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This article aims to examine the effect of climate change on the 

prevalence of acute respiratory infections (ARI) among children aged 0 

to 5 years in the Poro region, located in northern Cote d’Ivoire. 

Specifically, it seeks to contribute to the analysis of the influence of 

temperature and rainfall variations on child health. The endogenous 

variable is the prevalence of acute respiratory infection. The exogenous 

variables are official development assistance, public spending on 

education, mortality rate, temperature, and precipitation. The climate 

data used come from the NASA database, while health data are drawn 

from the Annual Health Situation Reports inCote d’Ivoire from 2007 to 

2020. A MIDAS-PDL/Almon model is applied using the nonlinear 

least squares method for econometric estimation. The results show that 

the prevalence of ARI among children aged 0 to 5 years in the Poro 

region is significantly linked to temperature and precipitation 

variations. Moreover, development aid and increased public spending 

on education help mitigate the effects of climate on the health of 

populations in Poro. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 

with credit to the author." 

…………………………………………………………………………………………………….... 

Introduction:- 
The Poro region, whose capital is Korhogo, is a particularly relevant study setting for analyzing the impact of 

climate change on the health of children aged 0 to 5 years. Indeed, located in the northeast of Cote d’Ivoire (CI), this 

region faces harsh climatic conditions. It has recorded temperature increases of 1.2°C over the past four years 

(Meteo Cote d’Ivoire, 2022). This phenomenon is exacerbated by prolonged droughts, making populations 

vulnerable to worsening living conditions, according to the World Bank Group (2022 and 2023). 

 

Compared to other regions, Poro shows disparities in healthcare provision. For example, Abidjan, the country’s 

economic capital and its surroundings, have a much more developed and relatively accessible healthcare system. 

Vaccination coverage there exceeds 85% (UNICEF, 2023), and the ratio of doctors per 100,000 inhabitants is 

significantly higher. In the north of the country, there are only 4 doctors per 100,000 inhabitants (RASS-CI, 2022). 

Moreover, according to data from the National Institute of Statistics (INS, 2022) and the Harmonized Survey on 
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Household Living Conditions (EHCVM, 2021–2022), the Poro region has a very high poverty rate (64.5%) 

compared to Abidjan (11.3%).Regarding climate, the situation is also contrasting. The Lagunes  region benefits from 

a more stable equatorial climate, while southern regions such as Goh-Djiboua or Belier have more moderate 

climates and relatively better-developed healthcare infrastructure, with vaccination coverage close to 80% and better 

access to healthcare (UNICEF, 2023). These regions also benefit from more regular rainfall and economic 

diversification, which reduces the impacts of climate change (FAO, 2023). In contrast, a region like Poro is exposed 

to rainfall deficits, which directly affect living conditions, particularly access to drinking water and food security 

(Meteo Cote d’Ivoire, 2022; Kafoudal, 2022). Demographically, Korhogo and its surroundings account for about 

17% of children under 5 years old (RGPH, 2021). Thus, in the Poro region, populations suffer from increased 

vulnerability and weak adaptive capacity in the face of extreme climate events, unlike regions in the south of the 

country. 

 

Furthermore, many researchers have already established the relationship between climate variability and the 

prevalence of malaria (Gouataine, 2018; Diomande et al., 2018 and 2019). However, very few studies have focused 

on establishing a link between climate variations and acute respiratory infections (ARI) in children under five years 

old, specifically in the Poro region.From the above, it is important to analyze the impact of climate variability on the 

prevalence of ARI among children under five years old in the Poro region. More specifically: what is the extent of 

the influence of temperature and rainfall variations on the prevalence of acute respiratory infections among children 

under five in Poro? Do education and health expenditures contribute to reducing this influence? 

 

At first glance, the hypothesis is that ARI prevalence increases among children under five when temperature and 

precipitation vary. However, efforts in educating populations and greater funding dedicated to the health sector help 

mitigate the effect of climate change on ARI in children in the Poro region.To address this concern, we rely on the 

Mixed Data Sampling (MIDAS) model, which allows the analysis of data with different frequencies. In fact, we 

have monthly climate data [temperature and precipitation] to be combined with annual data on acute respiratory 

infections in children.This study is part of ongoing research on the link between climate change, public health, and 

development economics. Moreover, it aims to draw attention to the vulnerability of children aged 0 to 5 years to the 

effects of climate change. Remaining within a scientific framework, the rest of the paper is structured into literature 

review, methodology, results, discussion, and conclusion. 

