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Introduction:- 
Cryptocurrency markets are characterized by a decentralised consensus system and stem from blockchain technologies 

which are shared immutable ledgers that facilitate the transparent dsitribution of information and recording of 

transactions. Cryptocurrencies that are not bitcoin are considered altcoins, which can be classified into three major 

categories: blockchain-native tokens like Ethereum and Solana; meme-coins that are speculative and use a blockchain-

native token as a base; and stablecoins, that are cryptocurrencies tied to a stable asset like the US dollar or the Euro.  

Secondly bubbles are often associated with technological innovation because of uncertainty about the technology. The 

cryptocurrency market being in a bubble could be due to their nature as a financially innovative tool. Third, their 

limited supply helps create a bubble as scarcity is an important aspect of bubble formation. Cryptocurrencies are also 

highly affected by external shocks including bans, taxes (Griffith & Clancey-Shang, 2023) and social media posts all 

off which have led to sharp changes (more than 10%) of cryptocurrency prices in the matter of hours. Sentiment about 

cryptocurrencies becoming legal tender or more widely expected can set off uncontrolled spikes in cryptocurrency 

prices. Studying chaos in cryptocurrency markets will help regulating cryptocurrencies through identifying volatility 

as deterministic or random.  

Corresponding Author:- Avinash Balakrishnan 

 

The growth of cryptocurrencies as financial instruments have raised 

questions about modelling their markets due to a high volatility and 

speculative nature. This study investigates the presence of deterministic 

chaos in the daily price movements of Bitcoin (BTC), Ethereum (ETH), 

and Solana (SOL), from April 2020 to February 2025. Employing a 

multi-faceted methodological approach, the study conducted Brock-

Dechert-Scheinkman (BDS) tests for non-linearity, calculated the 

Largest Lyapunov Exponents (LLE) to gauge sensitivity to initial 

conditions, performed Recurrence Quantification Analysis (RQA) to 

detect deterministic structure, and derived Hurst Exponents to assess 

long-term memory. Post-filtering, significant non-linearity persisted in 

the BDS test. LLEs indicated dynamics at the “edge of chaos,” but RQA 

and Hurst Exponents revealed strong deterministic structures. 

Collectively, these results reveal characteristics of a low-dimensional 

chaotic system, challenging the random walk hypothesis and implying 

a degree of short-term predictability with significant implications for 

quantitative finance and regulation. 
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Chaos theory deals with complex systems that have behaviour which is highly sensitive to changes in starting 

conditions. Chaotic systems seem to be random as they can’t be controlled but can be predicted through governing 

functions. Thus, chaos is deterministic as a group of chaotic motions can work together to create a predictable curve. 

An increase in the number of groups can lead to a higher accuracy in the chaotic model; hence, in large samples of 

chaotic elements, unsuspecting regularity is displayed. Chaos is non-linear and acts in fractal dimensions and follows 

a butterfly effect, with small changes in starting conditions leading to drastic differences in the results - which can 

magnify small, initial errors. Fractals are never-ending patterns that are infinitely complex and self-similar across 

different scales. They are created by repeating a simple process in an ongoing feedback loop. They are also dynamic 

systems that are driven by recursive phenomena and exist in familiar dimensions. Therefore, chaos theory is not the 

study of disorder but the study of the transitions between order and disorder.  

Chaotic markets are much like helium balloons, and two points that were next to each other can end up far apart due 

to mixing, and they can’t be unmixed, much like two molecules of helium within the balloon. Additionally, chaotic 

systems are often formed due to feedback. This is used as the first link between the cryptocurrency market and chaotic 

systems. There is a positive relationship between the price and the number of buy orders of a cryptocurrency (Kaur, 

Jain, & Sood, 2023) due to effects such as herding and the fear of missing out (FOMO) on cryptocurrency gains. 

Another connection between chaotic systems and the cryptocurrency market can be established by the speculative 

bubbles surrounding these markets. Speculative bubbles exist outside the lens of traditional economics (Brodie) and 

thus have to be governed by chaos to establish a logical appearance of events in such a bubble. Therefore, 

cryptocurrency markets many of which can be considered as speculative bubbles, are chaotic in nature.  

