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This study assesses the impact of mining activities on land use and 
vegetation cover degradation through the analysis of satellite imagery 
(Landsat, Sentinel-2) over several years (1994, 2004, 2014, and 2024). 
The methodology used is to supervise classification using the 
maximum likelihood algorithm. The results reveal a significant decline 
in vegetation cover (approximately 25%), accompanied by an increase  
in agricultural land (+18%), residential areas (+9%), and bare soils 
(+5%), reflecting accelerated anthropogenic pressure on the landscape. 
The classification accuracy, confirmed by Kappa coefficients ranging 
from 0.81 to 0.94 and overall accuracy between 86% and 94.4%, 
supports the reliability of the analyses. These spatial dynamics 
demonstrate a significant environmental impact of mining operations, 
with direct effects on natural ecosystems and indirect consequences 
related to urban expansion and land tenure pressures. The findings 
underscore the urgent need for sustainable land management strategies, 
including ecological restoration and effective regulation of mining 
expansion, to safeguard the environmental balance of affected areas. 
 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 
with credit to the author." 

…………………………………………………………………………………………………….... 
Introduction 
Land cover constitutes a fundamental component of the ecological balance of terrestrial ecosystems. It plays a 
crucial role in climate regulation, soil conservation, biodiversity protection, and the maintenance of the hydrological 
cycle (FAO, 2020; IPBES, 2019). However, in many regions around the world, this natural capital is under severe 
threat from human activities, particularly mining. While mining is vital for economic development, it causes 
profound and often irreversible transformations of natural landscapes, including deforestation, soil stripping, and the 
alteration of both fauna and flora habitats (Sonter et al., 2017; World Bank, 2023). 
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In developing countries, mineral resource extraction whether industrial or artisanal is often carried out in the absence 
of rigorous environmental planning. This greatly increases the risk of degradation of natural environments (Hilson & 
Van Bockstael, 2018). The rush for precious metals, especially gold, is frequently associated with extensive tree 
felling, soil leaching, sedimentation of watercourses, and the progressive disappearance of natural vegetation 
formations (voxdev, 2023). These practices not only disrupt the structure of the vegetation cover but also 
compromise the ecosystem services it provides to local populations, such as water regulation, soil fertility, and non-
timber forest resources (Millennium Ecosystem Assessment, 2005; UNEP, 2022). 
 
The region of Ity, located in the western part of Cote d’Ivoire, shows this issue particularly well. Since the 
establishment of the Ity Mining Company in 1990, industrial mining activities combined with unregulated artisanal 
exploitation have significantly contributed to the degradation of vegetation cover within the Cavally River 
watershed (Fulgence et al., 2020). The expansion of extraction zones, construction of access roads, storage of 
mining waste, and the proliferation of informal gold mining sites have led to widespread fragmentation of forest 
landscapes, threatening the ecological integrity of the region (ISS Africa, 2024; Earthworm Foundation, 2023). 
 
In this context, the present study aims to assess the extent of vegetation cover degradation induced by mining 
activities in the Ity sub-watershed of the Cavally River. The research draws upon field observations, satellite 
imagery, and geospatial analyses to measure land use change dynamics and to formulate recommendations for 
improved environmental management in areas under intense extractive pressure. 
 
Materials and Methods 
Study Area Presentation and Location 
The Cavally River watershed is a transboundary basin located between longitudes 8°4ʹ and 7°7ʹ West, and latitudes 
6°8ʹ and 7°9ʹ North. The Cavally River originates in Guinea, north of Mount Nimba, at an altitude of approximately 
600 metres. Spanning a length of 700 km, the river serves as a natural boundary between Côte d’Ivoire and Liberia 
along its middle and lower courses (Girard et al., 1967). 
 
The sub-watershed investigated in this study is located in the Tonkpi region, specifically between the departments of 
Zouan-Hounien and Blolequin, in the vicinity of the Ity Mining Company. It lies between longitudes 8°1ʹ30ʺ and 
8°10ʹ30ʺ West, and latitudes 6°56ʹ25ʺ and 6°46ʹ25ʺ North, as illustrated in Figure 1. 
 

