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Chest xray are widely used in hospital to help doctors diagnose lung 

problems. Since the outbreack of covid19, especially during second 

wave and winter season, it has become even more important to quic

kly detect the disease. To help doctors and reduce their workload, 

we use Deep Learning to automatically analyze chest X-ray .This 

study, propose a method can look at a chest X ray image and auto

matically generate a medical report. First, we use a model called 

Vision Transformer (ViT) to understand overall features of image. 

use another model called CheXNet, which is good at identifying 

chest related diseases, to extract detailed medical features.These feat

ures are combined and sent to a Transformer decoder,which creates 

a meaningful text description of what is seen in the image. This 

helps doctors by giving them a quick, accurate summary of the pa

tient’s condition, making the diagnosis process faster and more relia

ble. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 

with credit to the author." 

…………………………………………………………………………………………………….... 

Introduction:- 
Chest X-ray Imaging: Principles and Diagnostic Significance chest x ray imag- ing represents one of the most 

fundamental and frequently employed diagnostic modalities in contemporary clinical medicine. Due to its 

widespread availabil- ity, rapid image acquisition, low cost, and minimal radiation exposure, it con- tinues to serve 

as a primary tool for the evaluation of thoracic diseases across diverse healthcare settings, from emergency 

departments to outpatient clinics. Chest radiographs provide a two-dimensional (2D) projection of complex three- 

dimensional (3D) thoracic anatomy, including the lungs, heart, major vessels, diaphragm, mediastinum, bony 

structures, and pleural spaces. The diagnostic utility of CXR imaging is grounded in the principle of differential 

radiographic density.  

 

This principle allows radiologists to discern normal anatomical varia- tions and pathological alterations based on 

how various tissues attenuate X-ray beams. Air-filled structures, such as healthy lung parenchyma, appear radiolu- 

cent or black, while denser tissues—such as bone, fluid, or consolidated lung tissue—manifest as progressively 

whiter opacities on the radiograph. This fun- damental contrast enables the identification of key pathological 

hallmarks asso- ciated with pulmonary infections, neoplastic growths, pleural abnormalities, and vascular or cardiac 

conditions. Despite the inherent value of chest X-rays, inter- pretation remains an intricate task, challenged by the 
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overlapping of anatomical structures, variable patient positioning, technical inconsistencies (e.g., exposure, 

projection angles), and subtle early-stage pathologies. Moreover, disease-specific radiographic manifestations can 

vary significantly in their appearance and sever- ity, sometimes producing overlapping visual patterns that further 

complicate diagnosis. Consequently, accurate interpretation demands substantial expertise and experience, often 

necessitating the integration of clinical findings with imag- ing data. Even among seasoned radiologists, inter-

observer variability poses a persistent limitation, prompting increased interest in automated diagnostic sys- tems 

utilizing deep learning to enhance consistency and accuracy. Radiographic Variability Across Disease States The 

visual representation of thoracic disease on chest X-ray imaging is deeply influenced by the underlying pathological 

pro- cesses. Below, we examine the radiographic hallmarks and pathophysiological basis of four major pulmonary 

conditions—pneumonia, COVID-19, consolida- tion, and pleural effusion—which serve as core focus areas for 

automated image- to-text translation systems in medical AI. Pneumonia: Pathogenesis and Radi- ologic 

Characteristics Pneumonia is a common and potentially life-threatening respiratory infection characterized by 

inflammation of the alveoli—the small air responsible to oxygen-carbon dioxide exchange in the lungs. This inflam- 

mation leads to the filling of alveolar spaces with exudate, pus, and cellular debris, significantly impairing 

pulmonary function and oxygenation.  

