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The increasing sophistication of cyberattacks exploiting PDF files 

poses a critical challenge to digital security. This study presents an 

intelligent detection framework that combines synthetic data 

augmentation and cutting-edge machine learning techniques to identify 

malicious PDF documents with high precision. To address the issue of 

class imbalance often found in cybersecurity datasets, we employ 

Conditional Tabular GAN (CTGAN) to generate realistic synthetic 

samples, thereby enriching the training set and improving the 

generalization capability of classifiers.Six supervised models are 

assessed, Decision Tree, Random Forest, XGBoost, Support Vector 

Machine, Naive Bayes, and Neural Network, using the augmented 

dataset. Among them, XGBoost consistently delivers the most robust 

performance. To foster transparency and trust, the framework integrates 

SHapley Additive exPlanations (SHAP), enabling a clear interpretation 

of feature contributions to each classification decision.Overall, this 

work introduces a comprehensive and explainable approach to 

strengthening PDF document security, offering a promising path for 

deployment in sensitive organizational environments such as 

government, education, and enterprise systems. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 

with credit to the author." 

…………………………………………………………………………………………………….... 

Introduction: - 
Information systems have become indispensable to the functioning of modern organizations, underpinning 

operations in sectors as diverse as education, finance, insurance, industry, and national security [1]. Far beyond their 

role in managing data storage and transfer, these systems support communication, ensure operational continuity, and 

guide strategic decisions in increasingly complex digital environments. 

 

Yet, this dependence on digital infrastructures has also brought about new forms of vulnerability. The value of the 

data housed in these systems makes them prime targets for cybercriminals exploiting weaknesses in their 

architecture [2]. As cyber threats grow in frequency, sophistication, and stealth, protecting these systems has become 

a strategic imperative [3]. 
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In response, the field of cybersecurity has turned increasingly toward artificial intelligence (AI) as a means of 

bolstering detection and prevention efforts [4]. Machine learning, deep learning, and fuzzy logic have shown 

considerable promise in analyzing large volumes of data in near real time, identifying anomalous behaviors, and 

even anticipating intrusions before they occur [5], [6]. This convergence between AI and cybersecurity has paved 

the way for more adaptive, autonomous, and resilient digital defense systems [7]. 

 

Within this dynamic landscape, AI-enhanced systems can continuously evolve alongside emerging threats, offering 

faster incident responses and more intelligent risk mitigation [8]. Such capabilities are essential to safeguarding 

sensitive digital assets and maintaining trust in critical infrastructures. 

 

This paper focuses on one particularly vulnerable yet ubiquitous element of digital communication: the PDF file. 

Despite its widespread use for document exchange, the PDF format is frequently exploited to conceal and deliver 

malicious code [9]. 

 

To tackle the growing threat of malicious PDF files, we present an artificial intelligence driven framework that 

combines two powerful yet often separately applied techniques: supervised machine learning and generative data 

augmentation using Conditional Tabular GAN (CTGAN). One of the key challenges in this domain is the imbalance 

between benign and malicious instances, with our dataset containing approximately 32 percent malicious files versus 

68 percent benign ones. To address this disparity and enhance the quality of the training set, we leveraged CTGAN 

to generate synthetic benign samples that preserve the statistical structure of the original data [10]. 

 

What sets our approach apart is this thoughtful integration of generative modeling and predictive learning. CTGAN 

enriches the dataset with realistic examples that help mitigate bias and improve generalization, while supervised 

machine learning algorithms, optimized through systematic hyperparameter tuning, deliver accurate and consistent 

classification results. This combined strategy offers a practical and effective contribution to the ongoing effort to 

secure PDF documents against evolving cyber threats [11]. 

 

Existing PDF-malware detectors often train on imbalanced corpora with minimal resampling, use GAN-based 

augmentation without rigorous statistical checks (sometimes beyond the training split), and depend on deep models 

that are difficult to audit in SOC settings. We propose an integrated pipeline that keeps augmentation train-only, 

validates CTGAN samples with Kolmogorov-Smirnov tests, correlation preservation, and PCA overlap, couples 

them with a transparent boosted classifier (XGBoost), and provides SHAP explanations at both global and per-

instance levels. This combination remains uncommon and directly supports traceable decisions and rapid triage in 

production. 

 

The remainder of this paper is structured as follows. Section 2 outlines the security vulnerabilities inherent in PDF 

files and the rationale for automated detection. Section 3 reviews relevant literature on machine learning and data 

augmentation in cybersecurity. Section 4 presents the methodological framework. Sections 5 and 6 present the data 

augmentation process using CTGAN and the supervised classification approach employed to detect malicious PDF 

files. Section 7 discusses key findings and limitations, and Section 8 concludes with perspectives for future research. 

 

PDF FILE SECURITY:- 

Information system security has become a cornerstone of modern digital infrastructures, playing a critical role in 

ensuring operational continuity and protecting sensitive data assets. Commonly referred to as cybersecurity, this 

domain focuses on safeguarding information systems, networks, software, and data from attacks, unauthorized 

access, and corruption. Its fundamental objectives are to preserve data confidentiality, integrity, and availability 

throughout storage, processing, and transmission phases [12]. 

 

File security forms an integral part of effective cybersecurity frameworks [5]. It encompasses the protection of 

digital files from unauthorized access, illegal modification, deletion, damage, and degradation. Such protective 

measures are especially crucial for documents containing sensitive personal data, proprietary corporate information, 

or classified governmental content. 

 

PDF file security has emerged as a particularly pressing concern, given the widespread use of the Portable 

Document Format for disseminating confidential materials such as contracts, financial statements, and personal 

records. Despite their convenience, PDF files are inherently vulnerable to various forms of exploitation, including 
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unauthorized access, malicious tampering, data exfiltration, and embedded code injection [9], [13]. Among these 

threats, unauthorized access remains one of the most prevalent, especially when documents lack password protection 

or robust encryption. In addition, embedded metadata, such as author information, creation timestamps, or reviewer 

comments, can inadvertently disclose sensitive content if not properly sanitized [6]. 

