studies (Fan & 

Flint, 2025; Hafeez et al., 2025). 

 

Othernotablegapsinclude: 

● Limitedexplorationofdisability-

specifichealthchallenges,suchasspeechimpairments,cognitivedecline, or motor coordination issues. 

● Minimal attention to ethical compliance, particularly in long-term AI monitoring ofvulnerable 

populations. 

● Absence of cross-disciplinary frameworks that combine AI with social, behavioral, and clinical 

sciences for holistic care delivery. 

These gaps underline the urgency for research into composite frameworks that are secure, ethical, adaptive, and 

practically deployable in diverse healthcare settings for disabled individuals.  

 

For a published article: 
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Specifications table 

Subject area Computer Science 

More specific subject area Secure Machine Learning Frameworks for Disability-Focused Healthcare 

Name of your method 

SAIF-D 
Secure, Adaptive, and Inclusive Framework for Disabilities 

 

Name and reference of original method 

Generative AI: Goodfellow et al., 2014; Brown et al., 2020 

Reinforcement Learning: Sutton & Barto, 2018 

Federated Learning: McMahan et al., 2017 

Generative AI 

 Goodfellow et al., 2014 – Original GAN paper 

Goodfellow, I. et al. (2014). Generative Adversarial Nets. Advances in Neural 

Information Processing Systems (NeurIPS). 

https://papers.nips.cc/paper_files/paper/2014/hash/5ca3e9b122f61f8f06494c9

7b1afccf3-Abstract.html 

 Brown et al., 2020 – GPT-3 and LLM foundation 

Brown, T. et al. (2020). Language Models are Few-Shot Learners. NeurIPS. 

https://arxiv.org/abs/2005.14165 

Reinforcement Learning 

 Sutton & Barto, 1998 / 2018 – Standard RL textbook 

Sutton, R.S., & Barto, A.G. (2018). Reinforcement Learning: An Introduction. 

MIT Press. 

http://incompleteideas.net/book/the-book-2nd.html 

Federated Learning 

 McMahan et al., 2017 – Original Federated Averaging (FedAvg) 

paper 

McMahan, H. B. et al. (2017). Communication-Efficient Learning of Deep 

Networks from Decentralized Data. AISTATS. 

https://arxiv.org/abs/1602.05629 

 

Resource availability  

All data analyzed were derived from publicly available peer-reviewed 

literature between 2018 and 2024. A complete list of references can be 

provided upon request. 

 

Background:- 

More than 1.3 billion people, or 16% of the world's population, live with some disability and experience significant 

barriers to accessing equitable and individualized healthcare, according to the World Health Organization (2023). 

Traditional healthcare systems, in many cases developed for the typical patient, do not consider the specific 

physiological, cognitive, or sensory requirements of disabled patients. Consequently, such populations are 

disproportionately likely to be given substandard or delayed medical services (Attar et al., 2024). 

 

Rising technologies in Artificial Intelligence (AI)—i.e., Generative AI, Reinforcement Learning (RL), and 

Federated Learning (FL)—provide paradigm-shifting capabilities to fill this gap. Generative AI has the potential to 

generate realistic patient information and create multimodal user interfaces to support visual, auditory, or motor 

disabilities (Paladugu et al., 2023; Baig et al., 2024). For example, Large Language Models (LLMs) such as GPT-4 

have been redeveloped to offer voice-interactive systems for dyslexia or visually impaired users. 

 

Reinforcement Learning, meanwhile, supports learning directly from user feedback in real time. Examples involve 

RL-based prosthetics with dynamically changing grip force supported by electromyography (EMG) signals (Fan & 

Flint, 2025), or wheelchair mobility that alters courses according to environmental changes (Abdellatif et al., 2023). 

Finally, Federated Learning maintains data privacy by supporting decentralized training of AI models across 

hospitals and devices without sharing sensitive patient information (Rieke et al., 2020; Hafeez et al., 2025). 

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1602.05629
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When combined, these technologies have the power to completely transform the way that individuals with 

disabilities are cared for by offering individualized, safe, and flexible solutions. 