To further prove chaos, especially in established, less volatile currencies, one can observe that they exhibit fractal 

fluctuations. Past price movement affects future prices, a phenomenon called long-term dependence and price or 

volatility movements look similar at varying time scales, both of which are characteristics of fractal fluctuations. These 

occur because traders have different time-horizons, reacting differently to the same information; information flow 

often leads to predictable price changes, adding to its fractal nature. To test cryptocurrencies’ fractal-like nature, one 

can calculate their Hurst exponents to see if they have long-term memory and autocorrect their systems. A high fractal 

dimension indicates increased complexity and can be calculated by subtracting the Hurst exponent from 2. This can 

be used to show whether cryptocurrency markets follow long-term chaotic trends and to predict their complexity.  

This study aims to identify whether cryptocurrency markets follow the efficient market hypothesis and see if they can 

be modelled through chaotic systems. Moreover, it seeks to test different models to see their effectiveness with existing 

data and establish chaotic trends. To the author’s best knowledge, no research has been done to develop chaotic 

systems for the cryptocurrencies Bitcoin, Ethereum and Solana. The data includes the OHLC prices, trading volume 

and market capitalisation. The data starts from April 11th 2020 and ends on 9th February 2025, giving 1765 data points. 

The paper is structured as follows, Section 2 will showcase the methodology used to test for chaos - BDS Test, 

Lyapunov Exponents, Recurrence Quantification Analysis and Hurst Exponents; Section 3 processes and analyses the 

empirical data; Section 4 provides a conclusion to the study. 

Methodology:-  

The analysis will focus on three major cryptocurrencies: Bitcoin (BTC), the largest by market capitalization and a 

benchmark for the broader market; Ethereum (ETH), the second-largest, renowned for its smart contract functionality; 

and Solana (SOL), a newer blockchain platform recognized for its high-speed transactions and low fees. Data is 

sourced from Yahoo Finance and the daily closing price will be used to test for chaos using the following 

methodologies - BDS Test, Lyapunov Exponents, Recurrence Quantification Analysis and Hurst Exponents.  

 

Brock-Dechert-Scheinkman Test: 

The BDS Test is a method to identify dependency in any time series, it helps prove non-linearity, a key instrument in 

identifying chaos. It tests a null hypothesis of independent and identically distributed (i.i.d) against an unspecified 

alternative (Kuok Kun Chu, 2001). If the data rejects the null hypothesis it shows that the data exhibits a non-linear 

form of dependence. The BDS test is not a direct test for chaos but one for nonlinearity, provided for the removal of 

any form of linear dependence. In autoregressive (AR) and ARCH (Autoregressive Conditional Heteroscedasticity) 

models, the BDS test has low power, leading to failure in detecting dependence structures. The ARMA 

(Autoregressive Moving Average) or ARIMA (Autoregressive Integrated Moving Average) models can be used to 

remove linear components and leave behind residuals which are free of linear dependence. GARCH (Generalized 

Autoregressive Conditional Heteroscedasticity) models are used to capture time-varying volatility. By fitting a 
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GARCH model, the study removes the nonlinear dependence caused by changing volatility, leaving behind residuals 

that should ideally be free of both linear and nonlinear dependence.  

 

With observations of a time series xt , t = 1, . . . T , the m-history of the time series is  

𝑥𝑡
𝑚 = (𝑥𝑡 , 𝑥𝑡+1, 𝑥𝑡+2, . . . . , 𝑥𝑡+𝑚−1) 

The sample correlation integral for a time series which is embedded in dimension m (which is equal to 1) and with an 

 > 0 is 

𝐶1 =  
2

𝑛(𝑛 − 1)
∑ ∑ 𝐼(|𝑥𝑗 − 𝑥𝑘| ≤ 𝜀)

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

  

where n = (T – m +1) and I(S) is a boolean indicator with a value of 1 if the statement is true and 0 if not. Hence, if  

is chosen to be higher than all x values, C1 = 1 and if  is lower than x values, C1 = 0. In practice, ε is set in terms of 

standard deviations of the data.  

The lth order correlation integral finds the probability that l consecutive points in a time series are close to each other 

within a specified distance . It extends the basic correlation integral to higher dimensions by considering sequences 

of points.  

Thus, the correlation integral Cl  is found to be 

𝐶𝑙 =  
2

𝑛(𝑛 − 1)
∑ ∑ ∏ 𝐼(|𝑥𝑗+𝑟 − 𝑥𝑘+𝑟| ≤ 𝜀)

𝑙−1

𝑟=0

𝑛

𝑘=𝑗+1

𝑛−1

𝑗=1

 

Mathematically the lth order correlation integral is also defined as 

𝐶𝑙() = P r(|𝑥𝑗 − 𝑥𝑘| < , |𝑥𝑗+1 − 𝑥𝑘+1| <  , . . . . , |𝑥𝑗+𝑚−1 − 𝑥𝑘+𝑚−1| <  ) 

The null hypothesis {xt} in the BDS test states that the increments of the time series are independent and identically 

distributed (i.i.d) with the probability being the product of individual probability with independent observations. 