 

Literature Review: 
The literature review is organized into theoretical and empirical approaches. This choice reflects the need to adhere 

to scientific tradition. 

 

Theoretical Review: 

According to WHO (2020), ARIs refer to a set of diseases affecting the respiratory tract, occurring suddenly and 

manifested by symptoms such as cough, fever, rapid breathing, or suffocation. Climate change, as defined by the 

United Nations, refers to long-term variations in temperature and weather patterns. These variations, although 

natural, are increasingly exacerbated by human activities such as deforestation, and the combustion of coal, oil, and 

gas.The link between climate and ARI, via health in general, lies at the crossroads of several theoretical 

formulations, ranging from environmental exposure theory to economic approaches. According to Roux (2006) and 

François (2024), almost everyone is exposed to varying degrees to air or water pollution and food contaminants 

found in consumer products.  

 

For economist Grossman (2014), climate changes [temperature, humidity, pollution], by increasing exposure to 

health risks, act as an exogenous shock degrading the production function. Furthermore, when information is 

imperfect and incomes are low, populations may adopt short-term strategies that do not foster health resilience, such 

as delaying medical care or choosing housing exposed to extreme climatic conditions (Morgenstern, 1976; Arrow, 

1971). According to Becker (1964), child health is an essential component of human capital development; thus, the 

negative effects of climate not only compromise children’s survival but also their long-term educational and 

productive potential. For Dell et al. (2012), an increase in temperature is associated with lower agricultural 

productivity, reduced human capital [particularly through health effects], and losses in GDP per capita. 

 

Empirical Review: 

Research on the effect of climate on health mostly shows an influence of temperature on mortality. In developed 

countries, particularly in France, Pascal (2020) conducted a study over 18 urban areas between 2000 and 2010. The 
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results showed that cold and heat accounted for 3.9% and 1.2% of mortality, respectively. Between 1974 and 2013, 

nearly 32,000 additional deaths were recorded for 921 heat waves in France (Pascal, 2020). In Canada, Charron et 

al. (2008) blamed the development of disease-transmitting insects due to high temperatures.In Africa, the situation is 

no different. Studies such as Koh et al. (2023), conducted in 33 sub-Saharan African countries, and Djibo et al. 

(2021), conducted in Niger, highlight with concern the negative influence of adverse climatic conditions on 

population health. More specifically, Uwizeye et al. (2021) emphasized the impact of climate variability on acute 

respiratory infections (ARI) in children under 5 years old in Rwanda. 

 

In Cote d’Ivoire, respiratory infections in relation to climate have been studied by authors such as Krouba et al. 

(2024), Mogou et al. (2022), and Ymba (2022). The first conducted their study in the Grand-Bassam department, a 

particularly humid region. Their results showed a positive but moderate correlation between ARI and temperature, 

but a negative correlation with rainfall levels. Mogou et al. (2022), whose study was conducted in Soubre, a very 

rainy region in the southwest of Cote d’Ivoire, found that humidity exposes populations to lower ARIs (bronchitis, 

pneumonia), while the dry season increases the risk of upper ARIs (angina, acute otitis media, acute sinusitis, 

laryngitis). In Abidjan, Ymba (2022) found that densely built-up and poorly vegetated areas retain heat, aggravating 

respiratory diseases in children and the elderly. Informal settlements are the most affected, with an increase in cases 

of asthma and bronchitis. Despite these studies, the research field linking climate change and health, particularly 

ARIs in children under 5 years, remains underexplored in Cote d’Ivoire, especially in the north. 

 

In the Poro region, ARIs are among the leading causes of pediatric consultations every year. Several factors 

contribute to this high prevalence. On one hand, poor socioeconomic conditions make it difficult for a large segment 

of the population to access healthcare. On the other hand, the local Sudanese-Sahelian climate, characterized by an 

increasingly long and dusty dry season with the dry Harmattan wind, followed by heavy rains during the farming 

season, makes living conditions difficult for the population. Changes in rainfall patterns and extreme heat tend to 

increase the risks of respiratory infections (IPCC, 2021; Hashim et al., 2021). This observation justifies an integrated 

economic approach that considers interactions between climatic and health variables, in view of better planning of 

public health policies in the Poro region. It should be noted that the IPCC (2007) report on climate change predicts, 

in the coming decades, an intensification of heat waves, floods, droughts, and storm winds. 