 

The etio- logical spectrum of pneumonia is broad, encompassing bacterial agents (such as Streptococcus 

pneumoniae), viruses (e.g., influenza virus, respiratory syncytial virus), and opportunistic fungal pathogens (e.g., 

Pneumocystis jirovecii, par- ticularly in immunocompromised individuals). Clinically, pneumonia manifests with 

symptoms such as fever, productive or non-productive cough, pleuritic chest pain, tachypnea, dyspnea, and general 

malaise. The condition dispropor- tionately affects the extremes of age—the very young and the elderly—as well as 

individuals with underlying health conditions such as chronic obstructive pulmonary disease , diabetes, or 

immunodeficiency. Radiographically, pneumo- nia is characterized by areas of increased pulmonary opacity on 

chest X-rays, indicative of alveolar consolidation. These opacities may be confined to a sin- gle lobe (lobar 

pneumonia), distributed in multiple segments (segmental), or diffusely scattered (bronchopneumonia). The classic 

radiologic finding is the presence of homogeneous, well-defined opacities, often accompanied by air bron- 

chograms—radiolucent tubular structures representing air-filled bronchi within fluid-filled alveoli. Pneumonia 

significant cause of global morbidity and mor- tality, and radiographic imaging plays a vital role in its diagnosis, 

monitoring, and therapeutic management. 

 

 COVID-19: Radiological Insights into a Global Pandemic Coronavirus Disease 2019 COVID-19 is a highly 

contagious respira- tory illness caused by the novel coronavirus SARS-CoV-2. First reported in Wuhan, China, in 

December 2019, COVID-19 rapidly escalated into a global pandemic, placing an unprecedented burden on 

healthcare systems worldwide. The disease exhibits a broad clinical spectrum, ranging from asymptomatic infection 

to severe pneumonia, acute respiratory distress syndrome (ARDS), multi-organ failure, and death. The primary 

mode of transmission is via res- piratory droplets and aerosols, with the lungs being the principal target organ due to 

the expression of ACE2 receptors. Radiologic imaging, including both chest X-ray and computed tomography , 

played essential role in the triage, diagnosis, and longitudinal assessment of COVID-19 patients, especially in set- 

tings where polymerase chain reaction testing is delayed or unavailable. On chest X-rays, COVID-19-related 

pneumonia is often characterized by bilateral, peripheral ground-glass opacities , diffuse patchy infiltrates, and 

reticular or nodular patterns. In advanced cases, extensive consolidation may be observed, particularly in the lower 

lung zones. Unlike bacterial pneumonia, which often presents as localized consolidation, COVID-19-related 

pulmonary involvement tends to be more diffuse and asymmetric.  

 

The pulmonary damage seen in severe COVID-19 is frequently attributed to a dysregulated immune response, 

includ- ing the so-called ―cytokine storm,‖ which leads to widespread alveolar damage, increased capillary 

permeability, and interstitial edema. Chest X-ray imaging thus serves not only as a diagnostic tool but also as a 

monitoring modality to track disease progression and evaluate response to therapeutic interventions, including 

antivirals, corticosteroids, and supportive oxygen therapy. Consolida- tion: A Radiologic Sign of Underlying 

Disease In radiological parlance, consoli- dation refers to the replacement of normally aerated alveolar spaces with 

patho- logic substances such as pus (as in infection), blood (as in hemorrhage), fluid (as in edema), or neoplastic 

cells (as in malignancy). This phenomenon results in a loss of the normal air-tissue interface, producing regions of 

increased radio- density on imaging studies. Consolidation is most commonly associated with infectious processes 

such as pneumonia, but it may also signify non-infectious pathologies including pulmonary infarction, neoplasms, 

and autoimmune con- ditions such as organizing pneumonia. On chest X-rays, consolidation appears as a well-

demarcated or patchy homogeneous white opacity that often obscures the underlying pulmonary vascular markings. 
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It may be associated with ad- ditional features such as air bronchograms, silhouette sign (loss of the normal border 

between heart and lung), and volume loss or expansion depending on the disease mechanism. Importantly, the 

morphology and distribution of consolida- tion can yield diagnostic clues. For instance, focal lobar consolidation 

suggests bacterial pneumonia, whereas bilateral diffuse consolidation might point toward viral infection or ARDS. 

