
ISSN:(O) 2320-5407, ISSN(P) 3107-4928             Int. J. Adv. Res. 13(09), September-2025, 956-965 

 

956 

 

Journal Homepage: - www.journalijar.com 

    

 

 

 

Article DOI: 10.21474/IJAR01/21784 

DOI URL: http://dx.doi.org/10.21474/IJAR01/21784 

 

RESEARCH ARTICLE 

 

ALGEBRAIC EXTENSIONS THROUGH T-Q FERMATEAN 𝓛-FUZZY IDEALS AND 

THEIR HOMOMORPHISMS 
 

Amal Kumar Adak
1
 and Gauri Kant Kumar

2 

 

1. Department of Mathematics, Ganesh Dutt College,Begusarai, India, 851101. 

2. Department of Mathematics, Lalit Narayan Mithila University, Darbhanga.
 

…………………………………………………………………………………………………….... 

Manuscript Info   Abstract 

…………………….   ……………………………………………………………… 
Manuscript History 

Received: 13 July 2025 

Final Accepted: 15 August 2025 

Published: September 2025 

 

Key words:- 
Fuzzy sets, Intuitionistic fuzzy sets, 

Fermatean fuzzy sets, Lattice, t-Q-
fermatean L-fuzzy left (right) ideals, 

homomorphism.  

 

 

 

 

 

 

 

 

Fermatean fuzzy sets serve as a significant generalization of both 

intuitionistic fuzzy sets and Pythagorean fuzzy sets, providing a 

broader and more flexible structure for modeling uncertainty. Unlike 

their predecessors, they successfully address and overcome certain 

inherent limitations associated with these earlier frameworks, 

particularly in handling higher degrees of hesitation and indeterminacy. 

Motivated by these advantages, this paper introduces the concept of t-Q 

Fermatean L-fuzzy ideals, thereby extending the study of algebraic 

structures within the Fermatean fuzzy environment. We further explore 

the homomorphic properties of these ideals, analyzing how they behave 

under various mappings. Within this framework, a number of new 

theoretical results are established, which contribute to the deeper 

understanding of Fermatean fuzzy algebra and open avenues for further 

research. 
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Introduction:- 
The foundation of fuzzy set theory was laid by Zadeh [23], who introduced the concept of a membership function ϱ 

to quantify the degree to which an element belongs to a given set. Unlike classical set theory, where membership is 

strictly binary an element either belongs to a set or it does not—fuzzy set theory allows for gradations of 

membership. Within this framework, every element of the universal set is assigned a membership value from the 

unit interval [0,1]. A value of 0 signifies complete non-membership, while a value of 1 indicates full membership. 

Intermediate values represent varying degrees of partial membership, capturing situations where the status of an 

element cannot be described in absolute terms. This innovative generalization of classical sets provides a powerful 

tool for modeling vagueness, uncertainty, and imprecision, since it reflects the reality that many real-world 

phenomena do not conform to rigid boundaries but instead fall within a spectrum of belonging. 

Classical fuzzy set theory, despite its effectiveness in extending the binary nature of classical sets, exhibited notable 

limitations in its ability to model uncertainty in a comprehensive manner. Specifically, it lacked an explicit non-

membership function to quantify the degree to which an element does not belong to a set, and it was unable to 

capture the hesitation or indeterminacy that often arises in real-world decision-making situations. Recognizing these 
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shortcomings, Atanassov [9] proposed the concept of intuitionistic fuzzy sets (IFSs), which significantly enriched 

the fuzzy framework. An IFS is formally described by a triplet of functions: a membership function ϱ that assigns 

the degree of belonging of an element to a set, a non-membership function ϑ that expresses the degree of rejection, 

and an indeterminacy (or hesitation) function π that reflects the extent of uncertainty or lack of knowledge regarding 

the element’s status. These functions are interrelated through the conditions ϱ + ϑ ≤ 1 and ϱ + ϑ + π = 1, ensuring 

consistency in the representation of information. This formulation provides a richer and more flexible mechanism 

for representing vagueness and uncertainty, thereby broadening the applicability of fuzzy set theory in diverse fields 

such as decision-making, pattern recognition, and knowledge representation. 

However, there are practical situations where the condition ϱ + ϑ ≥ 1 may hold, which is not permissible under 

IFSs. To accommodate such scenarios, Pythagorean fuzzy sets (PFSs) were introduced by Yager [21, 22]. In a PFS, 

the membership and non-membership degrees satisfy 0 ≤ ϱ, ϑ ≤ 1 with the constraint ϱ2 + ϑ2 ≤ 1, and the 

indeterminacy is derived accordingly as π =  1 − ϱ2 − ϑ2. Fermatean fuzzy sets is the extension Pythagorean 

fuzzy sets. In fermatean fuzzy sets the membership grade (ϱ) and non-membership grade (ϑ) satisfy the conditions 

0 ≤ ϱ3 + ϑ3 ≤ 1, where the values of ϱ and ϑ lie between 0 and 1. 