 

Methodology: 

Data Sources and Study Variables: 

 Data Sources: 
The data used to analyze the influence of climate change on the prevalence of ARIs among children aged 0 to 5 

years in the Poro region come from two sources. The various Health Situation Reports of Cote d’Ivoire (RASS-CI) 

provided prevalence rates of ARIs from 2007 to 2020 in the Poro region. For climate-related variables, we relied on 

secondary data from NASA. 

The RASS data have the advantage of being produced according to national standards and covering all health 

facilities, thus allowing comprehensive monitoring of ARIs among children aged 0 to 5 years. However, they 

present limitations such as delays, underreporting, incomplete coverage, and lack of disaggregated data. The 

secondary climate data come from the NASA POWER database, recognized for the quality of its satellite data, 

including minimum temperature and precipitation. Finally, the socio-economic variables used are sourced from the 

World Bank databases. 

 

 Study Variables: 

This study seeks to explain the evolution of ARI prevalence among children aged 0 to 5 years in the Poro region as a 

function of climate variations. It is therefore appropriate that the endogenous or dependent variable is the 

prevalence of ARIs in the Poro region (P_ARI). The explanatory or independent variables fall into two categories. 

On the one hand, we have variables that capture climatic characteristics: temperature and precipitation. To these 

climate variables, many authors associate socio-economic variables. In our study, we focus on official development 

assistance, education, and infant mortality. These different variables are summarized in the following table: 
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Table 1: Presentation of Variables 

 

Econometric Model: The MIDAS Model: 

 JustificationofModelChoice: 
The nature of the data at hand leads us to prefer the MIDAS model to measure the link between climate change and 

ARIs among children aged 0 to 5 years in the Poro region. Indeed, as in the case of many other authors, we faced the 

challenge of managing data with different frequencies. The ARI data are available for only 15 years (2007–2020). 

This period is insufficient for panel data analysis. In addition, information on climate variables such as precipitation, 

temperature, wind speed, and others is available at quarterly or monthly frequencies (NASA POWER). 

The MIDAS model, developed in the early 2000s, makes it possible to model the effects of high-frequency data 

using a parametric function that smooths the coefficients associated with lags. This approach allows the integration 

of a large number of past values without inflating the number of parameters to be estimated. 

Although the MIDAS model was initially applied mainly in finance, pioneering work by Ghysels et al. (2004) and 

Santa-Clara et al. (2004) extended its use to complex macroeconomic issues. Others, such as Foroni, Marcellino, and 

Schumacher (2015), have demonstrated that MIDAS can also be useful in contexts where economic policy shocks or 

natural disturbances influence the economy irregularly. In this study, the formulation adopted is the MIDAS-PDL 

(Polynomial Distributed Lags or Almon Lags) model, as the climate effects analyzed are likely to occur over time 

(Madinier&Mouillart, 1983; Bourbonnais, 2018). 

 

 GeneralFormulationoftheMIDAS-PDLModel: 

The general formulation of the MIDAS-PDL model is written as follows: 

𝑌𝑡 = 𝛼 +  𝐵𝐾
𝐽=0 (j ;θ)𝑋𝑡−𝑗 /𝑚 + 𝜀𝑡(1) 

Variable 𝑌𝑡  observed at low frequency is explained by a weighted sum of past values of a variable𝑋 observed at high 

frequency.The weights B(j;θ) are modeled as a polynomial function of the lag rank, such that: 

𝐵 𝑗; 𝜃 = 𝜃0 + 𝜃1𝑗 + 𝜃2 

𝑋𝑡−𝑗/𝑚  represents the high frequency (monthly) observations with j=0,….,K ,m being the number of high frequency 

observations in a low frequency period,𝐵𝑗  being the coefficients to be estimated for each lag, and 𝜀𝑡an error term. 

𝐾Represents the number of high frequency lag. 

