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Introduction:-

Chest X-ray Imaging: Principles and Diagnostic Significance chest x ray imag- ing represents one of the most
fundamental and frequently employed diagnostic modalities in contemporary clinical medicine. Due to its
widespread availabil- ity, rapid image acquisition, low cost, and minimal radiation exposure, it con- tinues to serve
as a primary tool for the evaluation of thoracic diseases across diverse healthcare settings, from emergency
departments to outpatient clinics. Chest radiographs provide a two-dimensional (2D) projection of complex three-
dimensional (3D) thoracic anatomy, including the lungs, heart, major vessels, diaphragm, mediastinum, bony
structures, and pleural spaces. The diagnostic utility of CXR imaging is grounded in the principle of differential
radiographic density.

This principle allows radiologists to discern normal anatomical varia- tions and pathological alterations based on
how various tissues attenuate X-ray beams. Air-filled structures, such as healthy lung parenchyma, appear radiolu-
cent or black, while denser tissues—such as bone, fluid, or consolidated lung tissue—manifest as progressively
whiter opacities on the radiograph. This fun- damental contrast enables the identification of key pathological
hallmarks asso- ciated with pulmonary infections, neoplastic growths, pleural abnormalities, and vascular or cardiac
conditions. Despite the inherent value of chest X-rays, inter- pretation remains an intricate task, challenged by the
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overlapping of anatomical structures, variable patient positioning, technical inconsistencies (e.g., exposure,
projection angles), and subtle early-stage pathologies. Moreover, disease-specific radiographic manifestations can
vary significantly in their appearance and sever- ity, sometimes producing overlapping visual patterns that further
complicate diagnosis. Consequently, accurate interpretation demands substantial expertise and experience, often
necessitating the integration of clinical findings with imag- ing data. Even among seasoned radiologists, inter-
observer variability poses a persistent limitation, prompting increased interest in automated diagnostic sys- tems
utilizing deep learning to enhance consistency and accuracy. Radiographic Variability Across Disease States The
visual representation of thoracic disease on chest X-ray imaging is deeply influenced by the underlying pathological
pro- cesses. Below, we examine the radiographic hallmarks and pathophysiological basis of four major pulmonary
conditions—pneumonia, COVID-19, consolida- tion, and pleural effusion—which serve as core focus areas for
automated image- to-text translation systems in medical Al. Pneumonia: Pathogenesis and Radi- ologic
Characteristics Pneumonia is a common and potentially life-threatening respiratory infection characterized by
inflammation of the alveoli—the small air responsible to oxygen-carbon dioxide exchange in the lungs. This inflam-
mation leads to the filling of alveolar spaces with exudate, pus, and cellular debris, significantly impairing
pulmonary function and oxygenation.

The etio- logical spectrum of pneumonia is broad, encompassing bacterial agents (such as Streptococcus
pneumoniae), viruses (e.g., influenza virus, respiratory syncytial virus), and opportunistic fungal pathogens (e.g.,
Pneumocystis jirovecii, par- ticularly in immunocompromised individuals). Clinically, pneumonia manifests with
symptoms such as fever, productive or non-productive cough, pleuritic chest pain, tachypnea, dyspnea, and general
malaise. The condition dispropor- tionately affects the extremes of age—the very young and the elderly—as well as
individuals with underlying health conditions such as chronic obstructive pulmonary disease , diabetes, or
immunodeficiency. Radiographically, pneumo- nia is characterized by areas of increased pulmonary opacity on
chest X-rays, indicative of alveolar consolidation. These opacities may be confined to a sin- gle lobe (lobar
pneumonia), distributed in multiple segments (segmental), or diffusely scattered (bronchopneumonia). The classic
radiologic finding is the presence of homogeneous, well-defined opacities, often accompanied by air bron-
chograms—radiolucent tubular structures representing air-filled bronchi within fluid-filled alveoli. Pneumonia
significant cause of global morbidity and mor- tality, and radiographic imaging plays a vital role in its diagnosis,
monitoring, and therapeutic management.