Therefore the probabilities E(C1) and E(Cm) are equal to 𝐶1 and 𝐶1
𝑚 respectively.  

The standard deviation 𝝈𝒏 is calculated as 

𝜎𝑛
2 = 4 {𝛽𝑛 + 2 ∑ 𝛽𝑛−𝑗 × 𝛼2𝑗

𝑛−1

𝑗=1

+ (𝑛 + 1)2𝛼2𝑛 − 𝑛2𝛽𝛼2𝑛−2}  

where 𝜶 and 𝜷 are 

𝛼 =  
1

𝑛2
∑ ∑ 𝐼𝑗,𝑘

𝑛

𝑘=1

𝑛

𝑗=1

, 𝛽 =  
1

𝑛3
∑ ∑ ∑ 𝐼𝑖,𝑗𝐼𝑗,𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

 

The variance can be simplified to become 

𝜎𝑛
2 = 4(𝛽 − 𝛼2)2 ∑ 𝑗2𝛽𝑛−𝑗−1𝛼2(𝑗−1)

𝑛−1

𝑗=1

, 𝑛 ≥ 2 

This can be used to calculate the deviation for the dataset of Cryptocurrency prices, to see if it follows a non-linear 

dependent trend.  

Lyapunov Exponents:- 

Lyapunov exponents quantify the sensitive dependence on initial conditions in a dynamical system. They measure the 

exponential rate at which nearby trajectories diverge (or converge) in phase space. If two price trajectories start at an 

infinitesimally close level, their separation 𝛿(𝑡) will grow as |δ(𝑡)| ≈ 𝑒λ𝑡|δ(0)| where  is the Lyapunov exponent. 

Lyapunov exponents are an essential tool to predict chaos as the Largest Lyapunov Exponent (LLE) model can be 

used to determine it. A positive LLE indicates chaos indicating unpredictability and large divergences with small price 

differences (Raubitzek & Neubauer, 2021).  On the other hand λ ≤ 0 suggests convergence and bounded trajectories. 
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Therefore, a higher Lyapunov exponent indicates strong chaos, while  𝜆 → 0 suggests stochastic dynamics. The 

significance of difference values of 𝜆 are explained below: 

• 𝜆𝑚𝑎𝑥  >  0 → Chaotic dynamics which lead to divergence in trajectories. This example is mapped in Figure 1.  

•  𝜆𝑚𝑎𝑥 =  0 → Stochastic dynamics which indicate at the system is at the edge of chaos.  

• 𝜆𝑚𝑎𝑥 <  0 → The system has stable dynamics with converging trajectories (Soloviev & Bielinskyi, 2020).  

 

Figure 2.2.1: Divergence of two trajectories 

For unknown systems that are dynamical in nature 𝜆 can be estimated using time-series data. This is true for the 

cryptocurrency market as well, and can be done through phase-space reconstruction to track how quickly trajectories 

separate. To computationally calculate the Largest Lyapunov Exponents (LLE) of the time series, the (Rosenstein, 

Collins, & De Luca) method is used. It initially constructs delay vectors 𝑥𝑖 = [pi, ; pi + τ, ; … , ; pi+(m−1)τ] with τ being 

the time delay and 𝑚 the embedding dimension. For each point 𝑥𝑖 there is a point 𝑥𝑗 which is its nearest neighbour 

∀ i ≠  j. Therefore, the initial separation can be modelled as: 

𝑑(0) = 𝑥𝑖 − 𝑥𝑗 

Hence for any time 𝒕 the distance 𝒅(𝒕) = 𝜹(𝒕)is: 

𝑑(𝑡) = 𝑥𝑖+𝑡 − 𝑥𝑗+𝑡 

We also know that𝒅(𝒕) = 𝒆𝝀𝒕𝒅(𝟎). With a small increase in 𝒕 the equation is modified into: 

𝑑(𝑡 + ∆𝑡) = 𝑒𝜆∆𝑡𝑑(𝑡) 

Taking the natural logarithm on both sides forms the equation: 

ln 𝑑(𝑡 + ∆𝑡)  =  ln 𝑑(𝑡) + 𝜆∆𝑡 

𝜆 =  
ln 𝑑(𝑡 + ∆𝑡) − ln 𝑑(𝑡) 