 
 

Figure 1 : Study area 
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Land Use and Land Cover Data 
The data used to assess land use and land cover (LULC) dynamics consist of satellite imagery (LANDSAT and 
SENTINEL-2) as well as cartographic data. 
The study is based on four satellite images acquired from the MSI-L2A, MSI-L1C, ETM+, and TM sensors. Two of 
these images are from LANDSAT satellites: scene 199-55 acquired on 27 December 1994 by the TM sensor on 
Landsat 5, and one captured on 30 January 2004 by the ETM+ sensor on Landsat 7. The other two images are from 
Sentinel-2: one acquired on 23 December 2014 by the MSI-L1C sensor, and another on 21 December 2023 by the 
MSI-L2A sensor. 
 
All images were acquired between December and February, corresponding to the dry season, which helps minimise 
cloud cover. Moreover, dry season imagery offers better contrast between vegetation cover and other land use types, 
thereby improving classification accuracy. 
Table I presents the main characteristics of the satellite images used in the study area (satellite name, date of 
acquisition, spatial resolution, etc.). 
 

Table I: Characteristics of Sentinel-2 and Landsat images for the study area 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Processing and Analysis Methods 
Data processing and analysis focused primarily on image processing and the use of a geospatial database within a 
GIS environment. The techniques applied combined remote sensing and Geographic Information System (GIS) 
methodologies. 
 
Pre-processing 
Image processing began with radiometric and atmospheric corrections. Radiometric correction enhances the 
reflectance values of pixels, while atmospheric correction reduces the effects of cloud cover and Harmattan dust 
(Song et al., 2001). In this study, image enhancement techniques were applied to improve image dynamics and 
increase the contrast between land cover classes and their surrounding environment. 
 
For the purposes of land use and land cover analysis and mapping, five thematic classes were identified based on 
false-colour composites. These pre-processing steps culminated in image classification, which involves converting 
spectral information contained in the satellite imagery into land use and land cover maps. 
 
Supervised Classification 
Unsupervised classification, combined with field surveys, was initially used to update the land cover classes and 
training samples. The supervised classification process involved the integration of 64 updated training classes into 
the composite bands of the satellite imagery. This classification technique was selected because of its high 
performance and suitability for generating land use and land cover maps (E. Fotsing, 2009; K. E. Konan, 2008). 
 
The algorithm applied was the Maximum Likelihood Classifier, based on a Bayesian probabilistic approach, which 
assumes that the spectral responses of land cover classes follow a Gaussian distribution. Pixels are then assigned to 
the class for which they have the highest probability of membership (R. Caloz & C. Collet, 2001). The classified 
images were evaluated using overall accuracy and the Kappa coefficient, and further validated through a field 
verification campaign.  

Characteristics Sensors 
MSI L2A MSI L1C ETM TM 

Image Format JPEG 2000 JPEG 2000 GEOTIFF GEOTIFF 
Satellite SENTINE 2L2A SENTINEL2L1C LANDSAT 7 LANDSAT 5 
Acquisition Date 21/12/2023 23/12/2014 30/01/2004 27/12/1994 
Scene 
dimensions 

110x110 km² 110x110 km² 185x185 km² 185x185 km² 

Spatial 
resolution  

20mx20m 20mx20m 30mx30m 30mx30m 

Projection UTM ZONE 29N UTM ZONE 29N UTM ZONE 29N UTM ZONE 29N 

Data Sources COPERNICUS COPERNICUS USGS USGS 
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This campaign ensured the thematic accuracy of the classified images by comparing them with ground-truth data. 
The training dataset was continuously updated by combining field data with historical satellite imagery and Google 
Earth archives for the years 1994, 2004, and 2014. 
 
To improve thematic coherence and eliminate isolated pixels, a 3×3 median filter was applied to the classified 
images. The homogenised classification results were then vectorised and integrated into a Geographic Information 
System (GIS) for further management and spatial analysis. This process enabled the production of land use and land 
cover maps and associated statistics for the years 1994, 2004, 2014, and 2024. 
 
Results 
Validation of Land Use and Land Cover Maps 
Following the processing of satellite imagery, land use and land cover (LULC) maps were generated for the entire 
study period. The classification results were validated using the Kappa coefficient, calculated from the confusion 
matrices. 
 
The results indicate that the Kappa coefficient for all years considered ranges between 0.81 and 0.94, with an overall 
accuracy varying from 86% to 94.4%. 
The confusion matrices and corresponding Kappa values are presented in Tables II, III, IV, and V. 
The confusion matrix for the 1994 land cover classification shows that a total of 68 pixels were evaluated. Of these, 
59 pixels in the 1994 classified map matched those in the reference image, resulting in an overall accuracy of 
approximately 86.76%. 
 