 

To counteract these risks, a variety of protective strategies have been developed. These include encryption, digital 

signatures, malicious script detection, metadata removal, and watermarking [14].Encryption remains one of the most 

effective means of securing PDF files against unauthorized access. It can be configured to restrict both file opening 

(via an open password) and specific operations such as printing or editing (via a permission password). Digital 

signatures also play a pivotal role in ensuring document authenticity and integrity. By verifying that a file has not 

been altered post-creation and confirming the author’s identity, digital signatures are particularly critical in legal and 

financial contexts [9]. 

 

Moreover, PDF files can contain embedded JavaScript code, which may serve as a vector for exploiting 

vulnerabilities in PDF readers. As such, script detection and removal are crucial [15]. Metadata cleansing is equally 

important, particularly when documents are disseminated publicly, to protect user anonymity and confidentiality 

[12]. Lastly, watermarking techniques, including visible and invisible digital watermarks, serve to deter 

unauthorized copying and support provenance tracking [16].Recent incident reports repeatedly highlight three 

recurring vectors in PDF-borne attacks: embedded JavaScript, abuse of launch actions, and manipulation of cross-

reference (xref) tables. These patterns justify automated, large-scale screening. Our feature design targets exactly 

these behaviorsso that model signals align with known exploitation tactics and remain easy for analysts to 

interpret[9], [13]. 

 

With the growing adoption of cloud-based services, securing PDF files in distributed environments has become even 

more challenging. To address this, advanced schemes combining encryption and key management have been 

proposed, enabling access control and data protection in shared, multi-user ecosystems [17]. 

 

RELATED WORK: - 

Over the past decade, the detection of malicious PDF files has drawn growing attention in the field of cybersecurity, 

driven by the increasing sophistication of attacks and the widespread use of the PDF format as a vector for 

embedded threats. Early approaches to PDF malware analysis largely relied on static inspection techniques, focusing 

on structural attributes or the presence of embedded scripts. For instance, Laskov et al. [13] demonstrated that 

analyzing JavaScript code within PDF files could reveal significant indicators of compromise. Bayer et al. [15] 

introduced TTAnalyze, a dynamic analysis tool designed to simulate file execution in sandboxed environments, 

laying the groundwork for behavior-based detection models. 

 

As attacks became more evasive and polymorphic, researchers began turning to machine learning as a more adaptive 

solution. Smutz and Stavrou [18] showed how classifiers like Support Vector Machines and Decision Trees could 

leverage metadata and structural features to detect malicious content. Later work by Raff et al. [19] employed 

convolutional neural networks to analyze binary representations of documents, while Wang et al. [20] explored 

recurrent neural networks with attention mechanisms to capture temporal dependencies in embedded scripts. These 

efforts significantly improved detection rates, especially in scenarios where traditional rule-based methods failed. 

 

Despite these advancements, one persistent challenge remains: class imbalance. In real-world datasets, malicious 

samples are often vastly outnumbered by benign files, leading to biased models and poor generalization. To address 

this, recent research has explored the use of generative models for data augmentation. Conditional Tabular GAN 

(CTGAN), introduced by Xu et al. [21], represents a significant innovation in this area, offering the ability to 

synthesize high-quality tabular data with complex interdependencies. Several studies have validated the use of 

GAN-based augmentation to improve classifier performance, particularly in imbalanced learning contexts [22], [23]. 

 

While most prior work treats data generation and classification as independent components, our approach seeks to 

integrate them into a cohesive and streamlined pipeline. Synthetic data produced by CTGAN is used not only to 

rebalance the training set but also to improve the diversity and representativeness of the input space. This enriched 

dataset is then processed using a diverse array of supervised learning models including Decision Tree, Support 

Vector Machine, Naive Bayes, Neural Network, Random Forest, and XGBoost. 
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In contrast to earlier frameworks that often relied on opaque deep learning architectures or rigid feature engineering 

pipelines, our approach adopts a more transparent and versatile strategy. By combining synthetic data generation 

through CTGAN with a broad range of supervised learning models, we offer a methodology that is both 

interpretable and empirically robust. This allows us to achieve high performance while maintaining clarity in the 

decision-making process. 

 

METHODOLOGY:- 
This study introduces a twofold methodological framework that combines generative data augmentation with 

supervised machine learnig techniques to improve the detection of malicious PDF files. The overall process rests on 

two key pillars. The first is the use of Conditional Tabular GAN (CTGAN) to address data imbalance by generating 

high-quality synthetic samples [21]. The second is the application of a diverse set of classification algorithms to 

evaluate the impact of the enriched dataset on detection performance [11]. Figure 1 below provides an overview of 

the system’s architecture, illustrating the overall workflow.  

 

 
 

Figure 1: - Overview of the machine learning pipeline used 

 

To operationalize this workflow, the pseudocode below details each technical stage used to build, validate, and 

explain the predictive model. 

 

Algorithm 1 – Machine Learning Workflow for Malicious PDF Detection 

Input:  

Structured dataset on PDF files 

Output:  

PDF files classification and interpretability insights 

 

Step 1: Split dataset into training (80%) and testing (20%) 

Step 2: The training set was augmented with CTGAN, ensuring equal class distribution (test set unchanged). 

Step 3: Model suite:Decision Tree, Random Forest, XGBoost, SVM, Naïve Bayes, Neural Network; Dummy as 

non-informative baseline 

Step 4: Hyperparameter optimization viaRandomizedSearchCV (K-fold stratified cross-validation) 

Step 5: Model selection using key metrics(Accuracy, F1 score, Precision, Recall, AUC-ROC, MCC) 

Step 6: Post-hoc explanations with SHAP (global summaries and per-instance attributions). 

 

Dataset Overview and Preparation : 
The dataset employed in this study comprises 6,343 PDF files, split into 4,315 benign and2,028 malicious instances. 

Each file is described by 22 static features extracted through a lightweight static analysis process. These features are 

designed to capture both general characteristics (such as file size, metadata volume, number of pages) and structural 



ISSN:(O) 2320-5407, ISSN(P) 3107-4928             Int. J. Adv. Res. 13(09), September-2025, 738-757 

 

742 

 

properties (such as the presence of JavaScript code, embedded objects, or suspicious triggers). A detailed summary 

of the features is provided in Table 1. 