COVID-19: Radiological Insights into a Global Pandemic Coronavirus Disease 2019 COVID-19 is a highly
contagious respira- tory illness caused by the novel coronavirus SARS-CoV-2. First reported in Wuhan, China, in
December 2019, COVID-19 rapidly escalated into a global pandemic, placing an unprecedented burden on
healthcare systems worldwide. The disease exhibits a broad clinical spectrum, ranging from asymptomatic infection
to severe pneumonia, acute respiratory distress syndrome (ARDS), multi-organ failure, and death. The primary
mode of transmission is via res- piratory droplets and aerosols, with the lungs being the principal target organ due to
the expression of ACE2 receptors. Radiologic imaging, including both chest X-ray and computed tomography ,
played essential role in the triage, diagnosis, and longitudinal assessment of COVID-19 patients, especially in set-
tings where polymerase chain reaction testing is delayed or unavailable. On chest X-rays, COVID-19-related
pneumonia is often characterized by bilateral, peripheral ground-glass opacities , diffuse patchy infiltrates, and
reticular or nodular patterns. In advanced cases, extensive consolidation may be observed, particularly in the lower
lung zones. Unlike bacterial pneumonia, which often presents as localized consolidation, COVID-19-related
pulmonary involvement tends to be more diffuse and asymmetric.

The pulmonary damage seen in severe COVID-19 is frequently attributed to a dysregulated immune response,
includ- ing the so-called “cytokine storm,” which leads to widespread alveolar damage, increased capillary
permeability, and interstitial edema. Chest X-ray imaging thus serves not only as a diagnostic tool but also as a
monitoring modality to track disease progression and evaluate response to therapeutic interventions, including
antivirals, corticosteroids, and supportive oxygen therapy. Consolida- tion: A Radiologic Sign of Underlying
Disease In radiological parlance, consoli- dation refers to the replacement of normally aerated alveolar spaces with
patho- logic substances such as pus (as in infection), blood (as in hemorrhage), fluid (as in edema), or neoplastic
cells (as in malignancy). This phenomenon results in a loss of the normal air-tissue interface, producing regions of
increased radio- density on imaging studies. Consolidation is most commonly associated with infectious processes
such as pneumonia, but it may also signify non-infectious pathologies including pulmonary infarction, neoplasms,
and autoimmune con- ditions such as organizing pneumonia. On chest X-rays, consolidation appears as a well-
demarcated or patchy homogeneous white opacity that often obscures the underlying pulmonary vascular markings.
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It may be associated with ad- ditional features such as air bronchograms, silhouette sign (loss of the normal border
between heart and lung), and volume loss or expansion depending on the disease mechanism. Importantly, the
morphology and distribution of consolida- tion can yield diagnostic clues. For instance, focal lobar consolidation
suggests bacterial pneumonia, whereas bilateral diffuse consolidation might point toward viral infection or ARDS.
Thus, identifying the pattern, density, and extent of consolidation is pivotal in the differential diagnosis of
pulmonary conditions and in guiding appropriate clinical management. Pleural Effusion: Imaging Features and
Clinical Relevance Pleural effusion is defined as the pathological accumu- lation of fluid within the pleural space—
the narrow compartment between the parietal and visceral pleura that envelops the lungs. This condition may arise
due to a wide array of systemic and local factors, including congestive heart failure, pneumonia, malignancy,
pulmonary embolism, and connective tissue diseases like lupus or rheumatoid arthritis. Clinically, pleural effusion
can man- ifest as dyspnea, chest pain, and diminished breath sounds on auscultation.

The severity of symptoms typically correlates with the volume and rapidity of fluid accumulation. On chest
radiographs, pleural effusion is indicated by blunting of the costophrenic angles, a classic meniscus sign, and, in
larger effusions, a homo- geneous opacity obscuring the underlying lung parenchyma. In lateral decubitus
positioning, the fluid may shift with gravity, further confirming its free-flowing nature. Effusions are broadly
classified as transudative—resulting from systemic conditions such as heart failure or hypoalbuminemia—and
exudative—caused by local inflammation, infection, or malignancy. Accurate differentiation be- tween these types
is crucial for clinical decision-making and is often guided by imaging findings combined with pleural fluid analysis
via thoracentesis. Chal- lenges in CXR Interpretation and the Role of Al Despite its invaluable diagnostic role, chest
X-ray interpretation remains fraught with challenges. Variability in image acquisition (e.g., anterior-posterior vs.
posterior-anterior views), patient factors (e.g., obesity, inability to inspire deeply), and subtle early-stage disease
findings contribute to potential diagnostic uncertainty.