Thus, identifying the pattern, density, and extent of consolidation is pivotal in the differential diagnosis of 

pulmonary conditions and in guiding appropriate clinical management. Pleural Effusion: Imaging Features and 

Clinical Relevance Pleural effusion is defined as the pathological accumu- lation of fluid within the pleural space—

the narrow compartment between the parietal and visceral pleura that envelops the lungs. This condition may arise 

due to a wide array of systemic and local factors, including congestive heart failure, pneumonia, malignancy, 

pulmonary embolism, and connective tissue diseases like lupus or rheumatoid arthritis. Clinically, pleural effusion 

can man- ifest as dyspnea, chest pain, and diminished breath sounds on auscultation.  

 

The severity of symptoms typically correlates with the volume and rapidity of fluid accumulation. On chest 

radiographs, pleural effusion is indicated by blunting of the costophrenic angles, a classic meniscus sign, and, in 

larger effusions, a homo- geneous opacity obscuring the underlying lung parenchyma. In lateral decubitus 

positioning, the fluid may shift with gravity, further confirming its free-flowing nature. Effusions are broadly 

classified as transudative—resulting from systemic conditions such as heart failure or hypoalbuminemia—and 

exudative—caused by local inflammation, infection, or malignancy. Accurate differentiation be- tween these types 

is crucial for clinical decision-making and is often guided by imaging findings combined with pleural fluid analysis 

via thoracentesis. Chal- lenges in CXR Interpretation and the Role of AI Despite its invaluable diagnostic role, chest 

X-ray interpretation remains fraught with challenges. Variability in image acquisition (e.g., anterior-posterior vs. 

posterior-anterior views), patient factors (e.g., obesity, inability to inspire deeply), and subtle early-stage disease 

findings contribute to potential diagnostic uncertainty.  

 

Furthermore, overlap- ping features among different diseases—for instance, diffuse opacities in both COVID-19 and 

ARDS—make visual differentiation difficult even for experienced radiologists. In response to these limitations, 

artificial intelligence (AI)-driven solutions have emerged as powerful tools to augment diagnostic accuracy. Deep 

learning models, particularly convolutional neural networks (CNNs) and vision transformers (ViTs), have 

demonstrated considerable promise in analyzing CXR images. These models can automatically detect radiographic 

patterns associ- ated with specific diseases, highlight regions of interest using attention maps, and even generate 

textual interpretations akin to radiology reports. By learning from large annotated datasets, such AI systems can 

extract hierarchical features that transcend simple pixel-level differences, capturing the complex visual pat- terns 

indicative of specific pathological states. In particular, transformer-based models have shown an ability to integrate 

image features with natural language generation, enabling the translation of visual inputs into coherent textual de- 

scriptions—an approach that underpins the goal of chest X-ray image-to-text transformation projects. 

 

Related Work:- 

 •Pnemonia detection using deep learning a deep learning model that achieves radiologist-level performance in 

detect- ing pneumonia from chest X-rays. The model is a 121-layer Dense Convolutional Network (DenseNet-121) 

trained on the ChestX-ray14 dataset, which contains over 100,000 frontal-view chest X-rays labeled with 14 

different pathologies. To demonstrate how a deep learning system can match or even outperform expert radiologists.  

To achieve this, the authors trained CheXNet to predict all 14 pathologies and then fine-tuned it specifically for 

pneumonia detection. A key contribution is the comparison between CheXNet and four radiologists, where the 

model performed slightly better than the average expert in terms of F1 score. CheXNet uses transfer learning, where 

a model pretrained on ImageNet is adapted to chest X-ray images. The paper also employs class activation maps to 

visualize regions in the X-rays that are most relevant to the model’s predic- tions, aiding interpretability. The results 

showed that CheXNet can serve as a reliable tool for screening and triage, especially in areas with limited access to 

radiologists. The study suggests that deep learning has the potential to support or partially automate medical image 

interpretation.  