Table II: Confusion matrix for the 1994 Landsat TM classification Overall Accuracy: 88%, Kappa: 0.83 

 
 
In Table III, 69 classified pixels are compared with those from the reference image. Among them, 59 pixels — 
representing approximately 85.51% — show good agreement. 
 
Table III: Confusion matrix for the classification of the 2004 Landsat ETM+ image Overall Accuracy: 86%, 

Kappa Coefficient: 0.81 
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Water Building Bare 

soil 
Vegetation Crops Total Percentage  

Water 21 0 1 
 

0 22 95.45 
Building 0 9 0 1 0 10 90 
Bare soil 1 0 4 1 2 8 50 
Vegetation 1 0 0 16 0 17 94.12 
Crops 0 0 0 2 9 11 81.82 
Total 23 9 5 20 11 68 

 

Percentage  91.30 100 80.00 80 81.82 
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Reference data (field observation)  
Water Building Bare 

soil 
Vegetation Crops Total Percentage  

Water 21 0 0 0 0 21 100.00 
Building 0 9 0 2 0 11 81.82 
Bare soil 

 
0 4 0 2 6 66.67 

Vegetation 
 

2 1 16 1 20 80.00 
Crops 0 0 1 1 9 11 81.82 
Total 21 11 6 19 12 69 

 

Percentage  100 81.82 66.67 84.21 75 
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With regard to the 2014 land cover classification, a total of 66 pixels were tested to assess its accuracy, of which 59 
pixels were correctly classified, resulting in an overall accuracy of 89.39% (Table IV). 
 

Table IV: Confusion matrix for the classification of the 2014 Sentinel 2 L1C image Overall Accuracy: 88%, 
Kappa Coefficient: 0.86 

 
For the 2024 image, a total of 63 pixels were evaluated. Among these, 60 pixels from the 2024 classified map were 
consistent with those in the reference image, resulting in an overall accuracy of 95.23%. 
 

Table V: Confusion matrix for the classification of the 2024 Sentinel-2A image Overall Accuracy: 94.4%, 
Kappa Coefficient: 0.94 

 
Land Use and Land Cover Status in 1994, 2004, 2014 and 2024 
In 1994, the watershed was predominantly covered with natural vegetation, particularly in the central part, extending 
from the upstream to the downstream sections. The western part of the study area was mainly occupied by 
agricultural land, while the eastern portion was characterised by the dominance of bare soils. 
 
By 2004, a significant conversion of natural vegetation into croplands was observed in the central part of the basin. 
In addition, agricultural areas in the west were progressively replaced by built-up areas (settlements) and bare soils. 
In 2014, there was a marked expansion of built-up areas in the western part of the watershed, along with a general 
increase in bare soil coverage across the entire study area. 
 
By 2024, built-up areas and bare soils continued to expand, particularly in the central and western parts of the basin, 
indicating an intensification of anthropogenic pressure and a probable degradation of natural vegetation cover. 
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Reference data (field observation) 
Classes Water Building Bare 

soil 
Vegetation Crops Total Percentage  

Water 21 
 

1 1 
 

23 91.30 
Building 0 9 0 1 0 10 90 
Bare soil 0 0 4 0 2 6 66.67 
Vegetation 

  
0 16 2 18 88.89 

Crops 0 0 0 
 

9 9 100.00 
Total 21 9 5 18 13 66 

 

Percentage  100 100 80 88.89 69.23 
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Reference data (field observation)  
Water Building Bare soil Vegetation Crops Total Percentage  

Water 21 0 
 

0 0 21 100.00 

Building 0 10 0 0 0 10 100 

Bare soil 0 1 4 0 0 5 80 

Vegetation 
 

0 1 16 1 18 88.89 
Crops 0 0 0 

 
9 9 100.00 

Total 21 11 5 16 10     63 
 

Percentage  100 90.91 80 100 90 
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Figure 2: Maps showing the spatio-temporal dynamics of land use and land cover from 1994 to 2024: A–1994, 

B–2004, C–2014, D–2024. 
 
Land Use and Land Cover Dynamics between 1994, 2004, 2014 and 2024 
The analysis of Table VI reveals a significant evolution in land use and land cover within the watershed over the 
period 1994–2024. In 1994, vegetation covered the majority of the area, with an estimated surface of 130 ha, 
representing 77.45% of the total area. This vegetative cover gradually declined, reaching 115.31 ha (68.70%) in 
2004, 98.88 ha (58.91%) in 2014, and 82.89 ha (49.39%) in 2024. This decline reflects a continuous loss of dense 
forest or natural vegetation, likely associated with mining activities in the region. 
This reduction occurred in favour of agricultural areas, built-up zones, and bare soils. Cultivated land accounted for 
9.65 ha (5.75%) in 1994, expanded significantly to 26.52 ha (15.80%) in 2004, and further to 41.23 ha (24.62%) in 
2014, before slightly decreasing to 33.95 ha (20.23%) in 2024. 
 