In the context of algebraic structures, the study of fuzzy subsets in near-rings has a well-documented history. Kim 

and Jun [11] introduced the notion of intuitionistic fuzzification of various semigroup ideals. Later, Kyung Ho Kim 

and Young Bae Jun [12], in their work on “Normal fuzzy R-subgroups in near-rings", extended this line of study by 

defining normal fuzzy R-subgroups and investigating their properties. Kuncham et al. [13] subsequently introduced 

fuzzy prime ideals of near-rings. Further contributions include Solairaju and Nagarajan [19], who defined Q-fuzzy 

subrings, and Palaniappan, Arjanan, and Palanivelrajan [15], who introduced intuitionistic L-fuzzy subrings. Wang 

et al. [20] proposed intuitionistic fuzzy ideals of rings with threshold parameters (α, β), while Sharma [17] 

developed the concept of t-intuitionistic fuzzy quotient groups. 

Building upon these foundational concepts, the present paper is devoted to the introduction and systematic study of 

t-Q Fermatean ℒ-fuzzy ideals. To provide a clear framework, the paper is organized as follows. Section 2 is 

dedicated to preliminaries, where we recall essential definitions and outline the key algebraic structures associated 

with Fermatean fuzzy sets and lattices, which form the basis for our study. Section 3 develops the central theme by 

formally introducing t-Q Fermatean ℒ-fuzzy ideals and investigating their fundamental properties, with particular 

emphasis on their behavior under homomorphisms. Finally, Section 4 concludes the work with a summary of the 

main findings and some closing observations that highlight the significance of the results and suggest possible 

directions for future research. 

Preliminaries and Definition:- 

We will review the related concepts of fuzzy sets, intuitionistic fuzzy sets, pythagorean fuzzy sets, fermatean fuzzy 

sets and lattices in this section.  

Definition 2.1 We defined fuzzy set F in a universal set X as  

 F = {〈x, ϱF(x)〉: x ∈ X}, 

where ϱF : X → [0,1] is a mapping that is known as the fuzzy membership function. 

The complement of ϱ is defined by ϱ (x) = 1 − ϱ(x) for all x ∈ X and denoted by ϱ .  

Definition 2.2 A fuzzy ideal ϱ of a ring R is called fuzzy primary ideal, if for all a, b ∈ R either ϱ(ab) = ϱ(a) or else 

ϱ(ab) ≤ (bm ) for some m ∈ Z+.  

Definition 2.3 A fuzzy ideal ϱ of a ring R is called fuzzy semiprimary ideal, if for all a, b ∈ R either ϱ(ab) ≤ ϱ(an ), 

for some n ∈ Z+, or else ϱ(ab) ≤ (bm ) for some m ∈ Z+  

Definition 2.4 An intuitionistic fuzzy set (IFS) A in X is defined as  

 A = {〈x, ϱA (x), ϑA (x)〉: x ∈ X}, 
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where the ϱA (x) is the worth of membership and ϑA (x) is the worth of non-membership of the element x ∈ X 

respectively. 

Also ϱA : X → [0,1], ϑA : X → [0,1] and satisfy the condition  

 0 ≤ ϱA (x) + ϑA (x) ≤ 1, 

for all x ∈ X. 

The degree of indeterminacy hA (x) = 1 − ϱA (x) − ϑA (x).  

Definition 2.5 A Pythagorean fuzzy set P in universe of discourse X is represented as  

 P = {〈x, ϱP (x), ϑP (x)〉|x ∈ X}, 

where ϱP (x): X → [0,1] denotes the worth of membership and ϑP (x): X → [0,1] represents the worth to which the 

element x ∈ X is not a member of the set P, with the condition that  

 0 ≤ (ϱP (x))2 + (ϑP (x))2 ≤ 1, 

for all x ∈ X. 

The worth of indeterminacy hP (x) =  1 − (ϱP(x))2 − (ϑP (x))2.  

Definition 2.6 A fermatean fuzzy set A in a finite universe of discourse X is furnished as  

 A = {〈x, ϱA (x), ϑA (x)〉|x ∈ X}, 

where ϱA (x): X → [0,1] denotes the worth of membership and ϑA (x): X → [0,1] represents the worth to which the 

element x ∈ X is not a member of the set A, with the predicament that  

 0 ≤ (ϱA (x))3 + (ϑA (x))3 ≤ 1, 

for all x ∈ X. 

The worth of indeterminacy hA (x) =  1 − (ϱA (x))3 − (ϑA (x))33
.  

Definition 2.7 Let X be a non empty set, and ℒ = (ℒ, ≤) be a lattice with least element 0 and greatest element 1 and 

Q be a non empty set. A Q-L-fuzzy subset μ of X is a function μ: X × Q → ℒ.  

Definition 2.8 Let ℒ = (ℒ, ≤) be a complete lattice with an evaluative order reversing operation N: ℒ → ℒ and Q be 

a non empty set.  

Definition 2.9 A Q-Fermatean L-fuzzy subset (QFLFS) μ in X is defined as an object of the form 

μ = {〈(x, q), ϱμ(x, q), ϑμ(x, q)〉: x ∈ X   and   q ∈ Q} where ϱμ : X × Q → ℒ   and   ϑμ : X × Q → ℒ define the degree of 

member ship, and the degree of non membership of the element x ∈ X, respectively, and for every x ∈ X and q ∈ Q.  