 

Table 1: - General and Structural Characteristics of the PDF Files 

FEATURE NAME DESCRIPTION 

General Characteristics 

Total size of PDF File size in bytes 

Length of title text Legitimate PDFs typically have meaningful, descriptive titles 

Encryption enabled Indicates whether the file is password-protected 

Volume of metadata Size of the descriptive information embedded in the PDF 

Number of pages Total number of pages in the document 

Header existence Indicates the PDF version used 

Number of 

Embedded Images 
Total number of images embedded in the document 

Text Presence Indicates whether the PDF contains readable text 

Object Count 
Total number of objects (text, images, streams, fonts, annotations, 

etc.) 

Embedded Files Number of additional files attached to the PDF 

Structural Characteristics 

Stream object count Number of binary data streams within the PDF 

JavaScript presence Number of objects containing JavaScript code 

Automatic Action 
Defines specific actions triggered by events (often used with 

malicious JS) 

Launch command Executes commands/programs (often used for data theft or malware) 

Open trigger  Specifies actions upon opening, often tied to malicious JavaScript 

AcroForm Tag 

Count 
Acrobat forms potentially containing exploitable scriptable fields 

JBig2Decode Filter 

Presence 
Indicates use of JBig2Decode, often used to encode malicious content 

Xref Length Number of cross-reference tables managing the object structure 

XFA Form Used Indicates presence of XML-based forms supporting scripting 

Xref Entry Count 
Number of entries in the Xref tables, often malformed in malicious 

PDFs 

Rich media 

presence 
Number of embedded multimedia or Flash objects 

Trailer tag count 
Number of trailer sections; abnormal counts may indicate suspicious 

content 

 

Before any modeling or data generation, a standard preprocessing pipeline was applied to ensure consistency and 

quality across the dataset. Missing values were imputed using the most frequent value for each feature via the 

SimpleImputer method from Scikit-learn. Categorical features were label-encoded, while numerical features were 

standardized using StandardScaler, improving convergence for subsequent training phases. Finally, the dataset was 

split into training (80%) and testing (20%) subsets, preserving the original class distribution through stratified 

sampling. 
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Descriptive Statistical Analysis: 

To better understand the internal characteristics of the dataset, a descriptive statistical analysis was carried out on the 

numerical and categorical variables extracted from the PDF files. This preliminary exploration reveals significant 

structural variability and several features that may play a decisive role in the classification process. Table 2 presents 

a summary of the key numerical variables, including their average values, variability, and extreme observations. 

These figures help highlight both the general trends and the degree of dispersion within the dataset. 

 

Table 2: –Descriptive statistics of numerical variables 

VARIABLE MEAN VARIANCE 
STANDARD 

DEVIATION 
MEDIAN MODE RANGE 

Total size of PDF 95,95 200460,54 447,73 60 9 23817 

Volume of metadata 317,08 911116,98 954,52 283 180 50284 

Number of pages 4,07 94,78 9,74 1 1 201 

xref Length 1816,07 

206465416,8

4 14368,90 32 21 263988 

Length of title text 24,33 510354,68 714,39 0 0 50093 

Count of embedded objects -0,01 0,04 0,19 0 0 6 

Stream object count 24,06 1727,18 41,56 10 2 813 

Trailer tag count 1,35 1,75 1,32 1 1 47 

Object stream count 2,15 29,89 5,47 0 0 69 

JavaScript presence 0,69 33,73 5,81 0 0 405 

AcroForm usage 0,44 0,61 0,78 0 0 7 

Automatic actions 0,40 46,71 6,83 0 0 214 

Object tag count 66,81 26706,97 163,42 29 9 7077 

XFA form used -0,01 0,07 0,27 0 0 6 

JBIG2 usage 0,03 0,45 0,67 0 0 15 

Image presence 3,02 195,36 13,98 0 0 593 

 

The total size of PDF files shows a mean of 95.95 KB, but this average conceals a considerable dispersion, as 

indicated by a standard deviation of 447.73 KB and a maximum value reaching 23,816 KB. The volume of metadata 

is another highly variable attribute, with a mean of 317.08 KB and a variance exceeding 900,000, pointing to 

extreme disparities among the documents. A similar pattern is observed in the xref length variable, which reaches 

values up to 263,987 units, far above the median of 32. This strong asymmetry suggests the presence of outliers or 

highly complex internal structures in certain files. 

 

Some features, although sparse, may carry important security signals. Variables such as JavaScript presence, 

automatic actions, and AcroForm usage show low average values but unusually high standard deviations. This 

means that while the majority of documents do not contain these elements, a small subset does so in a 

disproportionately large way, which may be relevant for detecting malicious behaviors.Other indicators such as the 

count of embedded objects, XFA form usage, and JBIG2 compression appear very rarely in the dataset. Their mean 

values are close to zero, but their occasional presence might still be meaningful in a security context. 

 

The analysis of categorical variables adds further perspective. The dataset is composed of 68.03% benign documents 

and 31.97% malicious ones, with the benign class clearly dominating. Regarding the presence of text, the 

distribution is almost balanced, with 50.54% of documents containing visible text, 46.32% lacking it, and 3.14% 

marked as unclear. The launch command, often associated with exploitation mechanisms, appears in only 3.77% of 

the files, confirming its rarity but also its potential risk when it is present. 
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In summary, this descriptive analysis reveals a dataset marked by high heterogeneity, numerous outliers, and a mix 

of common and rare behaviors. These insights are crucial for guiding the next steps of the analysis, particularly in 

relation to feature engineering, normalization, and robust model design. 

 

Generative Data Augmentation Using CTGAN: 
To improve the balance and diversity of the dataset, and to strengthen the learning capacity of our classification 

models, we incorporated a generative data augmentation phase using CTGAN. The next two subsections explain the 

motivations behind this choice, along with the principles and mechanisms that guided its implementation. 