∆𝑡
 =  

1

∆𝑡
𝑙𝑛

𝑑(𝑡 + ∆𝑡)

𝑑(𝑡)
 

The ensemble average for 𝒍𝒏
𝒅(𝒕+∆𝒕)

𝒅(𝒕)
 can be used to find 𝝀𝒎𝒂𝒙: 

𝜆𝑚𝑎𝑥  =  
1

∆𝑡
〈𝑙𝑛

𝑑(𝑡 + ∆𝑡)

𝑑(𝑡)
〉   

This can also be written as: 
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𝜆𝑚𝑎𝑥  =
1

∆𝑡
〈𝑙𝑛

𝑥𝑖+𝑡+∆𝑡 − 𝑥𝑗+𝑡+∆𝑡

𝑥𝑖+𝑡 − 𝑥𝑗+𝑡

〉 

The magnitude of λ indicates how fast predictability decays: for example, a positive Lyapunov exponent in a crypto 

price series would imply that forecasting errors grow exponentially over time, limiting long-term prediction 

accuracy. Thus a 𝜆𝑚𝑎𝑥  value above 0, determines chaos rather than random volatility in the markets for Bitcoin, 

Ethereum and Solana. The minimum time separation sets a lower bound on the time interval between pairs of points 

that are considered neighbours in the reconstructed phase space. It reduces the effect of autocorrection and smoothness 

of the time-series which can lead to points being closer than otherwise. The minimum time separation will henceforth 

be referred to as min_tsep.  

Recurrence Quantification Analysis: 

Recurrence Quantification Analysis is a tool which employs pattern recognition to analyse time-series and create 

recurrence plots (Unal, 2022). RP and RQA help showcase the structure of recurrence in a phase space, with RP being 

used to visualise when a trajectory in a phase space returns close to a previous state. This can dictate whether a dataset 

is chaotic or stochastic in nature. RPs can be analysed through visual means. To find the RP of an m − dimensional 
state space {xi}i = 1

N , the recurrence matrix RPi,j is defined as: 

RPi,j = Θ(T−∥ xi − xj ∥)  
where Θ is the Heaviside step function and T is the threshold value. If the distance between vectors xi and xj is less 

than the threshold value, RPi,j is equal to 1. Plotting RPi,j as black and white dots for its respective values of 1 and 0, 

creates the recurrence plot. Adjacent points in RPs often form diagonals, indicating the recurrence of a vector in the 

state space. Vertical or horizontal lines indicate vectors being in the same state space over time. RPs with long 

diagonals indicate chaos or determinism while long vertical or horizontal lines, along with many isolated points 

suggest the presence of a stochastic system.  

RQA goes beyond RP in that it quantifies the number and duration of recurrences which can be used to find out if a 

system is chaotic or not. There are multiple measures used in RQA including: the recurrence rate, determinism (the 

percentage of recurrence points which form a diagonal line with a minimum length), average length of diagonal lines 

and divergence (which is related to the length of the longest diagonal line). This paper will focus on determinism, 

recurrence rate and divergence. The recurrence rate is the density of points in an RP: 

𝑅𝐸𝐶 =  
1

𝑁2 ∑ 𝑅(𝑖, 𝑗)

𝑁

𝑖,𝑗 = 1

 

𝑅𝐸𝐶 values between 5 and 15% indicate chaos while values below 5% suggest true randomness and values above 

15% are indicative of periodicity. Determinism is calculated through the formula: 

𝐷𝐸𝑇  =  
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

 

where 𝑃(𝑙) is the frequency distribution of the lengths 𝑙 of the diagonal lines. It measures the predictability of a 

changing system and a higher value of 𝐷𝐸𝑇 is indicative of a more chaotic system (𝐷𝐸𝑇 ≫ 0.5). Divergence is 

calculated as: 

𝐷𝐼𝑉 =  
1

𝐿𝑚𝑎𝑥
 

This can also be used as an estimator for 𝜆𝑚𝑎𝑥 the maximal Lyapunov Exponent as both indicators follow a common 

trend. A system is chaotic when 0.05 < DIV < 0.3.  

