

Journal Homepage: -www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

EVIENATIONAL POEMAE OF ABNUNCES RESEARCH SLAR STATEMENT STATEMENT

Article DOI:10.21474/IJAR01/21902 **DOI URL:** http://dx.doi.org/10.21474/IJAR01/21902

RESEARCH ARTICLE

A COMBINED BALANCE TRAINING APPROACH TOIMPROVE BALANCE AND REDUCE FALLRISK IN YOUNG-OLD INDIVIDUALS:AN EXPERIMENTAL INVESTIGATION

Mohammed Atik Bedrekar¹ and Priyanka Honkalas²

1.Post Graduate: Department of Community Physiotherapy, PES Modern College of Physiotherapy, Pune, India. 2.Professor - Guide: Department of Community Physiotherapy, PES Modern College of Physiotherapy, Pune, India.

Manuscript Info

Manuscript History

Received: 7 August 2025 Final Accepted: 9 September 2025 Published: October 2025

Key words:

Fall prevention, combined balance training, young-old adults, postural stability

Abstract

Background and Objectives: Falls represent a significant health risk among older adults, often resulting in injuries ranging from soft tissue trauma to fractures. Balance is a critical factor in maintaining postural stability and preventing such incidents. The present study aimed to evaluate the efficacy of a combined balance training program in improving balance and reducing fall risk in young-old adults (65–74 years).

Methodology: A total of 58 participants were recruited for this experimental study. Pre- and post-intervention assessments were conducted using the Falls Efficacy Scale and the Timed Up and Go (TUG) test to quantify changes in balance and fall risk.

Results: Statistical analysis revealed significant improvements in both Falls Efficacy Scale scores and TUG performance following the intervention (p < 0.05), indicating enhanced balance and reduced fear of falling.

Conclusion: The combined balance training program demonstrated significant effectiveness in improving balance and preventing falls among young-old adults, suggesting its utility as a targeted intervention in geriatric populations.

"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed with credit to the author."

Introduction:-

Geriatrics is a specialized medical discipline focused on the prevention, diagnosis, and management of health conditions associated with aging. It addresses the multifactorial changes in physiological systems and the increased prevalence of comorbidities observed in older adults. For clinical and research purposes, the elderly population is often categorized into three groups: young-old (65–74 years), middle-old (75–84 years), and old-old (≥85 years) (1). A fall is operationally defined as an unintentional event in which an individual descends to a lower level, such as the ground or another surface, without the influence of a major intrinsic medical event or an overwhelming external hazard. Falls are common and serious health concerns among older adults, constituting the leading cause of injury in this population (2). The incidence of falls increases with advancing age and frailty, with prevalence rates varying across populations.

In India, approximately 14% of older adults experience falls, highlighting the public health significance of this issue (2). Falls can lead to severe complications, including hip fractures, increased morbidity and mortality, and substantial burdens on healthcare systems (3). Falls also adversely affect quality of life, often leading to reduced self-confidence, fear of recurrent falls, chronic pain, and loss of independence. Consequently, older adults face an increased risk of functional impairments, including compromised balance and mobility (4). Evidence indicates that exercise interventions can significantly reduce fall risk, with structured exercise programs demonstrating up to fivefold greater efficacy in preventing recurrent falls compared to multifactorial interventions (5). Balance is a complex motor skill that involves the precise regulation of body posture to prevent falls (2). It is fundamental to independent movement and functional capacity (6).

Maintaining balance requires the coordinated interaction of stability and mobility, relying on integrated neurological and musculoskeletal functions (3).

With advancing age, physiological changes can impair balance control, increasing susceptibility to falls and contributing to healthcare and social service burdens due to associated injuries and loss of independence (2, 6, 7).

Among young-old adults, the prevalence of falls during activities of daily living is approximately 14%, further compounded by age-related declines in balance (2). To address these challenges, Halvarsson et al. proposed a structured, multi-phase balance training program comprising Basic, Moderate, and Advanced stages. This progressive protocol not only prevents deconditioning but also enhances postural control and overall balance, providing sustained functional benefits over time (6). The program introduces increasingly complex exercises across phases, gradually enhancing difficulty to strengthen balance performance, improve functional capacity, and reduce dependency, thereby supporting greater independence in both present and future activities (6).