Definition 2.10 Let R be a ring. A Q-Fermatean L-fuzzy subset μ of R is said to be a Q-Fermatean L-fuzzy sub ring 

(QFLFSR) of R if it satisfies the following axioms: 

(i) ϱμ(x − y, q) ≥ min{ϱμ(x, q), ϱμ(y, q)} 

(ii) ϱμ(xy, q) ≥ min{ϱμ(x, q), ϱμ(y, q)} 

(iii) ϑμ(x − y, q) ≤ max{ϑμ(x, q), ϑμ(y, q)} 

(iv) ϑμ(xy, q) ≤ max{ϑμ(x, q), ϑμ(y, q)}.  
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Definition 2.11 Let R be a ring. A Q-Fermatean L-fuzzy sub ring μ of R is said to be a Q-Fermatean L-fuzzy normal 

sub ring (QFLFNSR) of R if  

(i) 𝜚𝜇 (𝑥𝑦, 𝑞) = 𝜚𝜇 (𝑦𝑥, 𝑞) 

(ii) 𝜗𝜇 (𝑥𝑦, 𝑞) = 𝜗𝜇 (𝑦𝑥, 𝑞) for all 𝑥, 𝑦 ∈ 𝑅 and 𝑞 ∈ 𝑄.  

Definition 2.12 Let 𝜇 be a QFLFS of a ring 𝑅. And let 𝑡 ∈ [0,1], then the 𝜇𝑡  of 𝑅 is called the t-Q-Fermatean fuzzy 

subset (tQFLFS) of 𝑅 with respect to (QFLFS) 𝜇 and is defined as 𝜇𝑡 = (𝜚𝜇 𝑡 ,𝜗
𝜇 𝑡

), where 

𝜚𝜇 𝑡(𝑥, 𝑞) = 𝑚𝑖𝑛{𝜚𝜇 (𝑥, 𝑞), 𝑡} and 𝜗𝜇 𝑡(𝑥, 𝑞) = 𝑚𝑎𝑥{𝜗𝜇 (𝑥, 𝑞),1 − 𝑡}, for all 𝑥 ∈ 𝑅.  

Definition 2.13 Let 𝑋, 𝑌 be two non empty sets and 𝜙: 𝑋 → 𝑌 be a mapping. Let 𝜇 and 𝛾 be two tQFLFS of X and 

Y respectively. Then the image of 𝜇 under the map 𝜙 is denoted by 𝜙(𝜇) and is defined as 𝜙(𝜇𝑡)(𝑦, 𝑞) =
(𝜚𝜙 (𝜇𝑡)(𝑦, 𝑞), 𝜗𝜙(𝜇𝑡)(𝑦, 𝑞)), where  

 𝜚𝜙 (𝜇𝑡)(𝑦, 𝑞) =  
𝑠𝑢𝑝{𝜚𝜇 𝑡(𝑥, 𝑞)}, 𝑥 ∈ 𝜙−1(𝑦),

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  

 

 𝜗𝜙(𝜇𝑡)(𝑦, 𝑞) =  
𝑖𝑛𝑓{𝜗𝜇 𝑡(𝑥, 𝑞)}, 𝑥 ∈ 𝜙−1(𝑦),

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
  

also the pre-image of 𝛾 under 𝜙 is denoted by 𝜙−1(𝛾𝑡) and is defined as  

 𝜙−1(𝛾𝑡(𝑥, 𝑞) = (𝜚𝜙−1 (𝛾𝑡)(𝑥, 𝑞), (𝜗𝜙−1(𝛾𝑡)(𝑥, 𝑞)), 

where 𝜚𝜙−1 (𝛾𝑡)(𝑥, 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥), 𝑞) and 𝜗𝜙−1 (𝛾𝑡)(𝑥, 𝑞) = 𝜗𝛾𝑡(𝜙(𝑥), 𝑞). 

This means that 𝜙−1(𝛾𝑡)(𝑥, 𝑞) = (𝜚𝛾𝑡(𝜙(𝑥), 𝑞), 𝜗𝛾𝑡((𝜙(𝑥), 𝑞)).  

Definition 2.14 Let 𝜙:𝑋 → 𝑌 be a mapping.Let 𝜇 and 𝛾 be two tQFLFS of X and Y respectively. Then 𝜙−1(𝛾𝑡) =
(𝜙−1(𝛾𝑡))𝑡  and 𝜙(𝜇𝑡) = (𝜙(𝜇))𝑡  for all 𝑡 ∈ [0,1].  