This formulation allows not only the use of information contained in high-frequency data but also the capture of 

dynamic and lagged effects in a flexible and rigorous manner. 

 

 StudyModelSpecification: 
Our approach is partly inspired by Omer (2024), who used a MIDAS Poisson model to analyze the effect of climate 

variables on dengue cases. Although the health context and estimation method differ, his work highlighted the 

relevance of the MIDAS model in capturing the delayed effects of high-frequency variables on health phenomena. 

We adapt this logic by using a MIDAS model estimated by Nonlinear Least Squares, which is more appropriate for 

the continuous nature of our dependent variable (ARI prevalence), while retaining the central idea of integrating 

monthly climate data into a public health framework. 

In our study, 𝑌𝑡  represents the annual rate of acute ARI in children aged 0 to 5 years in the Poro region, and  

𝑋𝑡−𝑗/12represents a monthly climatic variable, either temperature or precipitation. 

So, we have: 

Variable Description Source 
Expected 

Sign 

ARI Acute respiratory infections in children aged 0–5 
RASS-CI (2007–

2020) 
– 

Temperature Adjusted temperature at 2 meters (°C) NASA POWER (+) 

Precipitation Adjusted precipitation from MERRA-2 (mm/day) NASA POWER (+) 

ODA 
Official development assistance (% of central government 

spending) 
World Bank (–) 

IMR Infant mortality rate World Bank (–) 

EDU Education expenditure World Bank (+) 

Source: Authors 
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𝐴𝑅𝐼𝑡 = 𝛼 +  𝐵𝑗
𝐾
𝑗=0 𝑇𝑒𝑚𝑝𝑡−𝑗/12 + 𝜀𝑡(2) 

Or  

 

𝐴𝑅𝐼𝑡 = 𝛼 +  𝐵𝑗
𝐾
𝑗=0 𝑃𝑟𝑒𝑐𝑡−𝑗 /12 + 𝜀𝑡(3) 

However, this form suffers from the over-parameterization problem as soon as K becomes large. To correct this, we 

introduce a polynomial constraint on the 𝐵𝑗  through the Almon polynomial. We therefore specify that the weights 

associated with each month are a polynomial function of j , such that: 

 

𝐵𝑗 = 𝜃0 + 𝜃1𝑗 + 𝜃2𝑗 2  

By injecting this form into our equation, we obtain the MIDAS-PDL version with Almon polynomial of degree 2. 

We obtain the following form: 

𝐴𝑅𝐼𝑡 = 𝛼 +  (𝜃0 + 𝜃1𝑗
𝐾
𝑗=0 + 𝜃2𝑗 2 ). 𝑇𝑒𝑚𝑝𝑡−𝑗/12 + 𝜀𝑡  (4) 

This equation means that the effect of each month𝑗 on the incidence of ARIs is not estimated independently but is 

modeled according to a polynomial structure, which ensures the parsimony of the model while capturing temporal 

dynamics. 

With precipitation and control variables, the specified model retained in this study is: 

𝐴𝑅𝐼𝑡 = 𝛼 +  (𝜃0 + 𝜃1𝑗
𝐾
𝑗=0 + 𝜃2𝑗 2 ). 𝑇𝑒𝑚𝑝𝑡−𝑗/12 +  (𝜃0 + θ1j

𝐾
𝑗=0 + θ2j2). Prect−j/12 + γ1Educt + γ2IMRt +

ODAt + εt  (5) 

With  

α: Model constant 

Tempt−j/12  and Prect−j/12 : Lagged monthly temperature and precipitation data 

θi,k : Coefficients of the Almon polynomial (order 2) for each climate variable 

Educt: Public education expenditure in year t 

IMRt  : Annual infant mortality rate 

ODAt  : Official development assistance 

γ
1

 and γ
2

:Coefficients of the annual variables 

𝛆𝐭: Error term 

This model allows capturing the non-linear delayed effects of climate variables while taking into account the 

structural socio-economic impact through Educt  (education expenditure) and IMRt  (Annual infant mortality rate). 

 

Estimation Procedure: 

Pre-estimationTests:StationarityTests(Bourbonnais,2018): 

Several tests exist to determine whether variables are stationary or not. In this study, we use the Augmented Dickey-

Fuller (ADF) and Phillips-Perron (PP) unit root tests. 

