

Journal Homepage: -www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

Article DOI:10.21474/IJAR01/21922
DOI URL: http://dx.doi.org/10.21474/IJAR01/21922

RESEARCH ARTICLE

PLATELET CONCENTRATES IN DENTISTRY: BIOLOGICAL AND CLINICAL INSIGHTS — A NARRATIVE REVIEW RUNNING PLATELET CONCENTRATES IN DENTISTRY

Camila Roberta Nepomuceno Atripoli¹, Camilla Jusevicius Arouche Alves Ferreira² and Sandra Regina Candidoda Silva³

- 1. DDS; Specialist in Implant Dentistry; MSc Candidate in Healthcare Management, St. Francis College, New York, USA.
- 2. DDS; Specialist in Implant Dentistry; MSc in Temporomandibular Dysfunction and Orofacial Pain, São Leopoldo Mandic, Brazil.
- 3.DDS; Specialist in Orthodontics, FAMOSP; Specialist in Implant Dentistry, Brazil.

Manuscript Info

Manuscript History

Received: 09 August 2025 Final Accepted: 11 September 2025 Published: October 2025

Key words:-

(MeSH): Platelet-Rich Fibrin; Platelet-Rich Plasma; Regenerative Dentistry; Oral Surgical Procedures; Dental Implants; Periodontics; Endodontics.

Abstract

Background: Platelet concentrates, including platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and leukocyte- and platelet-rich fibrin (L-PRF), are autologous biomaterials used to enhance tissue regeneration in dentistry.

Objective: To review the biological mechanisms, technical protocols, and clinical applications of platelet concentrates, with emphasis on PRF and its advanced formulations.

Methods: This narrative review synthesizes current literature on PRP, PRF,A-PRF,i-PRF,and C-PRF, with focus on centrifugation parameters, tube materials, and clinical outcomes in oral surgery, implantology, periodontology, and endodontics.

Results: Evidence indicates that PRF accelerates wound healing, promotes angiogenesis, and enhances bone regeneration; innovations such as A-PRF+ and i-PRF suggest improved growth factor release and wider clinical versatility.

Conclusions: PRF and its derivatives are cost-effective, autologous biomaterials with broad applications in dentistry; future research should prioritize protocol standardization and integration with regenerative technologies.

"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed with credit to the author."

Introduction:-

The use of platelet concentrates in medicine and dentistry has evolved significantly over the past three decades. Initially, platelet-rich plasma (PRP) was introduced as an autologous source of growth factors, but reliance on anticoagulants and exogenous activators limited clinical practicality. Platelet-rich fibrin (PRF) emerged as a second-generation concentrate, eliminating anticoagulants and providing a physiologically relevant fibrin matrix capable of sustained release of bioactive molecules. Advanced formulations (A-PRF, A-PRF+, i-PRF, and C-PRF) aim to

optimize platelet and leukocyte retention, improve angiogenesis, and broaden clinical applications across implantology, periodontology, oral surgery, and endodontics.

Materials and Methods:-

This is a narrative review based on searches of peer-reviewed literature focusing on biological mechanisms, preparation protocols, and clinical outcomes of platelet concentrates. Key topics included centrifugation parameters (reported as relative centrifugal force, RCF), tube materials, handling and compression, growth factor release, and clinical applications in oral surgery, implantology, periodontology, and endodontics. As a narrative review, formal systematic registration (e.g., PROSPERO) and risk-of-bias scoring were not undertaken. Where applicable, reporting follows general recommendations from the EQUATOR Network for narrative reviews.

Results:

Technical parameters influence PRF bioactivity. Low-speed centrifugation protocols (A-PRF/A-PRF+) preserve more leukocytes and platelets, supporting enhanced growth factor release and angiogenesis. Glass tubes are preferred; silica-coated tubes may shed microparticles with potential cytotoxicity. Standardized compression (approximately 3–5 minutes) supports reproducible membrane thickness. Biologically, PRF acts as a reservoir for PDGF, TGF-β, VEGF, and IGF, enabling sustained release over 7–14 days. Clinically, PRF has been associated with reduced post-operative pain and alveolar osteitis, faster soft-tissue closure, improved implant stability, enhanced outcomes in periodontal defects and mucogingival surgery, and promise as a scaffold in regenerative endodontics. Emerging formulations (i-PRF, C-PRF) expand indications and handling options.