Definition 2.15 Let 𝜇 be a QFLFS of a ring R. And let 𝑡 ∈ [0,1], then 𝜇 is called t-Q-Fermatean L-fuzzy sub ring 

(tQFLFSR) of R if is QFLFSR of R. This means that 𝜇𝑡  satisfies the following conditions: 

1. 𝜚𝜇 𝑡(𝑥 − 𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚𝜇 𝑡(𝑥, 𝑞), 𝜚𝜇 𝑡(𝑦, 𝑞)}; 

2. 𝜚𝜇 𝑡(𝑥𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚𝜇 𝑡(𝑥, 𝑞), 𝜚𝜇 𝑡(𝑦, 𝑞)}; 

3. 𝜗𝜇 𝑡(𝑥 − 𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝜇 𝑡(𝑥, 𝑞), 𝜗𝜇 𝑡(𝑦, 𝑞)}; 

4. 𝜗𝜇 𝑡(𝑥 − 𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝜇 𝑡(𝑥, 𝑞), 𝜗𝜇 𝑡(𝑦, 𝑞)}; for all 𝑥, 𝑦 ∈ 𝑅 and 𝑞 ∈ 𝑄.  

Theorem 2.1 If 𝜇 is QFLFNSR of a ring R, then 𝜇 is also tQFLFNSR of a ring 𝑅.  

Proof. Let 𝑥, 𝑦 ∈ 𝑅 be any elements, then 

𝜚𝜇 𝑡(𝑥𝑦, 𝑞) = 𝑚𝑖𝑛{(𝑥𝑦, 𝑞), 𝑡} = 𝑚𝑖𝑛𝜚𝜇 , (𝑦𝑥, 𝑞), 𝑡 = 𝜚𝜇 𝑡(𝑦𝑥, 𝑞). 

Similarly, 𝜗𝜇 𝑡(𝑥𝑦, 𝑞) = 𝑚𝑎𝑥{(𝑥𝑦, 𝑞),1 − 𝑡} = 𝑚𝑎𝑥{𝜚𝜇 , (𝑦𝑥, 𝑞),1 − 𝑡} = 𝜗𝜇 𝑡(𝑦𝑥, 𝑞). 

Therefore is also tQFLFNSR of 𝐑.  
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Definition 2.16 Let 𝜇 be a QFLFS of a ring R. And let 𝑡 ∈ [0,1], then 𝜇 is called t-Q-Fermatean L-fuzzy left ideal 

(tQFLFLI) of R. If 

(i) 𝜚𝜇 𝑡(𝑥 − 𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚𝜇 𝑡(𝑥, 𝑞), 𝜚𝜇 𝑡(𝑦, 𝑞)} 

(ii) 𝜚𝜇 𝑡(𝑥𝑦, 𝑞) ≥ {𝜚𝜇 𝑡(𝑦, 𝑞)} 

(iii) 𝜗𝜇 𝑡(𝑥 − 𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝜇 𝑡(𝑥, 𝑞), 𝜗𝜇 𝑡(𝑦, 𝑞)} 

(iv) 𝜗𝜇 𝑡(𝑥𝑦, 𝑞) ≤ {𝜗𝜇 𝑡(𝑦, 𝑞)} for all 𝑦 ∈ 𝑅 and 𝑞 ∈ 𝑄.  

Definition 2.17 Let 𝜇 be a QFLFS of a ring 𝑅. And let 𝑡 ∈ [0,1], then 𝜇 is called t-Q-Fermatean L-fuzzy right ideal 

(tQFLFRI) of 𝑅. If 

(i) 𝜚𝜇 𝑡(𝑥 − 𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚𝜇 𝑡(𝑥, 𝑞), 𝜚𝜇 𝑡(𝑦, 𝑞)} 

(ii) 𝜚𝜇 𝑡(𝑥𝑦, 𝑞) ≥ {𝜚𝜇 𝑡(𝑥, 𝑞)} 

(iii) 𝜗𝜇 𝑡(𝑥 − 𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝜇 𝑡(𝑥, 𝑞), 𝜗𝜇 𝑡(𝑦, 𝑞)} 

(iv) 𝜗𝜇 𝑡(𝑥𝑦, 𝑞) ≤ {𝜗𝜇 𝑡(𝑥, 𝑞)};  

Theorem 2.2 If 𝜇 is QFLFLI of a ring R, then 𝜇 is also tQFLFLI of a ring R.  

Proof. It is required to prove that 𝜚𝜇 𝑡(𝑥𝑦, 𝑞) ≥ {𝜚𝜇 𝑡(𝑦, 𝑞)}   𝑎𝑛𝑑   𝜗𝜇 𝑡(𝑥𝑦, 𝑞) ≤ {𝜗𝜇 𝑡(𝑦, 𝑞)} for all 𝑥, 𝑦 ∈ 𝑅. 

Again, 𝜚𝜇 𝑡(𝑥𝑦, 𝑞) = 𝑚𝑖𝑛{(𝑥𝑦, 𝑞), 𝑡} = 𝑚𝑖𝑛𝜚𝜇 , (𝑦, 𝑞), 𝑡 = 𝜚𝜇 𝑡(𝑦, 𝑞). 

Thus 𝜚𝜇 𝑡(𝑥𝑦, 𝑞) ≥ {𝜚𝜇 𝑡(𝑦, 𝑞)}. Similarly, we can show that 𝜗𝜇 𝑡(𝑥𝑦, 𝑞) ≤ {𝜗𝜇 𝑡(𝑦, 𝑞)}. 