 ADF Test: The ADF test is conducted under the null hypothesis of a unit root. If the ADF statistic is greater (in 

absolute value) than the critical value, we reject the null hypothesis, and the series is stationary. 

 Phillips-Perron Test: The PP test is based on a non-parametric correction of the Dickey-Fuller statistic, 

accounting for heteroskedasticity. Unlike ADF, it can handle unknown autocorrelation structures. The null 

hypothesis assumes non-stationarity; rejection occurs if the probability value is ≤ 5%. 

 

EstimationoftheMIDAS-PDLModel: 
The MIDAS-PDL model is estimated using the nonlinear least squares (NLS) method, automatically integrated in 

the MIDAS tool of EViews. This approach models the relationship between variables of different frequencies—

monthly climate data and annual health data—while imposing a polynomial structure (Almon-type) on lag 

coefficients. 

To evaluate model fit and compare different specifications, we use the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC). Lower values of AIC and BIC indicate a better balance between fit and 

parsimony. 

In this study, we use EViews 12 software for preliminary tests and estimations 

 

Results and Discussion:- 

Section 4 presents the results and their discussion. 
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Results:- 
The results presented are, on the one hand, descriptive statistics and, on the other hand, outputs from econometric 

estimations. 

 

Descriptive Statistics 

Table 2 presents the descriptive statistics of the study variables. 

 

Table 2: Descriptive Statistics of Variables 

 
Temperature Precipitation ODA Infections EDU Infant Mortality 

Mean 35.54714 3.597202 23.94804 143.3500 3.370441 62.37857 

Median 36.12000 3.5150000 14.86369 110.9000 3.363620 61.80000 

Maximum 41.36000 9.950000 70.76251 365.5400 3.935930 75.60000 

Minimum 29.80000 0.000000 6.094133 50.10000 2.865760 50.90000 

Std. Dev. 3.283478 2.700816 19.70911 92.02251 0.292741 7.644200 

Skewness –0.112559 0.311535 1.364970 1.147234 0.282014 0.153878 

Kurtosis 1.720925 2.002037 3.528841 3.309942 2.352861 1.815428 

Jarque-Bera 11.80698 9.689012 54.12575 37.52584 5.158418 10.48546 

Probability 0.002730 0.007872 0.000000 0.000000 0.075834 0.005286 

Observations 168 168 14 14 14 14 

Source: Authors, from EViews 12, RASS-CI (2007-2020) and  NAZA POWER Data 

 

Table 2 shows that the climate is particularly hot, with temperatures ranging between 29.8°C and 41.36°C, with an 

average of 35.547°C—higher than the national average (27.38°C). Precipitation averages 3.59 mm/day, much lower 

than the national average. Official development assistance averages 23.945% of GDP, and education spending 

averages 3.37% of GDP. ARIs among children range from 50.1 to 365.5 per thousand, while infant mortality in Poro 

ranges between 50.9 and 75.6 ‰. 

The econometric model results measure the degree of significance between ARIs in children aged 0 to 5 in Poro and 

explanatory variables. 

 

Econometric Test Results: 

The results of the econometric model are presented through the correlation matrix of the variables and the results of 

the stationarity tests. 

 Correlation matrix of the study variables 

Table 3 presents the correlation between the explanatory variables. 

 

Tableau 3: Pearson Correlation Matrix 

Correlation  ODA Healthcare 

expenditures 

Infecions Infant 

mortality 

Precipitation 

ODA 1.000     

Healthcare 

expenditures 

-0.23434 

-3.10576 

1.000    

Infection  -0.29380 

-3.96023 

0.03279 

0.42274 

1.000   

Infant mortality 0.31026 

4.20493 

-0.69432 

-12.4305 

-0.51770 

-7.79620 

1.000  

Precipitation  0.00833 

-0.10736 

0.07958 

1.02869 

0.06559 

0.84697 

-0.11702 

-1.51815 

1.000 

Temperature  -0.07681 

-0.99259 

0.05599 

0.72260 

-0.08343 

-1.07872 

0.04762 

0.61434 

-0.57726 

-9.10831 

Source: Authors, from EViews 12, RASS-CI (2007-2020) and NAZA POWER Data 
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The results show no strong linear correlation between variables, reducing risks of multicollinearity in further 

estimations. Most coefficients are below 0.7 in absolute value.For instance, a negative correlation (–0.6943) exists 

between education spending and infant mortality, suggesting that higher educational investment reduces child 

mortality.There is also a moderate negative correlation (–0.5177) between temperature and precipitation, reflecting a 

common climatic dynamic where heavy rains coincide with lower temperatures. ODA is weakly correlated with 

infant mortality (0.3102). 