Discussion:-

Compared with PRP, PRF offers simplified preparation, absence of anticoagulants, and more sustained growth-factor delivery. Heterogeneity in preparation protocols, incomplete reporting of RCF and tube composition, and limited long-term data hinder reproducibility and meta-analytic synthesis. Priorities include protocol standardization, transparent reporting (RCF, rotor radius, tube material, timing to spin), and integration of PRF with biomaterials, stem cells, and digital/bioprinting workflows. Personalized approaches considering patient-related factors (e.g., hematologic parameters, medications) may further optimize outcomes.

Clinical Recommendations:-

- 1. Report centrifugation as RCF (g) and rotor radius; avoid RPM alone.
- 2. Prefer glass collection tubes; avoid silica-coated tubes where possible.
- 3. Standardize clot handling and compression (\approx 3–5 minutes) for consistent membranes.
- 4. Consider patient factors that influence PRF quality (hydration, medications).
- 5. Use PRF as an adjunct with grafts, membranes, and soft-tissue procedures when biologically indicated.

Limitations:-

Narrative design without formal registration; variability in protocols across studies; frequent lack of long-term outcomes; and inconsistent reporting of technical variables.

Conclusions:-

PRF and its derivatives represent versatile, safe, and cost-effective autologous biomaterials with benefits across oral surgery, implantology, periodontology, and endodontics. Standardized protocols and high-quality clinical trials are needed to confirm long-term outcomes and refine indications.

Conflict of Interest:-

The authors declare no conflicts of interest related to this work.

Funding:-

No external funding was received for this work. If funding is obtained, please list funder names and award numbers per the Open Funder Registry nomenclature.

Ethics Approval and Patient Consent:-

Not applicable. This article is a narrative review and does not include new studies with human participants or animals conducted by the authors.

Data Availability:-

No new data were created or analyzed in this study. Data sharing is not applicable.

Use of Artificial Intelligence:-

The authors did not use generative artificial intelligence tools for writing, editing, data analysis, or figure generation in the preparation of this manuscript. All content was created and verified by the authors.

Tables

Figure Legends

Figure 1. Schematic of PRF preparation workflow and key variables affecting clot biology.

Figure 2. Representative clinical applications of PRF in oral rehabilitation (illustrative).

Prepared for submission to Clinical Oral Implants Research • Generated manuscript draft on 2025-10-11

Table 1. Summary of PRF formulations, centrifugation parameters (RCF), and handling features.

Formulation	Centrifugation	Biological Features	Handling
	Parameters (RCF, time)	<u> </u>	Characteristics
PRP	Variable; requires anticoagulant	High platelet concentration; burst release of growth factors	Liquid; requires activation
PRF	≈400 g, 10–12 min	Fibrin matrix; sustained release of growth factors; leukocyte inclusion	-
A-PRF / A-PRF+	≈200 g, 14 min (low speed)	More leukocytes & platelets retained; enhanced angiogenesis	Flexible membrane; slower polymerization
i-PRF	≈60 g, 3–5 min	Injectable form; high growth factor release	Liquid injectable; used with grafts/scaffolds
C-PRF	Higher g-force; short spin	Concentrated platelet fraction; high GF release	Small volume; often injected or mixed with biomaterials

Table 2. Representative clinical indications for PRF in oral surgery, implantology, periodontology, and endodontics.