Materials and Methods:-

- Study Design: One-group experimental study
- Study Setting: Urban and surrounding areas
- Sampling Technique: Convenience sampling
- Study Population: Young-old adults (65–74 years)
- Study Duration: 18 monthsSample Size: 58 participants
- Intervention Duration: 6 weeks

Data was collected and recorded in Microsoft Excel prior to statistical analysis. Descriptive statistics, including mean and standard deviation, were calculated for all measured parameters. Pre- and post-intervention scores for the Falls Efficacy Scale and Timed Up and Go (TUG) test were analyzed using paired t-tests in SPSS software (version XX), with significance set at p < 0.05.

Intervention: Participants underwent a structured balance training program over six weeks on alternate days. Each exercise session included a two-minute rest interval between exercises.

The schedule was as follows:

- Week 1: Days 1, 3, and 5
- Week 2: Days 2, 4, and 6
- Week 3: Days 1, 3, and 5
- Week 4: Days 2, 4, and 6
- Week 5: Days 1, 3, and 5
- Week 6: Days 2, 4, and 6

This alternating schedule ensured adequate recovery while maintaining consistency in training stimulus.

Intervention Protocol Basic Phase:

- 1. Walking on a foam mat
- 2. Navigating a "messy" environment with obstacles such as chairs and cones
- 3. Walking forward and returning by walking backward
- 4. Tandem walking

Moderate Phase:

- 1. Walking on a foam mat while performing a cognitive task
- 2. Navigating a "messy" environment while reciting or counting
- 3. Walking around, performing lunges on command (e.g., left foot when tapped on the left shoulder)
- 4. Walking forward and stepping up and down on a step platform

Advanced Phase:

- 1. Walking while performing complex dual tasks, such as buttoning/unbuttoning clothing, reciting/counting, and lunges on command
- 2. Walking forward and backward while simultaneously performing motor and cognitive tasks
- 3. Walking forward with step-ups/step-downs, combined with cognitive and motor tasks
- 4. Tandem walking integrated with both cognitive and motor challenges

Statistical Analysis:

Demographic Characteristics of Study Participants (N = 58)

Table 1: Age and Gender Distribution of Participants

Variables	Sub-groups	N	%	
Gender	Male	52	89.7	
	Female	6	10.3	
Age(Mean±SD)		69.50±2.735		

Falls efficacy scale values in terms of {Mean(SD)} at different time intervals using paired t test.

(Table 2)

Time interval	N	Mean	Std. Deviation	t value	Pvalue
FallsEfficacyScale Pre	58	15.40	2.765	12.659	<0.001**

FallsEfficacyScale	58	11.79	1.373	
Post				

Interpretation of Demographic Data:

The study sample comprised 58 participants, including 52 males (89.7%) and 6 females (10.3%). The mean age of the participants was 69.50 ± 2.74 years, indicating a relatively homogenous age distribution within the young-old adult group.

Timed up and go test scale values in terms of {Mean (SD)} at different time intervals using paired t test.

(Table 3)						
Time interval	N	Mean	Std. Deviation	tvalue	P value	
TimedUpandGoTestPre	58	11.76	1.467	11.737	<0.001**	
TimedUpandGoTestPost	58	9.76	1.559			

Interpretation:

The above table and graph show that Timed Up and Go test pre-mean was 11.76 ± 1.467 as standard deviation, Timed Up and Go test post-mean 9.76 ± 1.559 as standard deviation. P value <0.001**

Recult.

The demographic characteristics of the study population (N=58) indicated a predominance of male participants (n=52, 89.7%) compared to female participants (n=6, 10.3%). The mean age of the participants was 69.50 ± 2.74 years.

Falls Efficacy Scale (FES):

Pre-intervention assessment of the Falls Efficacy Scale revealed a mean score of 15.40±2.77. Following the six-week balance training program, the post-interventionmean significantly decreased to 11.79±1.37. Paired t-test analysis yielded a t-value of 12.659 and a p-value <0.001, indicating a statistically significant improvement in participants' confidence in performing daily activities without fear of falling.