Hurst Exponents: 

The Hurst Exponent H is a measure of the long-term memory of a time series. It uses the rescaled range analysis 

(R/S analysis) to determine the Hurst Exponent H (Raubitzek & Neubauer, 2021). It was originally introduced in 

hydrology (Hurst, Black, & Simaika, 1965) but later used for detecting fractal behaviour in finance. H is related to the 
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roughness and persistence of a time series. It is found through scaling R/S over different time intervals. For a time 

series length N the rescaled range is computed for sub-periods length n. The range of cumulative deviations from the 

mean R(n) is divided by the standard deviation S(n), and the expected rescaled range behaves in the following way:  

E [
𝑅(𝑛)

𝑆(𝑛)
] ∝ nH 

𝐸 [
𝑅(𝑛)

𝑆(𝑛)
]  =  𝐶𝑛𝐻 

where 𝑪 is a constant. 

𝑯 can have the following values:  

• 𝐻 = 0.5 which suggests randomness, with no fractal structure or long-term dependency. A time-series will follow 

the Efficient Market Hypothesis (Macrosynergy, 2023).  

• 0 ≤ 𝐻 < 0.5 which indicates poor memory and anti-persistence. This also suggests mean-reversion where 

increments are negatively autocorrected. A past increase in price suggests a future fall in prices.  

• 0.5 < 𝐻 < 1 which represents long memory or a persistent series. For these values of 𝐻 the series will continue 

its previous upward or downward trend.  

The Hurst Exponent can also be calculated through a detrended fluctuation analysis (DFA). It measures how 

fluctuations in log-transformed data evolve with time lag 𝜏. DFA uses the variance of 𝜏, 𝑉𝑎𝑟(𝜏) for a given time 𝑡 

through the following way: 

𝑉𝑎𝑟(𝜏)  =  〈|𝑙𝑜𝑔(𝑡 + 𝜏) − 𝑙𝑜𝑔(𝑡)|2〉 ~ 𝜏2𝐻 

This study will use the DFA method to calculate the Hurst Exponent for the given dataset of cryptocurrencies. This is 

because it can filter out disturbances and white noise within the time-series.    

 

Data Processing and Analysis: 

This study focusses on 3 cryptocurrencies namely Bitcoin (BTC), Ethereum (ETH) and Solana (SOL), and has 1765 

datapoints of daily OHLC prices starting from April 11th 2020 and ending on 9th February 2025. To ensure a fair test 

the daily closing price will be the only tested indicator over the 4 tests for chaos. This section will present the raw 

dataset (Table 3.1), containing the sample size, periods, mean, standard deviation and skew for BTC, ETH and SOL. 

The mean closing prices will be used to create data tables, 3.2 – Empirical Results of the BDS-test, 3.3 – Maximum 

Lyapunov Exponents, 3.4 – Recurrence Rate, Determinism and Divergence, and 3.5 – Hurst Exponent. This data will 

be analysed in Section 3, to determine whether the three currencies are follow chaotic market trends, and the extent to 

their chaos.  

 

Tests were conducted through Python Code using the numpy arrays, nonlinearTseries, arch, panda and nolds 

packages. All data was processed on Microsoft Visual Studio Code:  

Table 3.1 shows that the 3 cryptocurrencies used have positive returns in the selected time period and the ticker SOL 

has had the greatest average annual returns at 190.8%, followed by SOL (67%) and BTC (55.9%) has had the lowest, 

yet high, returns. Counterintuitively, ETH has the lowest volatility with a coefficient of variation of 51.72, this is 

expectedly followed by BTC (56.65) and then SOL (98.35). Therefore, the theory that a higher risk is always 

associated with a higher return is disproved due to ETH having a lower risk and higher returns than BTC. The 

asymmetric price cycles and speculative market behaviour leads to a positive skew for all 3 cryptocurrencies, with 

ETH having the lowest skew at 0.031.  

 

Currency Mean Average 

Return (%) 

Standard 

Deviation 

Variation 

Coefficient 

Skewness 

BTC 39316.64 55.97 22271.37 56.65 0.812 

ETH 2110.8 67.03 1091.72 51.72 0.031 

SOL 71.91 190.8 70.73 98.35 0.834 
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The daily closing price data for BTC, ETH and SOL were selected to be analysed in the BDS-Test, Lyapunov 

Exponents, Recurrence Quantification Analysis and Hurst Exponent tests. The BDS test was used to detect non-linear 

dependencies within the time series, a tool to represent chaotic behaviour. The results of the test for the 3 

cryptocurrencies over the given 1765 entries are displayed in table 3.2.  