Hence is also tQFLFLI of a ring R. 

Definition 2.18 If 𝜇 is QFLFRI of a ring R, then 𝜇 is also tQFLFRI of a ring R.  

Main Results  

In this section, we have undertaken a detailed discussion of several significant results concerning the homomorphic 

behavior of t-Q Fermatean ℒ-fuzzy subrings. These results highlight how such structures interact under 

homomorphisms, providing deeper insights into their algebraic properties and contributing to a broader 

understanding of Fermatean fuzzy algebra within the framework of ℒ-fuzzy subrings. 

 

Theorem 3.1 Let 𝜙: 𝑅1 → 𝑅2 be a ring homomorphism from the ring 𝑅1 into a ring 𝑅2. Let 𝛾 be tQFLFSR of 𝑅2. 
Then 𝜙−1(𝛾) is tQFLFSR of 𝑅1.  

Proof. Let 𝑥, 𝑦 ∈ 𝑅1, since 𝛾 be tQFLFSR of 𝑅2. Then  

𝜙−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) = (𝜚𝜙−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞), 𝜗𝜙−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞)). 

 𝜚−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) = (𝜚𝛾𝑡(𝜙(𝑥 − 𝑦, 𝑞) 

 = 𝜚𝜇 𝑡(𝜙(𝑥) − 𝜙(𝑦), 𝑞 

 ≥ 𝑚𝑖𝑛{𝜚𝛾𝑡(𝜙(𝑥), 𝑞), 𝜚𝛾𝑡(𝜙(𝑦), 𝑞)} 

 = 𝑚𝑖𝑛{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞). } 

 Thus 𝜚−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1(𝛾𝑡)(𝑦, 𝑞)}. 
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Similarly, it can be prove that 𝜗𝜙−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝜙−1(𝑥 − 𝑞), 𝜗𝜙−1 (𝑦, 𝑞)}.  

Again,  

 𝜗𝜙−1(𝛾𝑡 )(𝑥 − 𝑦, 𝑞) = 𝜚𝛾𝑡(𝜙(x𝑦), 𝑞) 

 = 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ 𝑚𝑖𝑛{𝜚𝛾𝑡(𝜙(𝑦),𝑞)} 

 = 𝑚𝑖𝑛{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞). } 

 Thus, 𝜚𝜙 (−1)(𝛾𝑡 )(𝑥𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞)}. 

Also,  

 𝜗𝜙−1(𝛾𝑡 )(𝑥𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝜙−1 (𝑥 − 𝑞), 𝜗𝜙−1(𝑦, 𝑞)}. 

Therefore, 𝜙−1(𝛾𝑡) = (𝜙−1(𝛾))𝑡  is QFLFSR of R1 and hence 𝜙−1(𝛾𝑡) is tQFLFSR of 𝑅1.  

Theorem 3.2 Let 𝜙: 𝑅1 → 𝑅2 be a ring homomorphism from the ring 𝑅1 into a ring 𝑅2. Let 𝛾 be tQFLFSR of 𝑅2. 
Then 𝜙−1(𝛾)is tQFLFSR of 𝑅1.  

Proof.  Let 𝑥, 𝑦 ∈ 𝑅1 , since 𝛾 be tQFLFSR of 𝑅2. Also 𝜙−1(𝛾𝑡)(𝑥𝑦) = (𝜚𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞), 

𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞), 𝜗𝜙−1(𝛾𝑡)(𝑦𝑥, 𝑞). 

Hence, it is enough to show that 

𝜚𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞) = 𝜚𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞), 𝜙−1(𝛾𝑡)(𝑥𝑦)   𝑎𝑛𝑑   𝜗𝜙−1(𝛾𝑡 )(𝑥𝑦, 𝑞) = 𝜗𝜙−1(𝛾𝑡)(𝑦𝑥, 𝑞). 

Now,  

 𝜚𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥𝑦), 𝑞) 

 = 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) 

 = 𝜚𝛾𝑡(𝜙(𝑦)𝜙(𝑥), 𝑞) 

 = 𝜚𝛾𝑡(𝜙(𝑥𝑦), 𝑞) 

 = 𝜚𝜙−1(𝛾𝑡)(𝑦𝑥, 𝑞). 

 Moreover,  

 𝜗𝜙−1(𝛾𝑡 )(𝑥𝑦, 𝑞) = 𝜗𝛾𝑡(𝜙(𝑥𝑦), 𝑞) 

 = 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) 

 = 𝜗𝛾𝑡(𝜙(𝑦)𝜙(𝑥), 𝑞) 

 = 𝜗𝛾𝑡(𝜙(𝑥𝑦), 𝑞) 

 = 𝜗𝜙−1(𝛾 t )(𝑦𝑥, 𝑞). 

 Thus 𝜙−1(𝛾𝑡) = (𝜙−1(𝛾))𝑡  is QFLFNSR of 𝑅1 and hence 𝜙−1(𝛾𝑡) is tQFLFNSR of 𝑅1.  
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Theorem 3.3 Let 𝜙: 𝑅1 → 𝑅2 be a ring homomorphism from the ring 𝑅1 into a ring 𝑅2. Let 𝛾 be tQFLFLI of 𝑅2. 