Furthermore, overlap- ping features among different diseases—for instance, diffuse opacities in both COVID-19 and
ARDS—make visual differentiation difficult even for experienced radiologists. In response to these limitations,
artificial intelligence (AI)-driven solutions have emerged as powerful tools to augment diagnostic accuracy. Deep
learning models, particularly convolutional neural networks (CNNs) and vision transformers (ViTs), have
demonstrated considerable promise in analyzing CXR images. These models can automatically detect radiographic
patterns associ- ated with specific diseases, highlight regions of interest using attention maps, and even generate
textual interpretations akin to radiology reports. By learning from large annotated datasets, such Al systems can
extract hierarchical features that transcend simple pixel-level differences, capturing the complex visual pat- terns
indicative of specific pathological states. In particular, transformer-based models have shown an ability to integrate
image features with natural language generation, enabling the translation of visual inputs into coherent textual de-
scriptions—an approach that underpins the goal of chest X-ray image-to-text transformation projects.

Related Work:-

*Pnemonia detection using deep learning a deep learning model that achieves radiologist-level performance in
detect- ing pneumonia from chest X-rays. The model is a 121-layer Dense Convolutional Network (DenseNet-121)
trained on the ChestX-rayl4 dataset, which contains over 100,000 frontal-view chest X-rays labeled with 14
different pathologies. To demonstrate how a deep learning system can match or even outperform expert radiologists.
To achieve this, the authors trained CheXNet to predict all 14 pathologies and then fine-tuned it specifically for
pneumonia detection. A key contribution is the comparison between CheXNet and four radiologists, where the
model performed slightly better than the average expert in terms of F1 score. CheXNet uses transfer learning, where
a model pretrained on ImageNet is adapted to chest X-ray images. The paper also employs class activation maps to
visualize regions in the X-rays that are most relevant to the model’s predic- tions, aiding interpretability. The results
showed that CheXNet can serve as a reliable tool for screening and triage, especially in areas with limited access to
radiologists. The study suggests that deep learning has the potential to support or partially automate medical image
interpretation.

*”Automated Chest X-ray Radiology Report Generation” a model for automated generation of radiology reports
from chest x-ray, aim- ing to replicate human-level descriptive capability using deep learning. The sys- tem
combines a Convolutional Neural Network (CNN) for image feature extrac- tion and a Recurrent Neural Network,
specifically Long Short-Term Memory, for report generation. The dataset used is IU X-Ray, which contains X-ray
im- ages paired with structured radiology reports. The authors propose a two-stage pipeline: (1) image encoder using
CNN to obtain image embeddings, and (2) report decoder using LSTM to generate textual findings. Attention
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mechanisms are integrated to help the decoder focus on relevant image areas while generat- ing each word.
Performance is measured using BLEU, METEOR, and ROUGE scores. The model showed promising results in
terms of linguistic fluency and medical accuracy, though it still struggles with rare findings and fine-grained
nuances. The paper emphasizes the potential of Al in clinical documentation, reducing workload and improving
consistency. Limitations include data scarcity and challenges in accurately modeling diverse medical terminology.

*’Transformer-Based Chest X-ray Report Generation” This work explores the application of Transformer
architectures for generating radiology reports from chest X-rays, aiming to improve upon traditional RNN- based
methods. The authors propose a Vision Transformer (ViT) + Transformer decoder model that directly generates full
reports. Using the MIMIC-CXR dataset, the system maps image patches to embeddings via a ViT encoder, then
feeds these into a Transformer decoder to produce natural language reports. This setup allows for better handling of
long-range dependencies in text and fine-grained image features. Results are evaluated using BLEU, ROUGE-L, and
CIDEr. The proposed method outperforms RNN-based baselines and matches clinical accuracy in many cases.
Visualizations of attention weights show that the model effectively links image regions to relevant report content.
The study concludes that pure Transformer models, while computationally intensive, are superior in coherence,
accuracy, and scalability for medical text generation. Challenges remain in aligning predictions with clinically
correct language and incorporating domain-specific knowledge.