 

Cryptocurrency 

ADF 

Statistic ADF p-value 

ARMA 

Order ARMA AIC 

LM-test (ARMA 

Res.) p-value 

BTC -13.179 0 (1,1) -7163.53 0.1793 

ETH -12.539 0 (1,1) -6241.76 0.0097 

SOL -8.894 0 (1,1) -4516.54 0.0827 

 

 

 

Cryptocurrency GARCH AIC Log-Likelihood Volatility Persistence Mean Return 

BTC -10006.8 5007.41 0.98 0.02930 

ETH -20387.2 10197.6 0.98 0.00213 

SOL -29583.0 14795.5 0.98 0.00072 

 

 

 

The Augmented Dickey-Fuller (ADF) statistic shown in table 3.2 indicates the stationarity in data. The fact that the 

ADF is highly negative and the p-value of 0 rejects the null-hypothesis that there is a unit root. Thus, it indicates 

stationarity and that the three cryptocurrencies are suitable for further filtering through the ARMA-GARCH system.  

Optimal fit is shown because the ARMA Order is (1,1) when fitted to returns. There is more autocorrection in ETH 

than in BTC or SOL due to its lowed LM-test p-value, which suggests a higher degree of residual autocorrection.  

The ARMA AIC (Akaike Information Criterion) is used to compare the quality of a statistical model, with a lower 

ARMA representing a higher quality, better-fitting model. Therefore BTC, which has the lowest ARMA AIC value, 

has the most efficient and best-fitting model.  

 

The ARMA (1,1) relationship fits BTC returns better than it does ETH or SOL. The lower GARCH AIC on ETH and 

SOL show a better balance between complexity and model fit. These findings are supported by the log-likelihood 

which shows the likelihood of the observed data given the model parameters. All 3 cryptocurrencies have very 

persistent volatility, with a persistence of 0.98, thus this GARCH filtering is used to remove said predictable volatility 

to generate standardised residuals. This filtering will prevent spurious detection of non-linearity, associated with high 

levels of volatility, through the BDS test. Thus, any evidence of non-linearity on the BDS test data after ARMA-

GARCH filtering will be indicative of chaos.  

Table 3.1 – Sample Data for 3 Currencies 

Table 3.2 – ARMA-GARCH Filtering  

Table 3.3 – ARMA-GARCH Filtering  
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The Figures 3.1 – 3.3 show the variation of GARCH residuals for the three cryptocurrencies, which indicate the 

difference between the actual returns and the model’s fitted mean. The majority of the plots are centred around 0, 

indicating that the mean returns are captured well across the 3 plots. The sudden spikes and dips suggest that returns 

in those periods are significantly larger/smaller respectively, than predicted through the GARCH model. BTC’s lower 

volatility of GARCH residuals also shows its increased maturity, liquidity and market strength, making it easier for 

the GARCH model to assess and eliminate its inherent volatility. The market for BTC though has a period of higher-

than-average volatility between days 300 and 500, which disproportionately affects its log-likelihood and GARCH 

Figure 3.1 – BTC GARCH 

Figure 3.2 – ETH GARCH 

Figure 3.3 – SOL GARCH 
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AIC leading to worse fitting models. Table 3.4 shows the post BDS coefficients for the dataset for the embedding 

dimensions 2 through 5 before and after GARCH filtering.  

 

BTC ETH SOL 

Dimension Raw  Filtered  Raw  Filtered  Raw  Filtered  

2 8.2265 0.0224 7.5174 0.0013 9.5275 0.0191 

3 10.4430 0.0413 9.2074 0.0076 13.1089 0.0763 

4 10.8760 0.0783 9.3447 0.0152 14.3602 0.0841 

5 10.7291 0.0881 9.0931 0.0147 14.7005 0.0896 

 

The data shows a strong amount of non-linearity in the raw data, but the drastic decrease between the raw and filtered 

data indicates the extent of the volatility of all three cryptocurrencies. The amount of non-linearity decreases 

significantly when accounting for volatility but still exists at a smaller scale. Therefore, this study can conclude that 

much like the studies on other financial markets, the Dow Jones Industrial Average (Diaz, 2013) and the S&P 500 

(Peters, 1991) the market for cryptocurrencies also follows chaotic trends. Since the BDS test can’t detect chaotic 

properties, further tests are carried out to assess the levels of non-linearity amongst BTC, ETH and SOL.  