Then 𝜙−1(𝛾𝑡) is tQFLFLI of 𝑅1.  

Proof.  Since 𝛾 be tQFLFSR of 𝑅2 and let 𝑥, 𝑦 ∈ 𝑅1. 

We need only to prove 

𝜚𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞) ≤ 𝜚𝜙−1(𝛾𝑡)(𝑦, 𝑞) and 𝜗𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞) ≤ 𝜗𝜙−1(𝛾𝑡)(𝑦, 𝑞). 

Now, 𝜚𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥𝑦), 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ 𝜚𝛾𝑡(𝜙(𝑦), 𝑞) = 𝜚𝜙−1(𝛾𝑡)(𝑦, 𝑞). 

Therefore, 𝜚𝜙−1(𝛾𝑡 )(𝑥𝑦, 𝑞) ≥ 𝜚𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞) 

𝜚𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥𝑦), 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ 𝜚𝛾𝑡(𝜙(𝑦), 𝑞) = 𝜚𝜙−1(𝛾𝑡)(𝑦, 𝑞). 

Similarly, 𝜗𝜙−1(𝛾𝑡)(𝑥𝑦, 𝑞) ≤ 𝜗𝜙−1(𝛾𝑡)(𝑦, 𝑞). 

Therefore 𝜙−1(𝛾𝑡) = (𝜙−1(𝛾))𝑡  is QFLFSR of 𝑅1 and hence 𝜙−1(𝛾𝑡) is tQFLFSR of 𝑅1.  

Theorem 3.4 Let 𝜙: 𝑅1 → 𝑅2 be a ring homomorphism from the ring 𝑅1 into a ring 𝑅2. Let 𝛾 be tQFLFRI of 𝑅2. 
Then 𝜙−1(𝛾𝑡) is tQFLFRI of 𝑅1.  

Proof. Straight forward.  

Theorem 3.5 Let 𝜙: 𝑅1 → 𝑅2 be epimorphism from the ring 𝑅1 into a ring 𝑅2 and 𝜇 be tQFLFSR of 𝑅1. Then 𝜙(𝜇) 

is tQFLFSR of 𝑅2.  

Proof. Let 𝑥, 𝑦 ∈ 𝑅2. Then there exist 𝑎, 𝑏 ∈ 𝑅1 such that 𝜙(𝑎) = 𝑥, 𝜙(𝑏) = 𝑦 we know that 𝑎, 𝑏 need not be unique 

also 𝜇 is tQFLFSR of 𝑅1. 

Now, 𝜙(𝜇𝑡)(𝑥 − 𝑦, 𝑞) = (𝜚𝜙(𝜇 𝑡)(𝑥 − 𝑦, 𝑞), 𝜗𝜙(𝜇 𝑡)(𝑥 − 𝑦, 𝑞)). 

𝜚𝜙(𝜇 𝑡)(𝑥 − 𝑦, 𝑞) = 𝜚(𝜙(𝜇))𝑡(𝑥 − 𝑦, 𝑞) = 𝑚𝑖𝑛{𝜚𝜙(𝜇)(𝜙(𝑎) − 𝜙(𝑏), 𝑞), 𝑡} 

𝜚−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞)}. 

Similarly, 𝜚𝜇−1(𝛾𝑡 )(𝑥 − 𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜚𝜇−1(𝑥 − 𝑞), 𝜚𝜇−1(𝑦, 𝑞)}. 

Also,  

𝜗𝜙−1(𝛾𝑡)(𝑥 − 𝑦, 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥𝑦), 𝑞) 

= 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ 𝑚𝑖𝑛{𝜚𝛾𝑡(𝜇 (𝑦),𝑞)} 

= 𝑚𝑖𝑛{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾t)(𝑦, 𝑞). }. 

Thus, 𝜚𝜇 (−1)(𝛾𝑡)(𝑥𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚−1(𝛾𝑡)(𝑥, 𝑞), 𝜚𝜙−1 (𝛾𝑡)(𝑦, 𝑞)}. 

It is easy to show that 𝜚𝜇−1(𝛾𝑡)(𝑥𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜚𝜇−1(𝑥 − 𝑞), 𝜗𝜙−1(𝑦, 𝑞)}. 

Similarly, we can show that  

𝜗𝜙(𝜇 𝑡)(𝑥 − 𝑦, 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝜙(𝜇 𝑡)(𝑥, 𝑞), 𝜗𝜙(𝜇 𝑡)(𝑦, 𝑞)}, 

𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) = 𝜚(𝜙(𝜇 ))𝑡(𝑥𝑦, 𝑞) = 𝑚𝑖𝑛{𝜗𝜙(𝜇)(𝜙(𝑎). 𝜙(𝑏), 𝑞), 𝑡} 
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= 𝑚𝑖𝑛{𝜚𝜙(𝜇)(𝜙(𝑎𝑏), 𝑞), 𝑡} ≥ 𝑚𝑖𝑛{𝜚𝜇 (𝑎𝑏, 𝑞), 𝑡} = 𝜚𝜇 (𝑎𝑏, 𝑞)′ 

for all 𝑎, 𝑏 ∈ 𝑅1 such that 𝜙(𝑎) = 𝑥, 𝜙(𝑏) = 𝑦. 