 

•‖Automated Chest X-ray Radiology Report Generation‖ a model for automated generation of radiology reports 

from chest x-ray, aim- ing to replicate human-level descriptive capability using deep learning. The sys- tem 

combines a Convolutional Neural Network (CNN) for image feature extrac- tion and a Recurrent Neural Network, 

specifically Long Short-Term Memory, for report generation. The dataset used is IU X-Ray, which contains X-ray 

im- ages paired with structured radiology reports. The authors propose a two-stage pipeline: (1) image encoder using 

CNN to obtain image embeddings, and (2) report decoder using LSTM to generate textual findings. Attention 
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mechanisms are integrated to help the decoder focus on relevant image areas while generat- ing each word. 

Performance is measured using BLEU, METEOR, and ROUGE scores. The model showed promising results in 

terms of linguistic fluency and medical accuracy, though it still struggles with rare findings and fine-grained 

nuances. The paper emphasizes the potential of AI in clinical documentation, reducing workload and improving 

consistency. Limitations include data scarcity and challenges in accurately modeling diverse medical terminology.  

 

•‖Transformer-Based Chest X-ray Report Generation‖ This work explores the application of Transformer 

architectures for generating radiology reports from chest X-rays, aiming to improve upon traditional RNN- based 

methods. The authors propose a Vision Transformer (ViT) + Transformer decoder model that directly generates full 

reports. Using the MIMIC-CXR dataset, the system maps image patches to embeddings via a ViT encoder, then 

feeds these into a Transformer decoder to produce natural language reports. This setup allows for better handling of 

long-range dependencies in text and fine-grained image features. Results are evaluated using BLEU, ROUGE-L, and 

CIDEr. The proposed method outperforms RNN-based baselines and matches clinical accuracy in many cases. 

Visualizations of attention weights show that the model effectively links image regions to relevant report content. 

The study concludes that pure Transformer models, while computationally intensive, are superior in coherence, 

accuracy, and scalability for medical text generation. Challenges remain in aligning predictions with clinically 

correct language and incorporating domain-specific knowledge. 

 

 •‖Clinically Accurate Chest X-ray Report Generation with Knowledge Graphs‖ This paper enhances chest X-ray 

report generation by incorporating medical knowledge graphs into a Transformer-based pipeline. The model, called 

KERP (Knowledge Enhanced Report Parser), integrates domain-specific knowledge to improve accuracy and reduce 

factual errors. KERP uses a three-step process: (1) a graph encoder creates medical entity embeddings from the 

knowledge base, (2) a visual encoder extracts features from images, and (3) a Transformer de- coder generates 

reports using a fusion of visual and graph-based knowledge. The dataset used is MIMIC-CXR. The system 

outperforms other methods in generating clinically accurate and coherent reports, especially in rare or subtle disease 

cases. Evaluation includes BLEU, ROUGE, and a newly proposed clini- cal accuracy score. This approach 

highlights the importance of domain-specific knowledge in medical AI systems. The fusion of structured medical 

knowledge with image features leads to reports that are more aligned with real clinical in- terpretations. Limitations 

include the static nature of the graph and incomplete knowledge coverage.  

 

•‖AlignTransformer: Alignment-Aware Transformer for Chest X-ray Re- port Generation‖ Align Transformer is a 

novel architecture designed to improve alignment be- tween image features and textual descriptions in chest X-ray 

report generation. The key idea is to explicitly model the alignment between image regions and phrases in the report, 

which traditional models often ignore. The model uses a standard CNN (e.g., ResNet-101) to encode the image, 

followed by an alignment- aware Transformer decoder that emphasizes cross-modal relationships. It intro- duces an 

alignment loss function to guide the training process towards bet- ter correspondence between visual and textual 

elements. Using the IU X-Ray and MIMIC-CXR datasets, the model achieves higher BLEU, METEOR, and 

ROUGE scores compared to state-of-the-art baselines. Visualizations show that the model better grounds textual 

tokens in specific image regions, making the reports more interpretable. The paper concludes that alignment-aware 

mod- eling significantly enhances clinical relevance and interpretability of generated reports. Limitations include 

increased complexity and longer training times. 