Tables 3.5 and 3.6 shows the results of the test for the Largest Lyapunov Exponent for BTC, ETH and SOL. It will 

also be used to test for chaos on the daily return and rate of return for BTC, ETH and SOL to see if the price changes 

are also chaotic in nature. As mentioned previously, a positive value for the Largest Lyapunov Exponent will indicate 

chaos in a time series. This calculation used the Rosenstein et al method, with an optimised time lag of 73 and a 

min_tsep of 544 for BTC. This suggests that there were 1090 trajectories made in the time series. This was repeated 

to get table 3.5, which shows the number of trajectories, the min_tsep and the time lag for the closing prices of BTC, 

ETH and SOL.  

Cryptocurrency Trajectories Min_tsep Lag 

Bitcoin (BTC) 1090 544 73 

Ethereum (ETH) 991 494 84 

Solana (SOL) 1000 499 83 

 

 

The processes used for Table 3.5 were repeated for the time series of the daily absolute returns and the daily rate of 

returns for BTC, ETH and SOL.  

Cryptocurrency Price Daily Returns Rate of Returns 

Bitcoin (BTC) 0.00599829 0.036222402 0.034321986 

Ethereum (ETH) 0.00585156 0.033160211 0.033418709 

Solana (SOL) 0.00815429 0.039763529 0.030758403 

 

Table 3.5 – Metrics for the Rosenstein et al Method (price) 

Table 3.6 – Largest Lyapunov Exponents 

Table 3.4 – BDS Test Results 
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Table 3.6 shows the LLEs for 9 time-series’ are positive which would indicate chaos, but they are very close to 0 (less 

than 0.1 from 0) so stochastic dynamics are more evident when assessing the daily prices and returns for the 

cryptocurrencies. Distinguishing deterministic chaotic dynamics from stochastic noise is nontrivial in financial 

systems where noise and nonlinearities are inherently intertwined. Therefore, these time-series still retain a certain 

degree of chaos which can be determined by the size of the exponent (with larger LLEs representing a higher level of 

chaos). It is evident that the time-series for daily returns and rate of returns are more chaotic than the price time-series. 

The difference operators, used to find returns and rates, amplifies stochastic noise leading to the higher sensitivity for 

returns when compared to prices, as shown in the data. In addition, price is a cumulative function which develops 

over time, so longer term trends tend to be less volatile leading to higher predictability and a higher degree of 

determinism. This also shows that the price of cryptocurrencies tends to be volatile and not highly predictable in the 

short run. Further, financial markets are complex adaptive systems that are subject to the effects of exogenous factors, 

making it tougher to directly ascribe the dynamics observed to some low dimensional deterministic process. Hence 

positive LLEs provide suggestive evidence of nonlinear structure, but fall short of proving that chaos is present on 

their own. This test shows that the time-series are at the edge of chaos and randomness. Therefore, this test is used in 

tandem with the BDS-test, Hurst Exponents and the Recurrence Quantification Analysis (RQA). 

RQA has been conducted through three indicators: recurrence rate, determinism and divergence all of which are used 

to suggest chaos; with the data for said tests provided in Table 3.7. This data is more helpful to establish whether 

randomness or chaos is more prevalent in the data for daily prices of BTC, ETH and SOL.  

Cryptocurrency Recurrence Rate (%) Determinism (%) Divergence 

BTC 6.974 99.9954 0.002529 

ETH 6.885 99.9987 0.002202 

SOL 11.084 99.9919 0.003184 

 

 

The RQA data shows a very clear chaotic trend amongst all 3 cryptocurrencies which is in line with the theory that 

financial markets are inherently chaotic in nature. The recurrence rates of BTC, ETH and SOL are all between 5 and 

15%, which is the range for chaos, as previously established. Additionally, the high determinism shown of over 99% 

in all three cases, suggests strong deterministic behaviour which is typical of chaotic systems. Finally the low 

divergence indicates high levels of predictability, especially in short time periods. Thus, the cryptocurrency market 

for all 3 coins are shown to be chaotic. The daily recurrence rates for BTC, ETH and SOL are shown below in Figures 

3.4, 3.5 and 3.6.  

 

 

 

 

 

 

 

 

 

 

 

Table 3.7 – Recurrence Quantification Analysis 

Figure 3.4 – Daily Recurrence Rate (BTC)  
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Figures 3.4-3.6 clearly show that the majority of recurrence rates are between the chaos and randomness thresholds 

of 5 and 15% respectively. There are occasional spikes in the recurrence rate entering the region of periodicity. This 

is due to the high volatility of cryptocurrency markets, where shocks are common. Thus, whenever market recovery 

occurs after a shock period-like behaviour is followed. Additionally, the prevalence of algorithmic trading systems 

doubles-down the periodicity as multiple systems synchronise and act similarly post said shocks. The maximum 

recurrence rate and the fluctuation of the recurrence rate are both positively related with the volatility of the 

cryptocurrency. Hence, BTC and ETH with lower volatility, have a maximum recurrence rate between 22.5 and 

27.5%, while the much more volatile SOL has a maximum of over 30%.  