 

Motivation and Implementation Strategy: 

An important challenge in the development of malware detection systems lies in the inherent imbalance between 

benign and malicious files. In our dataset, this disparity was clearly visible, with 4,315 benign PDFs compared to 

only 2,028 malicious ones. Such imbalance often causes machine learning models to favor the majority class, which 

can lead to misleading accuracy scores and a dangerous drop in sensitivity to rare but critical threats. This limitation 

is particularly problematic in cybersecurity, where undetected attacks may have severe consequences. To address 

this issue, we adopted the CTGAN model (Conditional Tabular GAN) to generate synthetic benign samples. 

 

 Rather than using traditional oversampling methods, CTGAN enabled us to create realistic data points that 

preserved the statistical structure of the original dataset. This step was essential to reduce class imbalance and ensure 

that the learning process remained fair and stable. It also contributed to better generalization, especially in complex 

classification scenarios where the boundaries between benign and malicious behavior are subtle. The choice of 

CTGAN was guided by the nature of our data. Our features were extracted from static analysis of PDF files and 

organized in tabular form, which aligns well with CTGAN's design. 

 

 This model has already shown promising results in similar contexts, particularly when both numerical and 

categorical variables must be modeled jointly and coherently [21], [ 22]. By incorporating CTGAN into the data 

preparation workflow, we aimed to build a more balanced and resilient training set. This generative approach 

strengthened the overall reliability of the pipeline, providing a solid foundation for the supervised learning methods 

applied in the next stages of the study. 

 

Mathematical Foundations of CTGAN: 
CTGAN (Conditional Tabular GAN) is an adaptation of Generative Adversarial Networks (GANs) for tabular data 

containing both numerical and categorical variables. It relies on an adversarial architecture involving two neural 

networks: a generator G and a discriminator D, which compete in a zero-sum game [21]. 

 

 General Formulation of GANs: 

In a standard GAN, the generator G(𝒵) produces synthetic data from a random noise 𝒵 ∼ p𝒵( 𝓏), while the 

discriminator D(x) attempts to distinguish real data  x ∼ pdata ( x) from fake data G(𝒵). The objective function is 

given by: 

 

min
G

max
D

V(D, G =  𝔼x~pdata  logD(x)    + 𝔼~p𝒵
 log( 1 − D(G(𝒵))) (1) 

 

This leads to a minimax game, where G learns to fool D, and D learns to resist being fooled. 

 

 CTGAN Specificities: 
CTGAN enhances GANs for tabular data through two mechanisms. The generator is conditioned on categorical 

variables to capture dependencies between discrete and continuous features: 

 

   min
G

max
D

V D, G = 𝔼x~pdata  logD x  + 𝔼~p𝒵,c∼p c
 log( 1 − D(G(𝒵; c), c)) (2) 

 

Numerical variables are modeled with Gaussian Mixture Models (GMMs) to preserve realistic continuous 

distributions:  

M(x) =  πk

K

k=1

N(μk,σk
)                                                                            (3) 
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Application of Machine Learning: 

Our task relies on tabular, static features extracted from PDFs (22 variables). In this setting, tree-based ensembles 

consistently perform well while remaining efficient and interpretable, as shown in prior work on PDF malware and 

malware detection more broadly [6], [8], [24]. We therefore emphasize a diverse set of non-deep learners (Decision 

Tree, Random Forest, XGBoost, SVM, Naive Bayes) and keep a shallow MLP only as a lightweight deep baseline. 

Heavier deep architectures were intentionally excluded given the moderate data size and the sensitivity of deep 

models to class imbalance [11], [25], as well as the operational efficiency and explainability required in SOC 

environments [5]. 

 

To complement this modeling strategy, we also incorporated a simple baseline classifier (DummyClassifier), which 

serves as a minimal benchmark for performance evaluation. This model, configured with the most_frequent strategy, 

always predicts the majority class from the training set. While not intended for practical deployment, it provides a 

useful reference point for assessing how much the actual classifiers improve over naive or random predictions. 

 

Description of the Selected Machine Learning Algorithms: 

In the paragraphs that follow, we provide a concise overview of the six machine learning models applied in this 

study, highlighting their underlying mechanisms, relevance to PDF threat detection tasks, and known limitations 

when deployed in real-world cybersecurity environments. 

 

Decision Tree algorithms are among the most interpretable classification methods. They recursively partition the 

dataset based on impurity measures such as Gini index or entropy, resulting in a tree structure that offers 

transparency and ease of interpretation [26]. However, decision trees are prone to overfitting, particularly with small 

or noisy datasets, unless regularized by limiting tree depth or pruning. 

 

Random Forest, introduced by Breiman, extends the capabilities of decision trees by aggregating predictions from 

multiple trees trained on random subsets of data [27]. This ensemble approach enhances generalization and reduces 

model variance [28]. It also provides robust estimates of feature importance, which is essential in security 

applications that require traceability and decision auditability. 

 

XGBoost (eXtreme Gradient Boosting) is a high-performance boosting algorithm developed by Chen and Guestrin 

[29]. It incorporates regularization, parallel training, and pruning mechanisms to achieve outstanding predictive 

accuracy. XGBoost is particularly suited for imbalanced and noisy datasets, which are common in real-world 

malware detection scenarios [29], [ 30]. 

 

Support Vector Machines (SVMs) aim to find the optimal hyperplane that separates classes with maximum margin 

[31]. While effective for linearly separable data, their performance tends to degrade with noisy or overlapping 

distributions, which are frequently encountered in complex PDF classification problems [24]. 

 

Naive Bayes is a simple yet effective probabilistic classifier that applies Bayes’ theorem under the assumption of 

conditional independence between features. While this assumption is rarely fully met in practice, the algorithm has 

proven robust across a variety of real-world tasks, especially when working with high-dimensional or sparse data. In 

the context of malware detection, Naive Bayes provides fast training and inference, making it attractive for scenarios 

requiring quick decision-making. However, its performance tends to decline when feature correlations are strong or 

when the dataset is heavily imbalanced [32], [ 33]. 