 

 •‖Exploring the Limits of Chest X-ray Report Generation with GPT‖ IN This investigates the capabilities of large 

language models (LLMs), especially GPT, in generating radiology reports from chest X-ray images. The authors in- 

tegrate image features from CNNs or ViTs with GPT-style decoders to examine how well general-purpose LLMs 

perform in a medical setting. The architec- ture includes an image encoder followed by a frozen or fine-tuned GPT 

decoder trained to generate findings, impressions, and recommendations. The model is evaluated using standard 

metrics like BLEU, ROUGE, and clinical correctness by expert radiologists. While GPT performs well in terms of 

fluency and gen- eral structure, it often hallucinates medical facts not grounded in the image. Fine-tuning with 

medical data reduces these errors but doesn’t eliminate them. The paper also discusses prompt engineering and 

transfer learning as ways to adapt general models to medical tasks. The study concludes that while GPT shows 

promise, domain adaptation and medical grounding are crucial for clin- ical safety. LLMs are not yet reliable as 

standalone diagnostic tools but could assist radiologists as writing aids.  

 

•‖Uncertainty-Aware Chest X-ray Report Generation‖ In This proposes an uncertainty-aware approach to chest X-

ray report genera- tion. The key idea is to quantify the confidence of the AI system when gener- ating each sentence 
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in the report, helping doctors identify which parts are more reliable. The system combines a CNN image encoder, a 

Transformer-based de- coder, and an uncertainty estimation module. This module uses techniques like Monte Carlo 

Dropout to produce confidence intervals for the generated content. Trained on the dataset, the model shows 

comparable language quality to pre- vious methods but provides extra information about prediction reliability. This 

is crucial in clinical settings where overconfidence in incorrect results can be harmful. By integrating uncertainty 

scores with generated text, the model en- ables clinicians to better interpret and validate AI outputs. Limitations 

include increased computational cost and difficulty in calibrating uncertainty measures. 

 

Proposed Methodology:-  

Details of the proposed model for robust and effcient classifcation of Covid-19 disease from input chest x ray.  

1.Dataset description A dataset based on chest X-rays is used in this study. To complete the classification task, 

10,874 X-ray images in PNG (portable network graphics) format are used. The size of the input image is set to 224 

× 224 × 3.One dataset is created by combining the three different chest radiographs of lung diseases. All photos are 

from publicly available sources. Three categories are used to group all of the samples: training , testing , and 

validation. A strong and deep effcient model is developed.  

 

Data Preprocessing:- 

1.The goal of image resizing and scaling is to uniformize input dimensions throughout the dataset. Method: 

Depending on the model (e.g., ResNet, DenseNet, ViT), all CXR images are downsized to a specific resolution, 

usually 224×224 or 512×512 pixels. Rescaling: Pixel values are frequently standardized using mean and stan- dard 

deviation (e.g., ImageNet values) or normalized to a [0, 1] range.  

2.Contrast Enhancement Histogram Equalization: This technique dis- perses intensity values to improve contrast. 

Contrast Limited Adaptive Histogram Equalization, is a better local technique that is frequently ap- plied in medical 

imaging to improve soft tissue contrast. 3. Diminution of Noise Gaussian blurring, also known as median filtering, 

eliminates random noise without obscuring significant patterns.aids in re- moving artifacts from images, which is 

crucial when utilizing portable or low-quality X-ray equipment.  

3.Dataset description This work uses a specially curated dataset of frontal chest X-ray (CXR) images along with 

matched textual radiology reports in the cross-modal translation from radiography to descriptive text. The data set is 

obtained from publicly accessible data sources like the ChestX- ray14, normal X-ray image, and COVID19, 

pneumonia, consolidation, pleural effusion datasets. 

 

 
 

Figure 1: Preprocessing image 

Ferature Extraction:-  

•Feature extraction serves as an important aspect of bridging the visual and textual modalities in our chest X-ray 

image-to-report transforma- tion pipeline. In this work, we utilize the merits of two of the most current deep 

convolutional and transformer-based architectures—Vision Transformer (ViT-B/16) and CheXNet (DenseNet-

121)—to extract high- level, semantically dense feature representations from preprocessed chest radiographs. 