= 𝑚𝑖𝑛{𝑠𝑢𝑝{𝜚𝜙(𝜇 𝑡)(𝑎, 𝑞); 𝜙(𝑎) = 𝑥}, 𝑠𝑢𝑝{𝜚𝜙(𝜇 𝑡)(𝑏, 𝑞); 𝜙(𝑏) = 𝑦}} 

= 𝑚𝑖𝑛{𝜚𝜙(𝜇 𝑡)(𝑥, 𝑞), 𝜚𝜙(𝜇 𝑡)(𝑦, 𝑞)}. 

Thus 𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) ≥ 𝑚𝑖𝑛{𝜚𝜙(𝜇 𝑡)(𝑥, 𝑞), 𝜚𝜙(𝜇 𝑡)(𝑦, 𝑞)}. 

Similarly, we can show that 𝑚𝑖𝑛{𝜚𝜙(𝜇 𝑡)(𝑥, 𝑞), 𝜚𝜙(𝜇 𝑡)(𝑦, 𝑞)}. 

Thus 𝜙(𝜇𝑡) = (𝜙(𝜇𝑡))′𝑡 is QFLFSR of 𝑅2 and hence 𝜙(𝜇) is tQFLFSR of 𝑅2. 

Theorem 3.6 Let 𝜙: 𝑅1 → 𝑅2 be epimorphism from the ring 𝑅1 into a ring 𝑅2 and 𝜇 be tQFLFNSR of 𝑅1. Then 

𝜙(𝜇) tQFLFNSR of 𝑅2.  

Proof. Let 𝑥, 𝑦 ∈ 𝑅2. Then exist 𝑎, 𝑏 ∈ 𝑅1 such that 𝜙(𝑎) = 𝑥, 𝜙(𝑏) = 𝑦 we know that 𝑎, 𝑏 need not be unique also 

𝜇 is tQFLFNSR of 𝑅1. 𝜙(𝜇𝑡)(𝑥𝑦, 𝑞) = 𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞), 𝜗𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞)). Now, we have to prove that 𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) =

𝜚𝜙(𝜇 𝑡)(𝑦𝑥, 𝑞) and 𝜗𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) = 𝜗𝜙(𝜇 𝑡)(𝑦𝑥, 𝑞); 

𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞) = 𝜚𝜙(𝜇 𝑡)(𝜙(𝑎)𝜙(𝑏), 𝑞) 

= 𝜚𝜙(𝜇 𝑡)(𝜙(𝑎𝑏), 𝑞) 

= 𝑠𝑢𝑝{𝜚𝜙(𝜇 𝑡)(𝑥𝑦, 𝑞); 𝜙(𝑎𝑏) = 𝑥𝑦} 

= 𝑠𝑢𝑝{𝜚𝜙(𝜇 𝑡)(𝑦𝑥, 𝑞); 𝜙(𝑎𝑏) = 𝑥𝑦} 

= 𝜚𝜙(𝜇 𝑡)(𝜙(𝑎𝑏), 𝑞) 

= 𝜚𝜙(𝜇 𝑡)(𝜙(𝑎)𝜙(𝑏), 𝑞) 

= 𝜚𝜙(𝜇 𝑡)(𝑦𝑥, 𝑞) 

Similarly, we can show that 𝜗(𝑥𝑦, 𝑞) = 𝜗(𝑦𝑥, 𝑞);. 

Hence the result.  

Theorem 3.7 Let 𝜙: 𝑅1 → 𝑅2 be epimorphism from the ring 𝑅1 into a ring 𝑅2 and 𝜇 be tQFLFLI of 𝑅1. Then 𝜙(𝜇) 

is tQFLFLI of 𝑅2.  

Proof. Let 𝑥, 𝑦 ∈ 𝑅2. Then there exist 𝑎, 𝑏 ∈ 𝑅2, then there exist a unique a,be 𝑅1 such that 𝜙(𝑎) = 𝑥, 𝜙(𝑏) = 𝑦, 

(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞) = (𝜚(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞), (𝜚(𝜙(𝜇 ))𝑡(𝑥𝑦, 𝑞)). 

Since 𝜇 be IQFLFLI of 𝑅1 , then 𝜗𝜙(𝜇 𝑡)(𝑦, 𝑞) ≥ 𝜗𝜙(𝜇 𝑡)(𝑦, 𝑞) and 

therefore 𝜚(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞) ≥ 𝜚(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞)). 

Similarly, it can be shown that 

𝜗(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞), ≤ 𝜗(𝜙(𝜇))𝑡(𝑥𝑦, 𝑞)). 

Hence (𝜇𝑡) is QFLFLI of 𝑅2 and hence 𝜙(𝜇) is tQFLFLI of 𝑅2. 
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Theorem 3.8 Let 𝑅1, 𝑅2 be any two rings. The homomorphic image of a tQFLFSR of 𝜙(𝑅1) is a tQFLFSR of 

𝜙(𝑅1) = 𝑅2.  