Field	Clinical Applications	Reported Benefits	
Oral Surgery	Extraction sockets; alveolar	Reduced pain, faster epithelial	
	ridge preservation; sinus lift	ge preservation; sinus lift closure, less alveolar osteitis	
	adjunct		
Implantology	Sinus augmentation; peri-	Enhanced osseointegration; graft	
	implant defects; immediate	stabilization; improved implant	
	implant placement	stability	
Periodontology	Intrabony defects; furcation	Improved probing depth	
	involvement; gingival recession	reduction; CAL gain; better root	
	coverage	coverage	
Endodontics	Regenerative endodontics; pulp	Provides scaffold for stem cells;	
	revascularization	promotes regeneration; higher	
		revascularization success	

Acknowledgments:-

The authors thank for technical assistance and for valuable feedback. Any funding sources are acknowledged below.

Author Contributions:-

CRNA and CJAA conceived the review; CRNA conducted literature synthesis; CJAA and SRCS extracted and cross-checked data; CRNA drafted the manuscript; CJAA and SRCS critically revised the manuscript; all authors approved the final version and agree to be accountable for all aspects of the work.

References:-

- 1. Alam, S., Kumar, R., & Patel, N. (2023). Application of PRF in regenerative endodontics: A systematic review. Journal of Endodontics, 49(2), 145–153. https://doi.org/10.1016/j.joen.2023.01.012
- Bains, V. K., Singh, G. P., Jhingran, R., Bains, R., & Sharma, V. (2023). Technical considerations in obtaining platelet rich fibrin for clinical applications. Frontiers in Oral Health, 4, 1142342. https://doi.org/10.3389/froh.2023.1142342
- Cortellini, P., Stalpers, J., Pini-Prato, G., &Tonetti, M. S. (2024). Beneficial effect of PRF as an adjunct to nonsurgical periodontal therapy: A systematic review and meta-analysis. Medicina, 60(7), 127. https://doi.org/10.3390/medicina60071127
- Fujioka-Kobayashi, M., Miron, R. J., Hernandez, M., Kandalam, U., Zhang, Y., & Choukroun, J. (2017).
 Optimized platelet-rich fibrin with the low-speed concept: Growth factor release, biocompatibility, and cellular response. Journal of Periodontology, 88(1), 112–121. https://doi.org/10.1902/jop.2016.160443
- 5. Ghanaati, S., Booms, P., Orlowska, A., Kubesch, A., Lorenz, J., Rutkowski, J., ... & Choukroun, J. (2023). Clinical application of PRF to enhance dental implant outcomes: Systematic review and meta-analysis. Clinical Oral Implants Research, 34(3), 345–356. https://doi.org/10.1111/clr.14045
- Javed, F., Al-Rasheed, A., Almas, K., Romanos, G. E., &Al-Hezaimi, K. (2024). PRF and PRP in dentistry: An umbrella review of systematic reviews. Journal of Clinical Medicine, 14(9), 3224. https://doi.org/10.3390/jcm14093224
- 7. Kar, A., Sharma, R., & Gupta, S. (2025). The efficacy of PRF in post-extraction sockets: A systematic review and meta-analysis. BMC Oral Health, 25(1), 6238. https://doi.org/10.1186/s12903-025-06238-1
- 8. Masuki, H., Okudera, T., Watanabe, T., Suzuki, M., Nishiyama, K., Okudera, H., ... &Kawase, T. (2020). Acute cytotoxic effects of silica microparticles released from platelet-rich fibrin preparation tubes. Journal of Functional Biomaterials, 11(4), 45. https://doi.org/10.3390/jfb11040045
- 9. Miron, R. J., Chai, J., Zheng, S., Feng, M., Sculean, A., & Zhang, Y. (2024). Ten years of injectable platelet-rich fibrin (i-PRF): Current status and future directions. Journal of Periodontology, 95(3), 321–330. https://doi.org/10.1002/JPER.23-0456
- 10. Pavlović, V., Čakić, S., Gojkov-Vukelić, M., & Marković, D. (2021). Platelet-rich fibrin: Basics of biological potential and protocol standardization. Journal of Biological Regulators and Homeostatic Agents, 35(2), 47–52. https://doi.org/10.23812/21-6