•Vision Transformer is a transformer-based model that uses the self-attention operation for image patches as an 

alternative to convolutional neural net- works. We specifically use the ViT-B/16 variant, which separates in- put 
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images into non-overlapping 16×16 patches, embeds them into linear space, and processes them via stacked encoder 

transformer blocks. Input Image Size: 224 × 224 × 3 Patch Size: 16 × 16 (196 patches in total) Output Dimension: 

768 (for the [CLS] token and each patch) Feature Vector Utilized: Output embedding for the [CLS] token Output 

Shape: (1, 768) The ViT model is pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k. We obtain the last 

[CLS] token embedding after passing the image through all the encoder layers, which captures a global contextual 

representation of the image appropriate for downstream tasks like report generation.  

 

•CheXNet (DenseNet-121) CheXNet is a DenseNet-121 model pretrained on the ChestX-ray14 dataset alone for 

classification of thoracic diseases. Its convolutional backbone can extract spatially dense clinical abnormality- 

relevant features. Input Image Size: 224 × 224 × 3 Final Convolution Output: (1024, 7, 7) Adaptive Average 

Pooling: Pooled output to (1024, 1, 1) Flattened Feature Vector: 1024-dimensional Output Shape: (1, 1024) In order 

to use CheXNet as a feature extractor, we remove the classifica- tion head and employ the penultimate feature map. 

The feature tensor is pooled and flattened to get a dense feature representation encapsulating the diagnostic content 

of the image.  

 

Model Architecture:-  

CheXNet Model Architecture:- 

 

Input: 3 × 224 × 224 (Chest X-ray image, RGB) 1. Initial Convolution and Pooling Layers 

Layer Type Output Shape Kernel/Stride/Pad Description 
Conv2d 64 × 112 × 112 7×7 / 2 / 3 Initial convolution layer 
BatchNorm2d 64 × 112 × 112 - Batch normalization 
ReLU 64 × 112 × 112 - Activation 
MaxPool2d 64 × 56 × 56 3×3 / 2 / 1 Downsampling 

Table 1: Neural network layer specifications. 
 

                                  Dense Block 1 + Transition Layer 1 

Component Output Shape Description 
Dense Block 1 256 × 56 × 56 6 dense layers 
Transition Layer 1 128 × 28 × 28 1×1 conv + avg pool 

Table 2: Placeholder caption for component description and output shape 

 

Dense Block 2+ Transition Layer 2:- 

 Input: 128 × 28 × 28 (from Transition Layer 1) 

 Number of Layers: 12 Dense Layers 

 Growth Rate: 32 (Each layer adds 32 channels) 

 Output Channels: 128 (input) + 12 × 32 (new channels) = 512 channels 

 

Component Output Shape Description 
Dense Block 2 512 × 28 × 28 12 dense layers 
Transition Layer 2 256 × 14 × 14 1×1 conv + avg pool 

Table 3: Description of Network Components 

 

Vision Transformer (ViT-B/16):- 

The ViT-Base model meets performance on par by utilizing global attention mechanisms to represent long-distance 

relations across image areas. Its design eschews convolution operations altogether and instead relies on patch 

embed- dings, self-attention, and deep Transformer encoders to obtain semantic repre- sentations of visual 

information. Its design is especially potent when pretrained on big datasets and fine-tuned for applications such as 

medical image interpre- tation, including diagnosis on chest X-rays. 
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p i 

√
d k 

 

Layer No. Layer Type Input Shape Output Shape 
1 Input Image (3, 224, 224)  

2 Patch Split + Flatten (3, 224, 224) (196, 768) 
3 Linear Projection (196, 768) (196, 768) 
4 Class Token [CLS] (196, 768) (197, 768) 
5 Position Embedding (197, 768) (197, 768) 