*’Clinically Accurate Chest X-ray Report Generation with Knowledge Graphs” This paper enhances chest X-ray
report generation by incorporating medical knowledge graphs into a Transformer-based pipeline. The model, called
KERP (Knowledge Enhanced Report Parser), integrates domain-specific knowledge to improve accuracy and reduce
factual errors. KERP uses a three-step process: (1) a graph encoder creates medical entity embeddings from the
knowledge base, (2) a visual encoder extracts features from images, and (3) a Transformer de- coder generates
reports using a fusion of visual and graph-based knowledge. The dataset used is MIMIC-CXR. The system
outperforms other methods in generating clinically accurate and coherent reports, especially in rare or subtle disease
cases. Evaluation includes BLEU, ROUGE, and a newly proposed clini- cal accuracy score. This approach
highlights the importance of domain-specific knowledge in medical Al systems. The fusion of structured medical
knowledge with image features leads to reports that are more aligned with real clinical in- terpretations. Limitations
include the static nature of the graph and incomplete knowledge coverage.

*’AlignTransformer: Alignment-Aware Transformer for Chest X-ray Re- port Generation” Align Transformer is a
novel architecture designed to improve alignment be- tween image features and textual descriptions in chest X-ray
report generation. The key idea is to explicitly model the alignment between image regions and phrases in the report,
which traditional models often ignore. The model uses a standard CNN (e.g., ResNet-101) to encode the image,
followed by an alignment- aware Transformer decoder that emphasizes cross-modal relationships. It intro- duces an
alignment loss function to guide the training process towards bet- ter correspondence between visual and textual
elements. Using the IU X-Ray and MIMIC-CXR datasets, the model achieves higher BLEU, METEOR, and
ROUGE scores compared to state-of-the-art baselines. Visualizations show that the model better grounds textual
tokens in specific image regions, making the reports more interpretable. The paper concludes that alignment-aware
mod- eling significantly enhances clinical relevance and interpretability of generated reports. Limitations include
increased complexity and longer training times.

*”Exploring the Limits of Chest X-ray Report Generation with GPT” IN This investigates the capabilities of large
language models (LLMs), especially GPT, in generating radiology reports from chest X-ray images. The authors in-
tegrate image features from CNNs or ViTs with GPT-style decoders to examine how well general-purpose LLMs
perform in a medical setting. The architec- ture includes an image encoder followed by a frozen or fine-tuned GPT
decoder trained to generate findings, impressions, and recommendations. The model is evaluated using standard
metrics like BLEU, ROUGE, and clinical correctness by expert radiologists. While GPT performs well in terms of
fluency and gen- eral structure, it often hallucinates medical facts not grounded in the image. Fine-tuning with
medical data reduces these errors but doesn’t eliminate them. The paper also discusses prompt engineering and
transfer learning as ways to adapt general models to medical tasks. The study concludes that while GPT shows
promise, domain adaptation and medical grounding are crucial for clin- ical safety. LLMs are not yet reliable as
standalone diagnostic tools but could assist radiologists as writing aids.

*’Uncertainty-Aware Chest X-ray Report Generation” In This proposes an uncertainty-aware approach to chest X-
ray report genera- tion. The key idea is to quantify the confidence of the Al system when gener- ating each sentence
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in the report, helping doctors identify which parts are more reliable. The system combines a CNN image encoder, a
Transformer-based de- coder, and an uncertainty estimation module. This module uses techniques like Monte Carlo
Dropout to produce confidence intervals for the generated content. Trained on the dataset, the model shows
comparable language quality to pre- vious methods but provides extra information about prediction reliability. This
is crucial in clinical settings where overconfidence in incorrect results can be harmful. By integrating uncertainty
scores with generated text, the model en- ables clinicians to better interpret and validate Al outputs. Limitations
include increased computational cost and difficulty in calibrating uncertainty measures.

Proposed Methodology:-

Details of the proposed model for robust and effcient classifcation of Covid-19 disease from input chest x ray.
1.Dataset description A dataset based on chest X-rays is used in this study. To complete the classification task,
10,874 X-ray images in PNG (portable network graphics) format are used. The size of the input image is set to 224
x 224 x 3.0ne dataset is created by combining the three different chest radiographs of lung diseases. All photos are
from publicly available sources. Three categories are used to group all of the samples: training , testing , and
validation. A strong and deep effcient model is developed.