 

Method details:  
A revolutionary paradigm for providing individualized, safe, and adaptable healthcare to people with disabilities is 

provided by the integration of Generative AI, Reinforcement Learning (RL), and Federated Learning (FL) into a 

unified framework. This section suggests a three-layer architecture that incorporates strong security features and 

user-centric application interfaces to address issues with data privacy, accessibility, and continuous learning. 

 

Architecture: 

Layer 1: Data Layer (Federated Learning): 
The Federated Learning (FL) data layer is at the core and is in charge of decentralized, privacy-preserving model 

training. Individual clients, such as hospitals, wearable assistive devices, and mobile health applications, train 

models locally and send only encrypted model updates to a central server, rather than gathering health data in 

centralized servers (McMahan et al., 2017; Rieke et al., 2020). 

 

The framework uses secure multiparty computation (SMPC) and homomorphic encryption to improve security by 

preventing data leaks during aggregation or transmission (Hafeez et al., 2025). Furthermore, differential privacy is 

used to introduce statistical noise into model gradients, making it impossible to reconstruct individual user data, 

even after numerous iterations (Haripriya et al., 2025). 

 

In reality, this layer makes it possible to train customized models on devices used by people with visual impairments 

(like smart glasses), mobility impairments (like wheelchairs or exoskeleton sensors), and cognitive impairments 

(like memory aid apps) without disclosing private medical information. 

 

Layer 2: Learning Layer (Reinforcement Learning): 
The RL-based learning layer sits above the FL layer and is intended to facilitate ongoing adaptation and real-time 

decision-making in response to user interaction. To optimize cumulative rewards from user engagement, this layer 

employs policy gradient algorithms like Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO) (Sutton & 

Barto, 2018; Abdellatif et al., 2023). 

 

Both explicit feedback—such as verbal confirmations or pain ratings—and implicit cues—such as task completion 

rates, session length, and physiological indicators—are used to generate the reward signals. These are gathered 

through human-in-the-loop interfaces, which allow policies to be tailored to the unique characteristics of each 

person with a disability (Fan & Flint, 2025). 

For example: 

● An AI-powered prosthetic limb can dynamically adjust grip force based on the user’s muscle signals and task 

success rate. 

● A cognitive support chatbot may adapt its dialog complexity based on a user’s historical engagement and 

memory scores (Naseer et al., 2025). 

Importantly, the RL models are trained locally within the FL ecosystem, ensuring that adaptive learning does not 

compromise data privacy. 

 

Layer 3: Application Layer (Generative AI): 
The Application Layer, the last layer, uses Generative AI models to create multimodal interfaces that meet 

accessibility standards, user-specific content, and synthetic medical data. 

 

By supplementing training datasets, particularly for rare diseases or underrepresented disability profiles, Generative 

Adversarial Networks (GANs) enhance downstream model performance without necessitating the collection of new 

data (Baig et al., 2024; Paladugu et al., 2023). 

 

Meanwhile, Large Language Models (LLMs) such as GPT-based architectures are deployed as personal health 

assistants, offering: 

● Voice-activated support for quadriplegic users. 

● Simplified or summarized health instructions for individuals with cognitive impairments. 

● Multilingual responses for diverse user populations (Rathee et al., 2025). 
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The application layer directly interfaces with the end-user and is optimized to interpret reinforcement signals, 

incorporate FL-trained knowledge, and deliver context-aware, empathetic care through various modalities (text, 

speech, visual). 

Security Mechanisms 

Healthcare systems using AI are susceptible to a range of cyber threats, including inference attacks, model 

poisoning, and data reconstruction attacks. To secure the proposed framework, multiple defense layers are 

implemented: 

 

Threats Addressed: 

● Model poisoning attacks: where malicious clients corrupt model weights during FL updates. 

● Inference attacks: where adversaries infer sensitive attributes from outputs or model parameters. 

 

Defensive Measures: 

Byzantine-Robust Aggregation: 
The use of Krum and Bulyan aggregation techniques helps eliminate malicious updates by selecting gradients that 

are statistically consistent with the majority of trusted nodes (Khan et al., 2024). 