 

 Unit Root Tests 

Table 4:Results of the unit root test 

Variables  Level 1st Defference 2nd 

Difference 

Decision  

ADF PP ADF PP ADF PP  

ARI -1.86 -1.90 -12.80 -12.80  - - I (1) 

 (0.3470) (0.3314)
 

(0.0000)
*** 

(0.0000)
*** 

   

Temperature -1.95 -5.20 -10.79 -8.21 - - I (1) 

 (0.3.59) (0.0000)
*** 

(0.0000)
***

 (0.0000)
***

    

Precipitation  -2.86 -4.00 -12.31 -13.41 - - I (1) 

 (0.0516) (0.0018) (0.0000)
*** 

(0.0000)
***

    

ODA -1.83 -1.87 -12.84 -12.84 - - I (1) 

 (0.3618) (0.3455) (0.0000)
*** 

(0.0000)
***

    

IMR -1.98 -1.87 -12.84 -12.84 - - I (1) 

 (0.2932) (0.7059) (0.3315) (0.000)
*** 

   

EDU -1.83 -1.87 -12.84 -12.84 - - I (1) 

 (0.3618) (0.3455) (0.000)
***

 (0.000)
***

    

Source: Authors, from EViews 12, RASS-CI (2007-2020) and NAZA POWER Data 

ADF and PP tests indicate that most series are stationary at the first difference (I(1)). Infant mortality rate results 

diverged: ADF suggested I(2), while PP suggested I(1). Given PP’s robustness and graphical consistency, IMR was 

considered I(1). 

 

Estimation Results of the MIDAS-PDL/Almon Model: 

The MIDAS-PDL model quantified the effects of monthly climate variables on annual ARIs among children under 5 

in Korhogo. Using a second-order Almon polynomial with 49–51 monthly lags, the model captured the dynamic 

effects of climate shocks. Estimation employed nonlinear least squares. 

 

Table 5: MIDAS-PDL Estimation 

Variable  Coefficient Std-Error t-statisique Prob  

EDU -1.75441 23.06837 -7.605290 0.0000 

ODA -1.7700 0.583310 -3.034476 0.0031 

IMR -2.016277 3.143891 -0.641332 0.5228 

Precipitationlags: 51 

PDL 01 -4.814033 1.308252 -3.679745 0.0004 

PDL 02 0.315647 0.055755 5.661349             0.0000 

Temperaturelags: 49 

PDL 01 -0.061151 0.635235                 -0.096264            0.9235 

PDL 02 0.160416 0.029299                  5.475184             0.0000 

Source: Authors, from EViews 12, RASS-CI (2007-2020) and NAZA POWER Data 

 Education (EDU): coefficient –1.75441 (significant, p=0.0000) 

 ODA: coefficient –1.7700 (significant, p=0.0031) 

 IMR: not significant 

 Precipitation (PDL 1: –4.814033; PDL 2: 0.315647) both significant 

 Temperature (PDL 1: not significant; PDL 2: 0.160416 significant, p=0.0000) 
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Table 6: Model Validation 

 AIC BIC Log likelihood 

MIDAS 

PDL/ALMON 

Lags (49,51) 

11.01486 10.81733 -581.5442 

R² = 0.77    

Source: Authors, from EViews 12, RASS-CI (2007-2020) and NAZA POWER Data 

 R² = 0.77→ model explains 77% of ARI prevalence variability 

 AIC = 11.01486, BIC = 11.61 → moderate values, good model fit 

 

Discussion: 
 EducationSpending: 

The negative sign associated with education spending suggests that improved parental education reduces ARI 

incidence. In Poro, this is explained by better adoption of health practices, awareness of environmental risks, and 

improved child hygiene.                                                                                                                                         

 OfficialDevelopmentAssistance(ODA); 
ODA also shows a significant negative impact on ARIs, implying that when properly allocated to social sectors such 

as health and environment, aid strengthens local capacities, improves healthcare access, and supports prevention. 