Data Preprocessing:-

1.The goal of image resizing and scaling is to uniformize input dimensions throughout the dataset. Method:
Depending on the model (e.g., ResNet, DenseNet, ViT), all CXR images are downsized to a specific resolution,
usually 224x224 or 512x512 pixels. Rescaling: Pixel values are frequently standardized using mean and stan- dard
deviation (e.g., ImageNet values) or normalized to a [0, 1] range.

2.Contrast Enhancement Histogram Equalization: This technique dis- perses intensity values to improve contrast.
Contrast Limited Adaptive Histogram Equalization, is a better local technique that is frequently ap- plied in medical
imaging to improve soft tissue contrast. 3.  Diminution of Noise Gaussian blurring, also known as median filtering,
eliminates random noise without obscuring significant patterns.aids in re- moving artifacts from images, which is
crucial when utilizing portable or low-quality X-ray equipment.

3.Dataset description This work uses a specially curated dataset of frontal chest X-ray (CXR) images along with
matched textual radiology reports in the cross-modal translation from radiography to descriptive text. The data set is
obtained from publicly accessible data sources like the ChestX- rayl4, normal X-ray image, and COVIDI19,
pneumonia, consolidation, pleural effusion datasets.

Processing: NORMAL(10).Jpg
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Figure 1: Preprocessing image

Ferature Extraction:-

*Feature extraction serves as an important aspect of bridging the visual and textual modalities in our chest X-ray
image-to-report transforma- tion pipeline. In this work, we utilize the merits of two of the most current deep
convolutional and transformer-based architectures—Vision Transformer (ViT-B/16) and CheXNet (DenseNet-
121)—to extract high- level, semantically dense feature representations from preprocessed chest radiographs.
*Vision Transformer is a transformer-based model that uses the self-attention operation for image patches as an
alternative to convolutional neural net- works. We specifically use the ViT-B/16 variant, which separates in- put
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images into non-overlapping 16x16 patches, embeds them into linear space, and processes them via stacked encoder
transformer blocks. Input Image Size: 224 x 224 x 3 Patch Size: 16 x 16 (196 patches in total) Output Dimension:
768 (for the [CLS] token and each patch) Feature Vector Utilized: Output embedding for the [CLS] token Output
Shape: (1, 768) The ViT model is pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k. We obtain the last
[CLS] token embedding after passing the image through all the encoder layers, which captures a global contextual
representation of the image appropriate for downstream tasks like report generation.

*CheXNet (DenseNet-121) CheXNet is a DenseNet-121 model pretrained on the ChestX-rayl4 dataset alone for
classification of thoracic diseases. Its convolutional backbone can extract spatially dense clinical abnormality-
relevant features. Input Image Size: 224 x 224 x 3 Final Convolution Output: (1024, 7, 7) Adaptive Average
Pooling: Pooled output to (1024, 1, 1) Flattened Feature Vector: 1024-dimensional Output Shape: (1, 1024) In order
to use CheXNet as a feature extractor, we remove the classifica- tion head and employ the penultimate feature map.
The feature tensor is pooled and flattened to get a dense feature representation encapsulating the diagnostic content
of the image.

Model Architecture:-
CheXNet Model Architecture:-

Input: 3 x 224 x 224 (Chest X-ray image, RGB) 1. Initial Convolution and Pooling Layers

Layer Type Output Shape Kernel/Stride/Pad | Description

Conv2d 64 X 112 X 112 7xX7/2/3 Initial convolution layer
BatchNorm2d | 64 X 112 X 112 - Batch normalization
RelLU 64 X 112 X 112 - Activation

MaxPool2d 64 X 56 X 56 3xX3/2/1 Downsampling

Table 1: Neural network layer specifications.