Urbanised areas and bare soils exhibited a contrasting trend. Their combined area decreased slightly between 1994 
and 2014, from 25.11 ha (14.96%) in 1994 to 22.58 ha (13.45%) in 2004, and to 21.21 ha (12.64%) in 2014. 
However, this trend reversed sharply between 2014 and 2024, with a notable increase to 46.40 ha (27.65%). 
These spatial dynamics, derived from remote sensing data, reflect increasing pressure on the watershed’s natural 
resources, driven by mining expansion, agricultural intensification, and urbanisation, all occurring at the expense of 
vegetated areas. The surface areas (in hectares) of the Ity Mining Company (SMI) and bare soils are provided intable 
VI. 

Table VI: Land cover class areas (in hectares) from 1994 to 2024 
Classes 1994 2004 2014 2024 

Water 309.11 1.84 344.06 2.05 642.82 3.83 459.87 2.74 

Building 557.21 3.32 896.36 5.34 822.39 4.90 1962 11.69 

Bare soil 1953.31 11.64 1361.33 8.11 1299.05 7.74 2678.05 15.96 

Vegetation 13000.32 77.45 11531.45 68.70 9888.63 58.91 8289.77 49.39 

Crops 965.05 5.75 2651.8 15.80 4132.11 24.62 3395.31 20.23 

Total 16785 100 16785 100 16785 100 16785 100 
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 Assessment of Vegetation Cover Degradation between 1994 and 2024 
Figure 3 highlights a marked degradation of vegetation cover, with a loss of nearly 25% of the initial surface area. 
This decline has occurred in favour of the expansion of agricultural areas (18%), built-up areas (15%), and bare soils 
(5%), reflecting a significant environmental degradation largely associated with mining activities. 
 

 

Figure 3: Percentage of land use units between 1994 and 2024 

Discussion 
The results obtained show Kappa coefficients ranging from 0.81 to 0.94, and overall classification accuracies 
between 86% and 94.4%, indicating a very high quality of the classified images used in the land use and land cover 
analysis. These values are well above the 0.75 threshold, which is considered excellent according to Landis & Koch 
(1977), and confirm the reliability of the datasets used to assess environmental dynamics in the study area. 
 
The significant decline in vegetation cover observed is consistent with numerous studies that have documented the 
impact of mining activities on tropical forest ecosystems. For instance, Acheampong et al. (2022) reported that 
mining zones in Ghana experienced more than 30% vegetation loss over two decades, largely due to illegal gold 
mining and urban expansion. Similarly, Béland et al. (2021) highlight that both artisanal and industrial mining are 
major drivers of deforestation in West Africa. 
 
Moreover, the observed increase in agricultural land, built-up areas, and bare soils reflects a rapid process of 
landscape anthropisation, a dynamic commonly found around mining basins. According to Hilson & van der Vorst 
(2023), the establishment of mining operations attracts large populations, thereby increasing the demand for 
housing, infrastructure, and farmland, which accelerates the conversion of natural areas. 
 
The slight increase in water surface area may be explained by the creation of retention ponds or hydrological 
disturbances caused by mining activities, as shown by Niane et al. (2020) in Guinea. Such changes in the 
hydrological landscape heighten the risks of water pollution and disruption of aquatic ecosystems. 
 
Conclusion 
The analysis of land use and land cover dynamics, supported by high-accuracy classification (Kappa Coefficient 
ranging from 0.81 to 0.94; Overall Accuracy between 86% and 94.4%), reveals a marked transformation of the 
landscape driven by mining activities. The significant decline in vegetation cover, alongside the expansion of 
agricultural areas, built-up zones, and bare soils, reflects a process of accelerated anthropisation and a notable 
degradation of natural ecosystems. 
These findings confirm that mining operations constitute a major driver of environmental pressure not only through 
the direct destruction of natural habitats, but also through the indirect dynamics they trigger, such as population 
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growth, urban sprawl, and land use conversion. The disruption of ecological balances is therefore evident, with 
potential consequences for biodiversity, water resources, soil fertility, and the livelihoods of local populations. 
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