 

Multilayer Perceptron (MLP) represents a type of feedforward neural network composed of multiple layers of 

interconnected neurons [34], [35]. Capable of capturing nonlinear patterns in data, MLPs are powerful classifiers but 

require large, well-balanced datasets for stable training. Their limited interpretability can also hinder their adoption 

in security-critical systems, where explainability is crucial [36]. 

 

As a point of reference, we added a very simple baseline model using Scikit-learn’sDummyClassifier, configured 

with the most_frequent strategy. This model, while clearly not suitable for any practical application, simply predicts 

the most common class in the training data. Its purpose is not performance, but perspectiveit helps illustrate what 

minimal predictive ability looks like, making it easier to appreciate the real contributions of the more sophisticated 

algorithms tested in this study [37], [38]. 
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In summary, the comparative evaluation of these models provides a balanced perspective on their predictive 

accuracy, interpretability, and practical applicability for detecting malicious PDF files within a cybersecurity 

framework. 

Hyperparameter Optimization and Model Selection: 

The dataset used in this study comprises 6,343 PDF files, including 4,315 benign and 2,028 malicious instances, and 

features a significant class imbalance. Each file is described by 22 static features, categorized into general and 

structural characteristics, which reflect inherent file-level properties relevant to security analysis. 

 

To improve classification performance, six supervised machine learning algorithms were subjected to systematic 

hyperparameter tuning using the RandomizedSearchCV method. This approach enables probabilistic sampling of the 

hyperparameter space, offering a more computationally efficient alternative to exhaustive techniques such as 

GridSearchCV [39],[40].Table 3 presents an overview of the selected algorithms alongside the optimal 

hyperparameter settings that achieved the highest predictive performance on the imbalanced dataset. 

 

Table 3:-Summary of Machine Learning Models and their Optimized Hyperparameter Settings 

Model Optimized Hyperparameters and Values 

Decision Tree criterion = entropy; max_depth = None; min_samples_leaf = 1; min_samples_split = 4 

Random Forest 
bootstrap = False; max_depth = None; max_features = log2; min_samples_leaf = 2; 

min_samples_split = 13; n_estimators = 129 

XGBoost 

colsample_bytree= 0.5477050582452057; gamma = 0.18540912609913318;  

learning_rate= 0.2106523757990822; max_depth = 7; n_estimators = 198;   

subsample = 0.7956488938538635 

SVM C = 9.74755518841459; gamma = scale; kernel = rbf 

Naive Bayes var_smoothing= 0.01873817422860387 

Neural 

Network 

Activation = tanh; alpha =0.0022233911067827614; early_stopping = True; 

hidden_layer_sizes = (100; 50); learning_rate = adaptive; n_iter_no_change = 10;  

solver = adam; validation_fraction = 0.1 

 

Hyperparameter tuning was performed using cross-validation to ensure that the selected configurations maximize 

the models’ generalization capacity. This step is critical for ensuring the reproducibility of the results and 

establishing a robust foundation for the comparative analysis of model performance. To rigorously assess model 

performance, we implemented a Stratified K-Fold cross-validation strategy.  

 

This method partitions the dataset into K subsets (folds) while preserving the class distribution across each fold, a 

particularly important consideration in imbalanced classification tasks. During each iteration, one fold is used for 

testing, while the remaining K–1 folds serve as the training set. This process is repeated Ktimes, and the results are 

averaged to provide a more robust estimate of model performance. In our case, we set K to 10, a commonly 

recommended choice in the literature [41], [ 42], which offers a good trade-off between bias and variance. This 

evaluation protocol plays a central role in ensuring fairness and consistency across models when comparing their 

predictive capabilities.  

 

Performance Metrics of Machine Learning Models: 

 In classification tasks, evaluating the effectiveness of predictive models relies on four fundamental outcomes: True 

Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). These values serve as the 

foundation for key performance metrics used to assess the robustness and reliability of each algorithm. Below, we 

outline the mathematical definitions of some of the most widely used evaluation metrics applied in this study. 

Accuracy, or overall correctness, reflects the proportion of correct predictions, both positive and negative, over the 

total number of instances. It provides a general measure of how often the model makes correct predictions: 

Accuracy =
TP + TN

TP + TN + FP + FN
                                                                    (4) 
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Recall (or True Positive Rate) evaluates the model’s ability to correctly identify malicious files, which is essential in 

security applications where missing threats could have serious consequences: 

Recall =
TP

TP + FN
                                                                              (5) 

Precision quantifies the proportion of correctly predicted positive cases among all cases predicted as positive. It 

reflects the reliability of positive predictions made by the model. 

 

Precision =
TP

TP + FP
                                                                             (6) 

 

F1-score represents the harmonic mean between Precision and Recall. It offers a balanced metric that is especially 

useful in datasets with class imbalance, as it accounts for both false positives and false negatives. 

 

F1 − score = 2 ×
Precision × Recall

Precision + Recall
=  

2TP

2TP + FP + FN
                                                          (7) 

 

Matthews Correlation Coefficient (MCC) provides a balanced measure that accounts for all four outcomes (TP, TN, 

FP, FN), and is particularly effective when the classes are imbalanced. It returns a value between -1 and +1, where 

+1 indicates perfect prediction, 0 no better than random, and -1 total disagreement between prediction and 

observation: 

 

MCC =
(TP × TN) − (FP × FN)

 (TP + FP)(TP + FN)(TN + FP)(TN + FN)
         (8) 

 

Area Under the ROC Curve (AUC-ROC) quantifies the model’s ability to distinguish between classes across all 

classification thresholds. It plots the true positive rate (Recall) against the false positive rate (FPR), where: 

 

FPR =
FP

FP + TN
                                                (9) 

 

Together, these metrics provide a comprehensive view of model performance, supporting fair comparison and 

selection of the most effective classification approach for malicious PDF detection. 

 

Data Augmentation with CTGAN: - 

To address the class imbalance inherent in the dataset and to enhance the generalization ability of the predictive 

models, we incorporated a generative augmentation strategy based on Conditional Tabular GANs (CTGAN). This 

approach involves generating synthetic data samples that are statistically consistent with the real dataset, thereby 

improving training diversity and reducing overfitting risks.  