 

Adversarial Training for Generative Models:- 
GANs and LLMs are fine-tuned using adversarial examples to increase robustness against manipulative inputs and 

bias propagation, especially in medical diagnosis and treatment recommendations (Paladugu et al., 2023). 

 

Blockchain-Inspired Logging 
Every decision made by the system—especially critical health recommendations—is hashed and stored in a tamper-

proof blockchain-like log, containing metadata such as model version, timestamp, user consent, and input context. 

This ensures auditability, compliance, and trustworthiness (Attar et al., 2024). 

 

Explainability and Interpretability Tools 
Integration of SHAP values and attention visualization allows medical professionals and caregivers to interpret 

model decisions, verify correctness, and maintain human oversight (Alowais et al., 2023). 

 

A comprehensive strategy for providing flexible, inclusive, and privacy-preserving healthcare solutions is 

represented by this multi-layered secure architecture. The framework is in line with the national vision of inclusive 

digital healthcare, particularly for underserved and disabled populations, by closely integrating Federated Learning, 

Reinforcement Learning, and Generative AI. The table 1 below shows comparison of AI techniques employed for 

disability care. 

 

Method validation: 

Table 1: Comparison of AI techniques in disability care 

AI Technique Primary Role Disability Use Cases Strengths Limitations 

Generative AI Synthetic data 

generation and 

multimodal interface 

design 

Visual captioning, 

speech simplification, 

cognitive assistance 

Enhances accessibility; 

supports low-resource 

training; natural interfaces 

Ethical risks; 

hallucination; lack of 

explainability 

Reinforcement 

Learning (RL) 

Continuous adaptation 

based on real-time 

feedback 

Smart prosthetics, 

therapy bots, cognitive 

reminder systems 

Real-time personalization; 

self-optimization through 

feedback 

Complex reward 

design; instability in 

training 

Federated Learning 

(FL) 

Privacy-preserving, 

decentralized model 

training 

Smart exoskeletons, 

hospital networks, 

hearing aids 

Protects user data; supports 

cross-device model learning 

Struggles with non-

IID data; high 

communication costs 

 

 

Figure 1 given below shows the general architecture for the Personalized Healthcare system. The process from 

healthcare professional engagement till the patient engagement with the help of Generative AI model is displayed on 

the architecture 
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Figure1: General architecture for the Personalized Healthcare system 
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Conclusion:- 
Delivering safe, individualized, and adaptive healthcare services to individuals with disabilities has become possible 

thanks to the integration of Generative Artificial Intelligence (AI), Reinforcement Learning (RL), and Federated 
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Learning (FL). A three-tiered secure framework was introduced in this review, which combines FL at the data layer 

to protect privacy, RL at the learning layer to promote ongoing adaptation, and Generative AI at the application 

layer to facilitate multimodal, customized interactions. We used case studies on mobility support systems, real-time 

captioning tools, and cognitive assistance applications to demonstrate the framework's usefulness, drawing from 

more than 50 peer-reviewed sources (2018–2024). 

 

 These illustrations show how AI technologies can greatly enhance the quality of life for people with visual, 

auditory, cognitive, and motor impairments when they are developed with inclusivity and privacy at their 

core.However, we pointed out important technical drawbacks, such as FL's difficulty with non-IID data, RL's 

latency in real-time adaptation, and Generative AI's susceptibility to bias. Furthermore, ethical and legal issues 

continue to be crucial to practical implementation, especially those pertaining to explainability, consent, and 

adherence to international privacy regulations. 

 

Future research must embrace low-power edge AI for deployment in home and clinical settings, blockchain-assisted 

federated models, quantum-resistant privacy protocols, and human-in-the-loop learning in order to realize this 

vision. Transforming these innovations into scalable, reliable healthcare infrastructure requires a collaborative 

ecosystem that includes patients, clinicians, ethicists, and technologists. 

 

To sum up, the combination of generative AI, RL, and FL offers a paradigm shift toward digital healthcare that is 

secure, accessible to people with disabilities, and democratized. Coordination of regulations, ethical foresight, and 

an unwavering commitment to human-centered AI design are necessary to realize this vision. 
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