This aligns with Burnside & Dollar (2000), who argued that aid is effective only in the presence of sound policies. 

 

 Temperature 
Results reveal that immediate effects of temperature are insignificant (p=0.9235), but the second-order lag 

(0.160416) is significant and positive. This suggests that extreme temperature effects accumulate over time. This 

finding is consistent with Pascal (2020) in France and Koh et al. (2023) in Sub-Saharan Africa, who showed links 

between prolonged heat exposure and respiratory illnesses.                                                                                    

 

 Precipitation 
Both lagged components of precipitation are significant: the first negative (–4.814033), the second positive 

(0.315647). This indicates that rainfall initially reduces risks (through air cleaning and domestic confinement), but 

delayed effects increase risks due to excess humidity, stagnant water, and mold growth. These findings are 

consistent with Currie &Neidell (2005) and Hashizume et al. (2007), who showed that heavy rainfall is followed by 

increased respiratory illnesses in vulnerable populations. 

Hypotheses Testing: 

 Hypothesis 1: Higher temperature and rainfall increase ARIs → confirmed. 

 Hypothesis 2: Reduced ODA lowers ARIs → not confirmed, though expected sign was consistent. 

 Hypothesis 3: Higher education spending reduces ARIs → confirmed. 

 

Conclusion: 

The main objective of this study was to analyze the lagged effects of climate change on the prevalence of acute 

respiratory infections (ARI) among children under five years old in the Poro region. Specifically, it sought first to 

analyze the effect of climatic variables such as temperature and precipitation on ARIs in children aged 0 to 5 in 

Poro. Second, it aimed to highlight the contribution of official development assistance (ODA) to ARI cases among 

children in this age group. Finally, it sought to demonstrate whether public education expenditures influence ARIs 

among children in Poro. 

 

We used a MIDAS-PDL approach combined with Nonlinear Least Squares due to the weighting properties of the 

model, which allow us to capture the effect of different variables over time. This method made it possible to identify 

both short- and long-term effects, from the first month up to the last (168 months in our case). The results revealed 

delayed and cumulative effects of climatic variables. Rising temperatures are associated with a progressive increase 

in ARI cases, reaching a significant long-term cumulative impact. Similarly, precipitation showed a non-linear 

effect—negative in the short term, but strongly positive in the long term, suggesting favorable conditions for 

pathogen development. 
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Moreover, socio-economic variables such as education spending and ODA showed significant influence in reducing 

ARIs, highlighting the importance of social and health investments in mitigating child vulnerabilities. Based on 

model performance comparisons, results were assessed using the log-likelihood function, AIC, and BIC, all of which 

confirmed that the model was well-suited to our variables.The main weakness of the model lies in its sensitivity to 

the choice of lag length. If too few lags are chosen, long-term effects are underestimated; if too many, the risk of 

overfitting and statistical inefficiency increases. It is therefore recommended to analyze residual plots, as we did, to 

determine the appropriate lag structure. 

 

Policy Recommendations for Cote d’Ivoire (especially the Poro region): 

 Invest more in education and health infrastructure. 

 Mobilize ODA more effectively, targeting climate-sensitive disease prevention. 

 Adopt local environmental policies to limit population exposure to extreme climate effects. 

 

For households and parents of young children in Poro: 

 Adopt preventive measures during hot or humid periods. 

 Protect young children against sudden temperature changes. 

 Strengthen domestic hygiene. 

 Seek medical attention promptly in case of cough or fever in children. 

In summary, this study makes an original contribution to understanding the link between climate change and child 

health in Cote d’Ivoire by using an econometric approach suited to complex data. It highlights the importance of 

climatic factors in the dynamics of ARIs and underscores the critical role of public policy in prevention. This work 

provides a useful empirical basis for guiding health and environmental decision-making in northern Cote d’Ivoire. It 

also calls for further research integrating additional social and environmental determinants and testing alternative 

dynamic methods capable of better capturing the complex interactions between climate and health. 
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