6-29 Transformer Encoder ×12 (197, 768) (197, 768) 
 — LayerNorm (197, 768) (197, 768) 
 — Multi-Head Attention (197, 768) (197, 768) 
 — Skip Connection (197, 768) (197, 768) 
 — LayerNorm (197, 768) (197, 768) 
 — MLP (Linear → GELU → Linear) (197, 768) (197, 768) 
 — Skip Connection (197, 768) (197, 768) 

30 Final LayerNorm (197, 768) (197, 768) 
31 CLS Token Extraction (197, 768) (768,) 
32 Classification Head (optional) (768,) (num classes,) 

Table 4: Model Architecture Layer Details 
 

Vision Transformer Algorithm:- 

Patch Embedding:- 

Convert an input image I ∈ R
3×H×W

 into a sequence of flattened patches: 

x = Flatten(Patch (I)) ∈ R
P
 
2 ·C 

Apply a trainable linear projection: 

z0 = xpWe + b 

 

Self-Attention Mechanism:- 

For each patch embedding x, compute query, key, and value vectors: 

Q = xWQ, K = xWK, V = xWV 

Compute the attention weights and apply them to the values:  
QK⊤

  

 

Multi-Head Self-Attention (MHSA):- 

Split the input into h heads, perform attention in parallel, and concatenate the results: 

MHSA(X) = Concat(head1, . . . , headh)WO 

 

Feed-Forward Network (FFN):- 

A two-layer MLP with a GELU activation function:  

                                      FFN (x) = Linear2(GELU (Linear1(x))) 

Algorithm: ViT Base:- 

Input: RGB Image x R
3×224×224

  

Output: Feature vector f R
768

 or classification vector y RC function ViT-  

 

Base(x):  
Divide x into 16×16 non-overlapping patches Flatten patches and apply linear projection → z Add class token 

[CLS] to z Add positional encoding to z for each of the 12 Transformer Encoder layers:  

Apply LayerNorm → Multi-Head Attention → Residual Apply LayerNorm → MLP → Residual end for Extract 

[CLS] token output as feature vector f if classification task then Apply classification head → y return y else return f 

end if end function 

 

Attention(Q, K, V ) = 
softmax 

V 
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∂A 

= ReLU

 
Σ 

α A 
! 

k 
H × 
W 

k 
ij 

i=1 
j=1 

 

Mathematical Description of the Grad-CAM:- 

The Gradient-weighted Class Activation Mapping (Grad-CAM) visualizes the spatial importance of each region of 

an input image for a specific class prediction. It does this by computing the gradient of the output class score with 

respect to the feature maps of a convolutional layer.  

 

Let:  

 y
c
 be the class score (e.g., probability or logit) for class c. 

 A
k
 ∈ R

H×W 
be the k-th feature map of a convolutional layer.  

 α
c
 be the importance weight for feature map k with respect to class c. 

 

Step 1: Compute Gradients 

Compute the gradient of the class score with respect to the feature maps: 

∂y
c
 

∂Ak 

Step 2: Global Average Pooling Over Gradients 

Compute the importance weights: 

 

H  W c 

αc = 
 1  Σ Σ  ∂y  

Step 3: Compute Weighted Combination of Feature Maps 

The class activation map is obtained as: 

 

c c  k 

Grad−CAM k 

k 

 

Here, ReLU is applied to retain only positive influences that contribute posi- tively to the class 

score. 

 

Result and Discussion:-  
Self-Attention in Vision Transformers (Viit):-  

 Vision Transformers (ViTs) use self-attention to weigh the importance of different image patches relative to one 

another.  

 The image is divided into patches (e.g., 16×16), embedded, and fed into a Transformer encoder. 

 At each layer, self-attention maps determine how each patch attends to every other patch.  

 These maps can be aggregated (e.g., using attention rollout) to visualize overall focus.  

 Attention Rollout Technique:  

 This method propagates attention across layers to determine how the out- put class token depends on input 

patches. It provides a holistic view of spatial dependencies learned by the Transformer.  