Dense Block 1 + Transition Layer 1
Component Output Shape | Description
Dense Block 1 256 X 56 X 56 | 6 dense layers
Transition Layer 1 128 X 28 X 28 1X1 conv + avg pool
Table 2: Placeholder caption for component description and output shape

Dense Block 2+ Transition Layer 2:-
Input: 128 x 28 x 28 (from Transition Layer 1)
Number of Layers: 12 Dense Layers
Growth Rate: 32 (Each layer adds 32 channels)
Output Channels: 128 (input) + 12 x 32 (new channels) = 512 channels

Component Output Shape | Description

Dense Block 2 512 X 28 X 28 | 12 dense layers

Transition Layer 2 | 256 X 14 X 14 | 1X1 conv + avg pool
Table 3: Description of Network Components

Vision Transformer (ViT-B/16):-

The ViT-Base model meets performance on par by utilizing global attention mechanisms to represent long-distance
relations across image areas. Its design eschews convolution operations altogether and instead relies on patch
embed- dings, self-attention, and deep Transformer encoders to obtain semantic repre- sentations of visual
information. Its design is especially potent when pretrained on big datasets and fine-tuned for applications such as
medical image interpre- tation, including diagnosis on chest X-rays.
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Layer No. | Layer Type Input Shape | Output Shape
1 Input Image (3, 224, 224)
2 Patch Split + Flatten (3, 224, 224) (196, 768)
3 Linear Projection (196, 768) (196, 768)
4 Class Token [CLS] (196, 768) (197, 768)
5 Position Embedding (197, 768) (197, 768)
6-29 Transformer Encoder X12 (197, 768) (197, 768)
— LayerNorm (197, 768) (197, 768)
— Multi-Head Attention (197, 768) (197, 768)
— Skip Connection (197, 768) (197, 768)
— LayerNorm (197, 768) (197, 768)
— MLP (Linear — GELU — Linear) (197, 768) (197, 768)
— Skip Connection (197, 768) (197, 768)
30 Final LayerNorm (197, 768) (197, 768)
31 CLS Token Extraction (197, 768) (768,)
32 Classification Head (optional) (768,) (num_classes,)

Table 4: Model Architecture Layer Details

Vision Transformer Algorithm:-
Patch Embedding:-
3xHXW

Convert an input image I € R into a sequence of flattened patches:

2.
x ;= Flatten(Patch (1)) € R"°C
Apply a trainable linear projection:
Zy = Xp W +b

Self-Attention Mechanism:-
For each patch embedding x, compute query, key, and value vectors:
QZXWQ, KZXWK, VZXWV
Compute the attention weights and apply them to the values:
QKT

Attention(Q, K, V) = w/dj v
k

Multi-Head Self-Attention (MHSA):-
Split the input into h heads, perform attention in parallel, and concatenate the results:
MHSA(X) = Concat(head,, . . ., head,)Wq

Feed-Forward Network (FFN):-
A two-layer MLP with a GELU activation function:
FFN (x) = Linear2(GELU (Linear1(x)))

Algorithm: ViT Base:-
Input: RGB Image x R****¥%*
Output: Feature vector f R’ or classification vector y RC function ViT-

Base(x):

Divide x into 16x16 non-overlapping patches Flatten patches and apply linear projection — z Add class token
[CLS] to z Add positional encoding to z for each of the 12 Transformer Encoder layers:

Apply LayerNorm — Multi-Head Attention — Residual Apply LayerNorm — MLP — Residual end for Extract
[CLS] token output as feature vector f if classification task then Apply classification head — y return y else return f
end if end function
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Mathematical Description of the Grad-CAM:-

The Gradient-weighted Class Activation Mapping (Grad-CAM) visualizes the spatial importance of each region of
an input image for a specific class prediction. It does this by computing the gradient of the output class score with
respect to the feature maps of a convolutional layer.

Let:
e y°be the class score (e.g., probability or logit) for class c.
A" € R"™V be the k-th feature map of a convolutional layer.
e o be the importance weight for feature map k with respect to class c.

Step 1: Compute Gradients
Compute the gradient of the class score with respect to the feature maps:

ayc

oAk
Step 2: Global Average Pooling Over Gradients
Compute the importance weights:

H W o
oe Hsd ==

Trr

i=1
Step 3: Compute Weighted Combination of Feature Maps
The class activation map is obtained as:

>
c 7 =RelLU ¢ & A
Grad—CAM ! k

k

Here, ReLU is applied to retain only positive influences that contribute posi- tively to the class
score.

Result and Discussion:-

Self-Attention in Vision Transformers (Viit):-

e Vision Transformers (ViTs) use self-attention to weigh the importance of different image patches relative to one
another.