 

Before being included in the training pipeline, the quality of these synthetic samples was thoroughly assessed to 

ensure both their statistical validity and structural fidelity [21]. This section presents the validation methodology and 

results, focusing on the marginal distributions of key features and their joint statistical behavior compared to the 

empirical data. 

 

Univariate Distribution Analysis and Statistical Alignment: 

To assess the fidelity of the synthetic samples produced by CTGAN, a comparative analysis was carried out on six 

critical features, selected for their relevance in the classification process and their diverse typological nature, 

spanning structural, behavioral, and content-based dimensions: 

 JavaScript presence (hasJS) – a binary indicator of embedded scripting. 

 Volume of metadataandTotal size of PDF – continuous proxies of document complexity and density. 

 Open trigger (hasOpenAction)andAutomatic actions (hasLaunchAction) – behavioral flags reflecting 

documentinteractivity. 

 xref Length (xrefLength) – a discrete structural metric indicative of internal referencing. 
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The comparative plots are presented in Figure 2, where the synthetic distributions generally track closely with their 

realcounterparts, particularly for continuous variables like metadata volume and file size, where the density curves 

are almost superimposed. This visual consistency suggests that CTGAN successfully modeled the probabilistic 

structures underlying the original data. 

Figure 2: -Comparative Distributions of Real and Synthetic Data for Key Predictive Features 

 

To strengthen these observations, the Kolmogorov–Smirnov (KS) testwas applied to each variable. The results, 

summarized in Table 4, show that for three of the six features (JavaScript presence, Open trigger, and Launch 

actions), the null hypothesis of identical distributions cannot be rejected (p > 0.05). Although slight discrepancies 

are noted for continuous and discrete features such as volume of metadata, total size of PDF, and xref length, these 

variations remain within tolerable limits for augmentation purposes and do not introduce systematic bias [43]. 

Despite minor deviations, the overall distributional structure is sufficiently preserved to ensure data 

representativeness, thereby reinforcing classifier performance while addressing imbalance-related vulnerabilities. 

 

Table 4: -Kolmogorov–Smirnov test comparing distributions between real and synthetic data for six key 

features 

Variable Type KS Statistic p-value 
Distribution Equal(p 

> 0.05) 

Javascript presence Binary 0.0 1.0 True 

Volume of metadata Continuous 0.1689 0.0 False 

Total size of PDF Continuous 0.1914 0.0 False 

Open trigger Binary 0.0 1.0 True 

Launch Binary 0.0 1.0 True 

Xref Length Discrete 0.3197 0.0 False 

 

Collectively, these results affirm that the synthetic data generated by CTGAN maintains a high degree of statistical 

realism, validating its integration into the model training pipeline. 
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Multivariate Coherence and Structural Integrity: 
Beyond individual feature alignment, the structural validity of the synthetic data was assessed through multivariate 

analysis techniques to determine whether CTGAN preserved the complex interdependencies among variables. 

A first level of evaluation involved Pearson correlation matrices, independently computed for both real and synthetic 

datasets. As illustrated in Figure 3, the matrices exhibit a high level of congruence, particularly for feature pairs 

involving size, volume of metadata, and xref_length, which consistently show strong positive correlations. 

The difference in correlation coefficients between real and synthetic data remained within a ±0.05 margin, indicating 

that the generative model captured the essential joint relationships without distortion. 

 

 
Figure 3: - Pearson Correlation Matrices – Real vs. Synthetic Data 

 

To further explore the global structure, a Principal Component Analysis (PCA) was applied to the concatenated 

dataset (real + synthetic). As illustrated in Figure 4, the projection onto the first two principal components reveals a 

substantial overlap in geometric positioning, with no emergent clusters or separability between the two data types. 

This absence of structural divergence supports the notion that CTGAN preserved the latent topological 

characteristics of the original feature space. 

 

 

Figure 4: - 2D PCA Projection of Combined Dataset (Real and Synthetic) 

Together, these findings attest to the semantic and statistical coherence of the synthetic data. By maintaining both 

marginal distributions and multivariate associations, the CTGAN-powered augmentation process enhances diversity 
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in the training set without compromising the interpretability or reliability of the downstream learning algorithms. 

This enables the overall system to remain performant, even in the presence of initially unbalanced datasets. 

Comparative Evaluation of Classification Models Including a Baseline Reference: 

The classification module plays a pivotal role in identifying potentially malicious PDF files. It was designed to 

assess multiple supervised learning algorithms using both the original and CTGAN-augmented datasets, with the 

aim of selecting the most accurate and generalizable model. This section presents a comparative evaluation of the 

tested classifiers, ultimately guiding the choice of the most suitable architecture for the subsequent interpretability 

and diagnostic phases. 

 

Comparative Evaluation of Classifiers on Original and Augmented Datasets: 

To assess the robustness and consistency of predictive models, six supervised machine learning algorithms were 

evaluated on both the original dataset and its CTGAN-augmented counterpart. These included Decision Tree, 

Random Forest, XGBoost, Support Vector Machine (SVM), Naive Bayes, and a simple Neural Network. In 

addition, a DummyClassifier was introduced as a baseline reference. This model does not learn from the data but 

provides a useful benchmark for interpreting the minimum performance threshold that any meaningful classifier 

should exceed. 

 

Model evaluation was performed using stratified 10-fold cross-validation, a widely accepted technique for obtaining 

reliable generalization estimates, especially when dealing with class imbalance. Performance was measured using 

six key metrics: accuracy, precision, recall, F1-score, area under the ROC curve (ROC-AUC), and Matthews 

Correlation Coefficient (MCC). The results, summarized in Tables 5 and 6, provide a comprehensive overview of 

model behavior across both datasets. 

