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Digital transformation and the Fourth Industrial Revolution have 

inevitably led to the emergence of new cybersecurity threats. Protection 

against these attacks is critical for individuals, businesses, organisations 

and countries as a whole. Effective threat detection depends on 

identifying both known and unknown risks and vulnerabilities as early 

as possible through a combination of visibility,analytics, and contextual 

awareness.Traditional risk assessment methods, in particular determinis

tic approaches to threat analysis, often fail to take into account the high 

level of uncertainty and variability in operating conditions. This article 

proposes an intelligent hybrid system for detecting cybersecurity 

threats based on a deep neo-fuzzy neural network with a combined 

optimisation algorithm for detecting and preventing relevant attacks. 
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Introduction:- 
Analysis of the security situation in the field of information and communication technologies, which is carried out 

on an ongoing basis by well-known global companies, shows that the global landscape of cyber threats is constantly 

changing [1,2,3]. For example, the annual report of the European Union Agency for Cybersecurity (ENISA) Threat 

Landscape 2024 identifies ransomware as one of the main threats, while phishing is noted as the most common 

initial vector for such attacks. Other significant threats include attacks on availability [4]. In addition, experts note 

that a wider range of attack vectors are currently emerging, such as zero-day exploits, disinformation and deep 

fakes, implemented using artificial intelligence (AI) tools.  

 

This has led to the emergence of even more malicious and widespread attacks that have a more destructive impact 

— advanced persistent threats (APTs) [5].The huge amounts of data circulating in the digital environment today, on 

the one hand, and the danger of their leakage, on the other, make cybersecurity a high priority for individuals, 

industries, economic sectors, and the government of any country. According to analytical reports, cybercrime has 

become one of the world's largest shadow economies, with the total damage from cybercrime estimated at $10 

trillion. More detailed information is presented in Table 1. 
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Table 1 Key indicators of global cyber threats (2020–2025) [6] 

Indicator 2020 2021 2022 2023 2024 2025 (forecast) 

Total damage from cybercrime (trillion 

dollars) 
6,0 6,9 8,1 9.2 ~9,5 ~10,5 

Number of data breaches (globally, 

thousands) 
3,9 4,1 4,2 5,2 ~6.0 ~6,5 

Number of DDoS attacks (millions) 9,8 11,2 13,1 15,4 ~17.0 ~18,5 

Average cost of a data breach (millions of 

dollars) 
3,86 4,24 4,35 4,45 ~4,50 ~4,60 

 

In light of the above, it is clear that ensuring the security of information systems is essential, as the consequences of 

inadequate protection are manifold – theft, destruction or dissemination of confidential information (trade secrets), 

discrediting of personal data, substitution of information, blocking of access, restriction of functionality or complete 

shutdown of a computer network [7].Traditional methods of detecting cyber threats are based on the use of statistical 

analysis of the security status at nodes using devices such as firewalls, intrusion detection and prevention systems, 

and antivirus software. However, such methods are insufficient for APTs, which highlights the need to use more 

advanced techniques based on AI tools such as intelligent data analysis, machine learning, neural networks, fuzzy 

logic, genetic algorithms, support vector machines, decision trees, and others.The above-mentioned advanced 

methods allow for more accurate and higher-quality results, so a detailed analysis of their applicability in 

cybersecurity systems is a relevant area of scientific research, which determined the choice of topic for this article. 

 

Literature review:- 
Today, there is a wide range of works in the scientific and expert community related to the detection of intrusions 

and attacks on information systems. Some of them concern the general classification of packets into normal or 

attacking categories, while others describe the features of detecting specific categories of attacks, such as 

RemotetoLocalUser and UsertoRoot attacks. This issue has been addressed in publications by Abdullah Al 

Mamun[8], Najah Kalifah Almazmomi [9],  Kumari and Lee [10], Jiqiang Zhai et al. [11].The possibility of using 

deep learning algorithms to check the entire information network infrastructure for viruses and illegally downloaded 

software is discussed by Iqbal H. Sarker [12], Ahmed Hawanaet al. [13], E. A. Ichetovkin [14], Chaitanya Gupta et 

al. [15], Jiaqi Ruan, Gaoqi Liang [16].A hybrid K-means approach using singular value principal component, which 

relies on methods such as improved information gain of K-means clustering for attribute extraction, singular value 

and principal component for feature reduction, is being developed by Asma Ahmed A. Mohammed [17], Jafar 

Majidpour and Hiwa Hasanzadeh [18], Qasem Abu Al-Haija and Ayat Droos [19], Tanzila Saba and Amjad Khan 

[20].However, despite the wide range of publications, some problematic issues require clarification and further 

analysis. For example, methods for improving the self-learning ability of neural networks when analysing 

topological features need to be refined, which will ensure a high degree of generalisation and stable performance 

indicators. In addition, reinforcement learning applications for assessing cybersecurity threats require further 

development.Thus, the purpose of this article is to examine the features of using deep learning with an optimisation 

algorithm to detect cybersecurity threats. 