 Clinical Relevance of Attention Maps Attention heatmaps serve not only as interpretability tools but also aid in: 

 Feature localization: Helps the model attend to pathologically relevant structures.  

 Model trustworthiness: Provides clinicians visual evidence for AI-driven decisions. 

 Training supervision: In weakly supervised learning, attention maps act as pseudo-labels.  

 Dataset annotation: Radiologists can validate attention maps to refine annotations. 

 

L 
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Figure 2: Grad-CAM 

 

Prediction and Attention Visualization Result:- 

 Figure 3 illustrates an example output of the proposed image-to-text genera- tion model for chest X-rays. On the 

left, the input is a frontal chest X-ray image of a normal subject, displaying clear lung fields without any 

radiographic signs of pathology. In the center, the colored grid represents an attention heatmap overlay derived from 

the Transformer decoder during the text generation pro- cess. The heatmap highlights the regions of the image that 

were most influential in the model’s prediction, particularly focusing on the central thoracic zone cor- responding to 

the lung fields and mediastinum. On the right, the generated textual report reads:  

 

”The lungs are clear. No pleural effusion, pneumothorax or focal air-space disease.” 

 This output demonstrates the model’s ability to not only identify normal anatomical structures but also to rule out 

critical pathologies such as pleural effusion, pneumothorax, or focal consolidation. The attention map further con- 

firms that the model is attending to medically relevant areas of the chest X-ray during inference, thereby reinforcing 

the interpretability and clinical plausibility of the generated report. This result exemplifies the effectiveness of the 

Vision Transformer (ViT) feature extractor combined with a Transformer decoder in producing coherent, medically 

accurate, and interpretable radiological summaries.  

 

This generated report mirrors common language used by radiologists in nor- mal chest X-ray assessments. The 

absence of findings such as pleural effusion, pneumothorax, and air-space disease (e.g., pneumonia or consolidation) 

indi- cates a normal study. The specificity and clarity of this output demonstrate the model’s capacity for both 

diagnostic accuracy and clinically relevant language generation. chest X-ray image-to-text transformation using a 

Vision Transformer and Transformer decoder. The left panel shows the input image; the middle panel is the 

attention heatmap generated during decoding; the right panel shows the automatically generated report. The 

attention mechanism effectively focuses on clinically relevant thoracic regions. 
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Fig

ure 3: Text transformation 

 

Gradient-weighted class Activation Mapping (Grad-CAM):- 

As shown in fig.4 Grad-CAM visualizes the spatial importance of each region of an input image for a specific class 

prediction. It does so by computing the gradient of the output class score with respect to the feature maps of a 

convolu- tional neural network (CNN), and generating a heatmap that localizes the most discriminative regions. In 

fig.4 Show the Grad-CAM image in different region show is in different color  

 

Context in chest x-ray Image-to-Test Project:-  

 The input image I is a preprocessed chest X-ray that has undergone seg- mentation and enhancement.  

 A CNN backbone (e.g., ResNet or hybrid ViT with convolutional stem) is used to extract image features Ak.  

 A Transformer decoder generates medical reports based on these features.  

 Grad-CAM is applied to the CNN encoder to identify the spatial regions that most strongly influenced the 

encoded features for a given class (e.g., pneumonia, pleural effusion). This visualization serves as an 

interpretability tool to validate that the model is attending to clinically relevant anatomical structures, thereby 

enhancing model transparency in a critical domain like radiology. 

 

 

 

Figure 4: Grad-CAM 
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Mapping and Visualization:- 

 •The resulting heatmap Lc and overlaid on the original image. 

 •A jet colormap is used to visualize:  

–Red/Yellow regions ⇒ Lc is upsampled to the input resolution ≈ 1: High influence zones. 

 –Blue regions ⇒ Lc Grad−CAM ≈ 0: Low influence zones. Grad−CAM 

 

This visualization serves as an interpretability tool to validate that the model is attending to clinically relevant 

anatomical structures, thereby enhanc- ing model transparency in a critical domain like radiology. 
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