 

Table 5:  -Cross-validated classification performance on the original dataset (%) 

Model Accuracy F1-score Precision Recall ROC-AUC MCC 

DummyClassifier 68,14 0,00 0,00 0,00 50,00 0,00 

Decision Tree 98.61 97.83 98.49 97.93 98.36 96.81 

Random Forest 99.87 99.8 100.0 99.61 99.8 99.71 

XGBoost 99.84 99.75 100.0 99.61 99.75 99.64 

SVM Classifier 99.37 99.01 99.6 99.61 99.34 98.55 

Naïve Bayes 95.47 92.73 96.21 91.11 94.09 89.53 

Neural Network 98.61 97.83 98.49 97.93 98.36 96.81 

 

Table 6: -Cross-validated classification performance on the CTGAN-augmented dataset (%) 

Model Accuracy F1-score Precision Recall ROC-AUC MCC 

DummyClassifier 57,26 0,00 0,00 0,00 50,00 0,00 

Decision Tree 97,03 96,43 99,59 95,08 96,59 94,03 

Random Forest 99,83 99,81 100 100 99,81 99,66 

XGBoost 99,87 99,85 100 100 99,88 99,73 

SVM Classifier 98,35 98,04 100 97,85 98,12 96,67 

Naive Bayes 86,73 82,35 97,07 73,42 84,92 73,88 

Neural Network 97,03 96,43 99,59 95,08 96,59 94,03 
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As expected, the DummyClassifier returned extremely low scores across all metrics, confirming its role as a non-

informative comparator. In contrast, the machine learning models, particularly ensemble methods, demonstrated 

strong and consistent performance. On the original dataset, Random Forest achieved slightly superior results. 

However, on the augmented dataset, XGBoost reaches F1 = 99.85%, ROC-AUC = 99.88%, and MCC = 99.73. It 

outperforms the best non-boosted baseline (SVM, F1 = 98.04%) by +1.81 percentage points in F1 and +1.61 in 

ROC-AUC. Versus training without augmentation, recall rises from 99.61% to 100% (+0.39 percentage points) and 

MCC from 99.64 to 99.73 (+0.09), indicating that CTGAN increases minority-class sensitivity while preserving 

specificity. 

 

These findings underscore the value of CTGAN-based data augmentation in improving class balance and enhancing 

model learning capacity. The synthetic dataset not only strengthened generalization but also contributed to improved 

sensitivity, as evidenced by perfect recall scores in XGBoost.Given its exceptional and consistent results, XGBoost 

trained on the augmented dataset is selected as the reference classifier for subsequent analyses, including 

interpretability (Section 6.2) and diagnostic visualization (Section 6.3). 

 

Interpretability of the Selected Model: Feature Importance and SHAP Analysis: 

To ensure the transparency and explainability of the classification process, we conducted an analysis of feature 

importance based on the XGBoost model’s internal gain metrics. As illustrated in Figure 5, the most influential 

variable is JavaScript presence, which aligns with known threat signatures in malicious PDFs. Other key predictors 

include metadata volume, OpenAction triggers, and xref length, highlighting a combination of behavioral and 

structural indicators. 

 

 
Figure 5: - Feature Importance for the XGBoost Model 

 

In parallel (Figure 6), a SHAP (SHapley Additive exPlanations) analysis was carried out to provide a local and 

global interpretation of the model’s predictions. The SHAP summary plot reveals that high values of JavaScript 

presence, volume of metadata, and total size of PDF consistently push predictions toward the malicious class, while 

low values mitigate that likelihood. Conversely, variables such as header existence and text presence exhibit a more 

nuanced impact, suggesting interactioneffects. 
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Figure 6: - SHAP Analysis for the XGBoost Model 

 

Collectively, the interpretability analysis confirms that the model’s decision-making aligns with domain-relevant 

indicators. It also enhances user trust by revealing the logical structure behind individual predictions. 

 

Visual Diagnostics and Error Analysis: 

The performance of the selected XGBoost model is further validated through visual inspection of its classification 

behavior. The Receiver Operating Characteristic (ROC) curve, shown inFigure 7, demonstrates near-optimal 

separation, with an area under the curve of0.9997, a hallmark of a highly discriminative classifier. 

 

 

Figure 7: - ROC Curve for the XGBoost Classifier on Augmented Data 
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Complementing this, the confusion matrixpresentedinFigure 8reports only 15 false positives and 22 false negatives 

out of 8,752 total instances. This remarkably low error rate reinforces the classifier’s precision, sensitivity, and 

overall reliability. 

 

 

Figure 8: - Confusion Matrix for the XGBoost Classifier on Augmented Data 

 

Taken together, these diagnostic tools provide compelling evidence that the model not only performs well in terms 

of global metrics, but also maintains operational reliability in fine-grained scenarios. The augmentation strategy via 

CTGAN, combined with ensemble learning, yields a classification pipeline that is both intelligentandinterpretable, 

meeting the key demands of modern cybersecurity systems. 

 

Table 7: - Class-wise Metrics on Augmented Data with XGBoost 

Class Precision (%) Recall (%) F1(%) Support 

Benign 99.50% 99.66% 99.58% 4,376 

Malicious 99.66% 99.50% 99.58% 4,376 

 

As shown in Table 7, performance is very high and nearly symmetric across classes: for Benign, precision 99.50% 

and recall 99.66%; for Malicious, precision 99.66% and recall 99.50%, giving F1 = 99.58% for both. With 4,376 

instances per class, this corresponds to 15 false positives and 22 false negatives. Overall, the XGBoost detector on 

the augmented dataset shows very low miss and false-alarm rates with no detectable class bias. 

 

Discussion: - 
This section provides a critical appraisal of the proposed system, examining its strengths, interpretability, 

comparative advantages, deployment feasibility, and potential improvements. 

 

Strengths and Interpretability: 

One of the key strengths of the proposed system lies in its ability to combine high predictive performance with 

strong interpretability. The integration of CTGAN for data augmentation, supervised learning, and SHAP-based 

explanation techniques ensures not only accurate detection but also a transparent decision-making process. This 

transparency is particularly important in cybersecurity, where threat response must often be explained and justified 

to stakeholders. 

 

To further contextualize model performance, a DummyClassifier was used as a baseline. Its inability to learn from 

data resulted in near-zero precision, recall, and F1-score, with ROC-AUC scores at the chance level (50%). This 
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contrast highlighted the substantial learning capabilities of all other machine learning models, reinforcing the 

relevance and effectiveness of the proposed pipeline. 