Table 3.8 shows the Hurst exponent test for chaos on BTC, ETH and SOL – for both raw, scattered and ARMA-

residual values. This helps showcase the difference in chaotic tendencies before and after normalising for linear 

dependency.  

 

 

 

Figure 3.5 – Daily Recurrence Rate (ETH)  

Figure 3.6 – Daily Recurrence Rate (SOL)  

Figure 3.4 – Daily Recurrence Rate (BTC)  
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Cryptocurrency Original Hurst 

Exponent 

Hurst ARMA Residuals Hurst Scrambled Series 

Bitcoin (BTC) 0.5555 0.5658 0.5492 

Ethereum (ETH) 0.5554 0.5735 0.5283 

Solana (SOL) 0.5303 0.547 0.575 

 

 

All Hurst Exponent values are above 0.5, with BTC and ETH exhibiting a greater degree of persistence when 

compared to SOL’s higher randomness in the original series. The data is then modified to account for ARMA residuals, 

removing any linear dependency, helping reduce SOL’s randomness. Additionally, when the datapoints are scrambled, 

removing all temporal calculations and fractal properties – the more chaotic BTC and ETH end up coming closer to 

randomness while the more random SOL becomes more chaotic. Therefore, no matter the modifications the Hurst 

Exponent values for the three cryptocurrencies all indicate a degree of chaos and persistence. This opposes the notion 

that removing linear dependency will help reduce chaos. On the other hand, all values of the exponent are near 0.5, 

which suggest a low degree of overall chaos or persistence for the currencies. This could be because of some random 

movements which often occur in cryptocurrency markets, due to the multitude of factors that impact it, the irrationality 

of investors and the high degree of unpredictability associated with financial markets in the short term. Thus, 

cryptocurrencies showcase mixed dynamics of chaos and randomness with chaos taking the edge as the more dominant 

trait in our dataset. Finally, financial markets are never known to be highly predictable, but these values of the Hurst 

Exponent suggest that they are more often than not predictable, but when they are it is to a low degree, so trends are 

not strong nor sustained over long periods. 

Conclusion:- 
This study tests for chaos in 3 cryptocurrencies Bitcoin (BTC), Ethereum (ETH) and Solana (SOL) through 4 

commonly used tests for chaos namely the BDS-test, DFA-analysis of Hurst Exponents, Largest Lyapunov Exponents 

and Recurrence Quantification Analysis. The research uses 1765 datapoints which indicate daily closing prices over 

a 5-year period, due to higher levels of accuracy being associated with long-series data while testing for chaos. The 

BDS test results for the raw data show high degrees of chaos, and post filtering non-linearity is maintained at lower 

levels. The test for LLE shows chaos amongst all indicators: the price, the absolute return and the rate of return. The 

almost 0 LLE for price shows that the data for the 3 cryptocurrencies are at the edge of chaos and randomness, but the 

degree of chaos amongst the return parameters are higher showing clearer non-linear trends. The recurrence 

quantification analysis tests for recurrence rate show chaotic trends with mean values between 5 and 15%, but the 

daily fluctuations are indicative of the high degree of volatility of the financial tokens. The almost 100% determinism 

and almost 0% divergence are much stronger displays of the chaotic tendencies exhibited by the cryptocurrencies. 

Finally, the DFA-analysis for the Hurst Exponents testing the original series, scrambled series, and ARMA residuals 

all indicate non-linear trends with values above 0.5.  

 

These findings suggest that the movements of these three cryptocurrencies over this time period of 5 years are not in 

line with the random walk theory (Fama, 1965), which suggests that the prices for financial instruments (originally 

used for stocks) are random, so past movement cannot be used to predict a stocks future movement. It also shows that 

small initial differences can lead to vastly different outcomes. Through analysis of a larger time series the model’s 

accuracy can be improved, leading to a clearer indication of whether these markets are truly chaotic, as many tests 

found the closing prices to be at the edge of chaos and randomness. Finally, the tests could be conducted on average 

OHLC (open-high-low-close) prices, rather than only on the closing price to improve the model’s accuracy.   

 

 

 

 

Table 3.8 – Hurst Exponents  
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