Timed Up and Go (TUG) Test:

The pre-intervention mean TUG score was 11.76 ± 1.47 seconds. Post-intervention, the mean score improved to 9.76 ± 1.56 seconds, reflecting enhanced functional mobility and reduced fall risk among participants.

Discussion:-

Modifications to the intervention environment, including the use of both stable and unstable surfaces and the integration of upper extremity and cognitive tasks, were critical in optimizing balance among young-old adults. These strategically designed challenges enhanced postural control mechanisms, thereby contributing to fall risk

reduction within this population (6). The use of variable surface conditions simulated real-world scenarios, requiring participants to develop adaptive postural responses. This approach promotes the development of versatile and resilient balance control strategies (6). The addition of upper extremity and oral tasks further increased the complexity of the training regimen.

These tasks necessitated coordinated engagement of both motor and cognitive functions, eliciting a holistic response that fostered improvements in motor coordination and cognitive processing. Together, these elements facilitated the development of adaptive and functional balance, effectively enhancing postural control (6). A systematic, progressive increase in task difficulty served as a key mechanism for strengthening neural pathways associated with balance. Incrementally challenging activities enhanced participants' adaptive responses, illustrating how imposing higher demands on motor and cognitive systems refines postural control and improves overall balance performance (2). The results of this study align with existing literature emphasizing the benefits of structured balance interventions.

Additionally, independent studies, such as those by Tatjana Bulat et al., validate the safety and efficacy of functional balance training in improving postural control and reducing fall risk, supporting the generalizability of our findings across diverse older adult populations (7).

Conclusion:-

- The six-week combined balance training program significantly improved balance and reduced fall risk in young-old adults, as evidenced by improvements in the Falls Efficacy Scale and Timed Up and Go test scores.
- Accordingly, the study supports the alternative hypothesis, demonstrating that a structured combined balance training program is effective in enhancing postural control and preventing falls among young-old individuals.

Declaration by authors

Ethical approval: Approved

Acknowledgement:-

First to Almighty, who is our creator and sustainer, my parents who have been my angels who bore the burden of responsibility of me my whole life, my teachers who have been an inspiration throughout the educational journey, my friends who have been a constant support.

Source of funding: None

Conflict of interest:

The authors declare no conflict of interest.

References:-

- 1. Orimo H, Ito H, Suzuki T, Araki A, Hosoi T, Sawabe M. Reviewing the definition of "elderly". Geriatrics & Gerontology International. 2006 Sep;6(3):149–58.
- 2. Kulkarni N, Pouliasi K, Theodoritsi M, Mahajan A, Panagiatopolous E, Khatri S, Tsepis E. Impact of group exercise programme on fall risk in elderly individuals: a pilot study. International Journal of Health Sciences and Research. 2017;7(4):265–74.
- 3. Choi JH, Kim NJ. The effects of balance training and ankle training on the gait of elderly people who have fallen. Journal of Physical Therapy Science. 2015;27(1):139–42.
- 4. Mittaz Hager AG, Mathieu N, Lenoble-Hoskovec C, Swanenburg J, de Bie R, Hilfiker R. Effects of three home-based exercise programmes regarding falls, quality of life and exercise adherence in older adults at risk of falling: protocol for a randomized controlled trial. BMC Geriatrics. 2019 Dec;19(1):1–1.
- 5. Kuptniratsaikul V, Praditsuwan R, Assantachai P, Ploypetch T, Udompunturak S, Pooliam J. Effectiveness of simple balancing training program in elderly patients with history of frequent falls. Clinical Interventions in Aging. 2011;6:111.
- 6. Halvarsson A, Dohrn IM, Ståhle A. Taking balance training for older adults one step further: the rationale for and a description of a proven balance training programme. Clinical Rehabilitation. 2015 May;29(5):417–25.
- 7. Steadman J, Donaldson N, Kalra L. A randomized controlled trial of an enhanced balance training program to improve mobility and reduce falls in elderly patients. Journal of the American Geriatrics Society. 2003 Jun;51(6):847–52.