 

Importantly, the SHAP framework consistently revealed key discriminative features such as JavaScript count, 

OpenAction triggers, and metadata size. These features align with known patterns of malicious PDF behavior [39], 

[44], [45], further validating the model’s trustworthiness. Compared to traditional feature importance scores that 

offer only global insights, SHAP adds the benefit of local interpretability, enabling analysts to explain individual 

predictions, a critical asset for integration into human-in-the-loop decision environments [4], [5]. 

 

Contribution of Synthetic Data Generation: 

Another notable innovation of the framework is the use of CTGAN to overcome class imbalance, a common 

challenge in malware datasets where benign instances tend to dominate. Traditional resampling techniques such 

asSMOTE often fail to preserve the complex dependencies that exist in high-dimensional feature spaces. In contrast, 

CTGAN generates synthetic data that respects the underlying statistical structure of real samples [21]. 

 

This augmentation step significantly enhanced the performance of all tested models, with XGBoost benefiting the 

most. The classifier achieved improved generalization across validation sets, demonstrating that synthetic samples 

contributed positively to training stability and robustness [2], [46]. 

 

Comparison with Existing Methods: 

To assess comparative performance, the proposed system was benchmarked against widely used classifiers, 

including Decision Tree, Random Forest, SVM, Naive Bayes, and a shallow Neural Network. Additionally, a 

DummyClassifier was included to establish a non-informative reference point. As expected, its results were 

extremely poor across all metrics, confirming that any meaningful classification must significantly outperform this 

baseline. 

 

In contrast, XGBoost consistently outperformed all other models, achieving an F1-score of 99.85%, perfect recall 

and precision, and an AUC-ROC of 99.88% on the augmented dataset. These findings are consistent with prior 

research highlighting the effectiveness of gradient boosting algorithms in structured data environments for 

cybersecurity tasks [22], [23]. 

 

Unlike deep learning architectures that often sacrifice transparency, the proposed framework offers high 

interpretability without compromising accuracy. This balance is essential for operational settings, where traceability, 

explainability, and auditability are often prerequisites for deploying AI solutions [5], [36]. 

 

Deployment Feasibility and Operational Relevance: 

The system was also designed with practical deployment in mind. Its modular architecture, use of open-source 

libraries, and compatibility with widely used platforms such as SIEMs enhance its adaptability across various 

organizational contexts. This makes it suitable not only for research environments but also for integration into 

production-level cybersecurity infrastructures [3], [20]. 

 

Moreover, the system’s explainability is a major asset for analysts working in Security Operations Centers (SOCs). 

As prior studies have shown, transparency in AI-based tools improves trust and promotes adoption by human 

operators [5], [36]. The relatively low computational cost of the proposed pipeline also supports deployment in 

environments with limited infrastructure capabilities. 

 

In production we strictly separate augmentation from inference: CTGAN runs offline to rebalance the training set 

and is never used during detection. Online we only parse the PDF, extract features, and score a lightweight XGBoost 

model, which is fast enough for near-instant screening on standard CPUs. To scale, we use periodic offline CTGAN 

refresh with versioning, containerized workers behind a queue with horizontal replication, and drift/health 

monitoring; SHAP is computed asynchronously or served from cache on demand. We do not claim hard real-time 

guarantees—latency is driven mainly by parsing, not the model. 
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Limitations and Future Perspectives: 

Despite these strengths, some limitations remain. The current framework operates in offline batch mode, which 

restricts its use in real-time threat detection. Transitioning to an online learning setup capable of handling streaming 

data and adapting continuously to evolving attack patterns will be an important direction for future work [47], [48]. 

Another challenge involves the computational overhead introduced by SHAP explanations. While these 

interpretations are highly informative, they may become burdensome at scale. Efficient approximation strategies, 

such as TreeExplainer or surrogate modeling, could help mitigate this issue without compromising interpretability 

[4], [36].Exploring reinforcement learning and adversarial training mechanisms could further strengthen the 

system’s resilience to novel and adversarial threats [49], [50]. Lastly, although the dataset used in this study reflects 

real-world conditions, future evaluations on larger and more heterogeneous datasets will be necessary to assess 

generalizability across different threat landscapes [21], [51].CTGAN training and sample generation carry non-

trivial compute and memory costs. We therefore confine augmentation to scheduled offline jobs, triggered at regular 

intervals or when drift is detected, while only the frozen classifier is served online. Future work will refine latency 

budgets, explore streaming ingestion for continuous updates, and assess GPU-assisted parsing where it provides a 

clear benefit. 

 

Conclusion: - 
This study presents a robust and modular approach for detecting malicious PDF files, leveraging the complementary 

strengths of generative data augmentation and supervised machine learning. By strategically integrating these 

components, the proposed framework addresses three key challenges in cybersecurity: data imbalance, model 

interpretability, and classification performance. 

 

The use of CTGAN for synthetic data generation proved highly effective in correcting the class imbalance that 

typically characterizes cybersecurity datasets. This augmentation strategy enriched the training corpus with realistic 

samples, thereby improving the generalization ability of classifiers in skewed contexts. 

 

Among the six models evaluated, XGBoost consistently demonstrated superior performance, achieving an accuracy 

of 99.87%, an F1-score of 99.85%, and an MCC of 99.73%. These figures confirm its robustness and adaptability in 

detecting subtle threat signatures embedded within PDF structures. 

 

To support explainability and user trust, the framework integrates SHAP-based interpretation tools, which reveal 

how features such as JavaScript presence, OpenAction triggers, and metadata volume influence model predictions. 

These insights not only enhance the transparency of the system but also provide analysts with actionable indicators 

grounded in domain knowledge. 

 

In conclusion, the proposed solution combines predictive accuracy, analytical clarity, and operational feasibility, 

making it a compelling candidate for deployment in diverse cybersecurity environments, including government, 

academic, and industrial settings. 

 

Future work will explore real-time extensions, active learning for continuous model refinement, and broader 

validation across heterogeneous datasets. Integrating this system with automated response platforms and threat 

intelligence services could further enhance its practical relevance and impact in live defense infrastructures. 
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