The image is divided into patches (e.g., 16x16), embedded, and fed into a Transformer encoder.

At each layer, self-attention maps determine how each patch attends to every other patch.

These maps can be aggregated (e.g., using attention rollout) to visualize overall focus.

Attention Rollout Technique:

This method propagates attention across layers to determine how the out- put class token depends on input
patches. It provides a holistic view of spatial dependencies learned by the Transformer.

Clinical Relevance of Attention Maps Attention heatmaps serve not only as interpretability tools but also aid in:
Feature localization: Helps the model attend to pathologically relevant structures.

Model trustworthiness: Provides clinicians visual evidence for Al-driven decisions.

Training supervision: In weakly supervised learning, attention maps act as pseudo-labels.

Dataset annotation: Radiologists can validate attention maps to refine annotations.
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Figure 2: Grad-CAM

Prediction and Attention Visualization Result:-

Figure 3 illustrates an example output of the proposed image-to-text genera- tion model for chest X-rays. On the
left, the input is a frontal chest X-ray image of a normal subject, displaying clear lung fields without any
radiographic signs of pathology. In the center, the colored grid represents an attention heatmap overlay derived from
the Transformer decoder during the text generation pro- cess. The heatmap highlights the regions of the image that
were most influential in the model’s prediction, particularly focusing on the central thoracic zone cor- responding to
the lung fields and mediastinum. On the right, the generated textual report reads:

”The lungs are clear. No pleural effusion, pneumothorax or focal air-space disease.”

This output demonstrates the model’s ability to not only identify normal anatomical structures but also to rule out
critical pathologies such as pleural effusion, pneumothorax, or focal consolidation. The attention map further con-
firms that the model is attending to medically relevant areas of the chest X-ray during inference, thereby reinforcing
the interpretability and clinical plausibility of the generated report. This result exemplifies the effectiveness of the
Vision Transformer (ViT) feature extractor combined with a Transformer decoder in producing coherent, medically
accurate, and interpretable radiological summaries.

This generated report mirrors common language used by radiologists in nor- mal chest X-ray assessments. The
absence of findings such as pleural effusion, pneumothorax, and air-space disease (e.g., pneumonia or consolidation)
indi- cates a normal study. The specificity and clarity of this output demonstrate the model’s capacity for both
diagnostic accuracy and clinically relevant language generation. chest X-ray image-to-text transformation using a
Vision Transformer and Transformer decoder. The left panel shows the input image; the middle panel is the
attention heatmap generated during decoding; the right panel shows the automatically generated report. The
attention mechanism effectively focuses on clinically relevant thoracic regions.
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the lungs are clear. no
pleural effusion, pneu-

mothorax or focal air-
Fig
ure 3: Text transformation

Gradient-weighted class Activation Mapping (Grad-CAM):-

As shown in fig.4 Grad-CAM visualizes the spatial importance of each region of an input image for a specific class
prediction. It does so by computing the gradient of the output class score with respect to the feature maps of a
convolu- tional neural network (CNN), and generating a heatmap that localizes the most discriminative regions. In
fig.4 Show the Grad-CAM image in different region show is in different color

Context in chest x-ray Image-to-Test Project:-

The input image I is a preprocessed chest X-ray that has undergone seg- mentation and enhancement.

A CNN backbone (e.g., ResNet or hybrid ViT with convolutional stem) is used to extract image features Ak.

A Transformer decoder generates medical reports based on these features.

Grad-CAM is applied to the CNN encoder to identify the spatial regions that most strongly influenced the
encoded features for a given class (e.g., pneumonia, pleural effusion). This visualization serves as an
interpretability tool to validate that the model is attending to clinically relevant anatomical structures, thereby
enhancing model transparency in a critical domain like radiology.

Grad-_cAM Activation Map
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Figure 4: Grad-CAM
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Mapping and Visualization:-

*The resulting heatmap Lc and overlaid on the original image.

*A jet colormap is used to visualize:
—Red/Yellow regions = Lc is upsampled to the input resolution ~ 1: High influence zones.
—Blue regions = Lc Grad—CAM = 0: Low influence zones. Grad—CAM

This visualization serves as an interpretability tool to validate that the model is attending to clinically relevant
anatomical structures, thereby enhanc- ing model transparency in a critical domain like radiology.
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