Proof. Let 𝜇 be a tQFLFSR of 𝑅1. We have to prove that 𝛾 is tQFLFSR of 𝑅2. 

Now, for 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑅2 and 𝑞 ∈ 𝑄. 

𝜚𝛾𝑡 (𝜙(𝑥) − 𝜙(𝑦), 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥 − 𝑦), 𝑞) = 𝑚𝑖𝑛𝜚𝛾{(𝜙(𝑥 − 𝑦), 𝑞), 𝑡} 

≥ 𝑚𝑖𝑛𝜚𝛾{𝜙(𝑥 − 𝑦, 𝑞), 𝑡} = 𝑚𝑖𝑛{𝜚𝛾𝑡(𝜙(𝑥), 𝑞), 𝜚𝛾𝑡(𝜙(𝑦), 𝑞)}. 

Also, for 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑅2 and 𝑞 ∈ 𝑄,  

𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥𝑦), 𝑞) = 𝑚𝑖𝑛{𝜚𝛾(𝜙(𝑥𝑦), 𝑞), 𝑡} 

≥ 𝑚𝑖𝑛{𝜚𝛾 (𝑥𝑦, 𝑞), 𝑡} = 𝑚𝑖𝑛{𝜚𝛾𝑡(𝑥, 𝑞), 𝜚𝛾𝑡(𝑦, 𝑞)}.  

Thus, 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≥ 𝑚𝑖𝑛{𝜚𝛾𝑡(𝜙(𝑥, 𝑞), 𝜙(𝑦, 𝑞))}. 

Similarly, in can be prove that 

𝜗𝛾𝑡(𝜙(𝑥) − 𝜙(𝑦), 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝛾𝑡(𝜙(𝑥), 𝑞), 𝜗𝛾𝑡(𝜙(𝑦), 𝑞)} and  

𝜗𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) ≤ 𝑚𝑎𝑥{𝜗𝛾𝑡(𝜙(𝑥, 𝑞), 𝜙(𝑦, 𝑞))}. 

Hence 𝛾 is a tQFLFSR of 𝑅2.  

Theorem 3.9 Let 𝑅1, 𝑅2 be any two rings. The homomorphic image of a tQFLFNSR of 𝑅1 is a tQFLFNSR of 

𝜙(𝑅1) = 𝑅2.  

Proof. Since 𝜇 is a tQFLFSR of 𝑅1. We have to prove that 𝛾 is a tQFLFSR of 𝑅2. 

Now for 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑅2 and 𝑞 ∈ 𝑄, clearly 𝛾 is tQFLFSR of 𝑅2. 

Also, 𝜇 is tQFLFSR of 𝑅1.  

Again, 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜚𝛾𝑡(𝜙(𝑥𝑦), 𝑞) ≥ 𝜚𝜇 𝑡(𝑥𝑦, 𝑞) 

= 𝜚𝜇 𝑡(𝑦𝑥, 𝑞) = 𝜚𝜇 𝑡(𝜙(𝑦𝑥), 𝑞) = 𝜚𝜇 𝑡(𝜙(𝑦)𝜙(𝑥), 𝑞). 

Thus, 𝜚𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜚𝛾𝑡(𝜙(𝑦)𝜙(𝑥), 𝑞) for all 𝜙(𝑥), 𝜙(𝑦) ∈ 𝑅2 and 𝑞 ∈ 𝑄.  

Also, 𝜗𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜗𝛾𝑡(𝜙(𝑥𝑦), 𝑞) ≤ 𝜗𝜇 𝑡(𝑥𝑦, 𝑞) = 𝜗𝜇 𝑡(𝑦𝑥, 𝑞) = 𝜗𝛾𝑡(𝜙(𝑦)𝜙(x), 𝑞). 

Thus, 𝜗𝛾𝑡(𝜙(𝑥)𝜙(𝑦), 𝑞) = 𝜗𝛾𝑡(𝜙(𝑦)𝜙(𝑥), 𝑞). 

Therefore, 𝛾 is tQFLFSR of 𝑅1. 

Conclusion:- 

In order to deal with cognitive uncertainty in a more comprehensive manner, Fermatean fuzzy sets have emerged as 

a powerful extension of intuitionistic fuzzy sets, offering greater flexibility in modeling hesitation and imprecision. 

Motivated by these advantages, this paper focuses on the study of t-Q Fermatean ℒ-fuzzy ideals in the context of 

normal rings. We introduce and investigate their structural characteristics, establishing several important properties 

related to their homomorphic behavior. These results not only enrich the theoretical foundation of Fermatean fuzzy 

algebra but also provide useful insights for further applications. Looking ahead, a promising direction for future 

research lies in extending the framework to incorporate the concept of rough Fermatean fuzzy sets. In particular, we 

aim to develop and prove a number of significant theorems concerning rough Fermatean fuzzy sets in rings, which 
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would further enhance the applicability of this theory in handling uncertainty and approximation in algebraic 

systems. 
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