 

Research Methodology:- 
The research methodology is based on the application of system analysis, mathematical modelling and algorithmic 

optimisation methods, neural network and fuzzy modelling, as well as experimental verification of the hybrid 

architecture of a deep fuzzy neural network. 

 

Results and Discussion:- 
Deep learning is based on a multi-level representation of input data and can autonomously determine features using 

a specific representation-based learning process. The ability of deep neural systems to analyse vast amounts of data 

and identify hidden patterns makes it an integral component of modern cybersecurity systems [21, 22, 23]. 

 

So, the task of detecting cybersecurity threats is as follows. 

Let D =   xi , yi  i=1
N  — be a sample of N examples, where xi is the input vector, and yi — is the output (in the case 

of classification — a vector of class probabilities, in the case of regression — a scalar variable). Let us denote the 

network parameters by w, and the posterior distribution can be written as  p( w D). According to Bayes' formula: 

https://www.researchgate.net/profile/Abdullah-Mamun-29?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Abdullah-Mamun-29?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Abdullah-Mamun-29?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.mathnet.ru/php/person.phtml?option_lang=eng&personid=230785
https://www.researchgate.net/scientific-contributions/Chaitanya-Gupta-2216357663?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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p  w D =
p  D w p(w)

p(D)
 

where p(w) — is the prior distribution of parameters, p  D w  — is the likelihood of the data, and p(D) — is the 

normalising constant, which is calculated by integrating over all possible values w. 

Since accurate calculation p(D) is quite a complex task, we suggest using a variational approximation: for this 

purpose, a family of distributions p( w θ), parameterised by θ, introduced, and the Kulback-Leibler divergence 

between p( w θ) и p( w D): 

θ∗ = arg min
θ

KL(q(  w θ)||p  w D ) 

The proposed cyber threat detection system is based on a hybrid model that uses deep learning mechanisms and an 

optimisation algorithm. Figure 1 shows the architecture of the threat detection system, implemented as a multi-stage 

data processing pipeline. This process includes sequential stages of feature space reduction, extraction of 

informative features, and their subsequent classification. 

 

 
Fig. 1 Block diagram of cybersecurity threat detection based on deep learning with an optimisation algorithm 

(compiled by the author) 

 

As shown in Figure 1, three databases are proposed for managing malicious and pirated software files in cloud 

storage. Raw network traffic data is stored in database 1, while historical data on malicious software is stored in 

database 2. The third database also accumulates the latest signatures of newly detected malicious attacks. The 

combined information storage module receives raw data from each database. The raw data undergoes preliminary 

processing, and important details are recorded in a log. The pre-processed data is then sent to the detection module, 

which analyses it for malware and other threats. This module is trained on signatures from databases 2 and 3. The 

proposed system alerts the administrator to take appropriate action if any malicious behaviour is detected on the 

network.The proposed architecture is based on a deep neo-fuzzy neural network. It has a traditional multi-layer 

feedforward architecture, generally including s layers of information processing [24].  
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The input (zero) layer receives 𝐱 𝐤 ∈ 𝐑𝐧 a vector of input signals: 

x k = (x1 k , x2 k , … , xn k ) 
where k=1, 2, …, N – is the observation number in the training sample or the index of the current discrete time. The 

output signal of the network is a vector: 

y  k =  y 1 k , y 2 k ,… , y m k  
T
∈ Rm  

Furthermore, to simplify the notation, we will also use the form: 

x k ≡ o 0  k =  o1
 0  k , … , oi0

 0  k , … , on0

 0  k  
T

 

y  k ≡ o s  k =  o1
 s  k , … , ois

 s  k , … , ons

 s  k  
T

 

 

Thus, the input signal of the p-th layer (p=1, 2…, s) is a vector: 

o p−1  k ≡  o1
 p−1  k , … , oip−1

 p−1  k , … , onp−1

 p−1  k  
T

∈ Rnp−1  

and the output is a vector: 

o p  k =  o1
 p−1  k , … , oip

 p  k , … , onp

 p  k  
T

∈ Rnp  

At the same time, the neo-fuzzy neural network contains  np
s
p=1  neurons. The node of this architecture is a neo-

fuzzy neuron with np-1 inputs and one output oip

 p 
. Eachip  - th (ip = 1,2, … , np ) neo-fuzzy neuron of thep-th (p = 1,2, 

…, s) layer of the neo-fuzzy neural network containsnp-1non-linear synapses NSip ip−1

 p 
, each of which 

includeshmembership functionsμ
ip ip−1 l 

 p 
 (l = 1,2, … , h)and the same number of synaptic weight coefficientswip ip−1 l 

 p 
, 

which are tuned during the learning process. Thus, this architecture has npnp−1
s
p=1  nonlinear synapses 

andh npnp−1
s
p=1  membership functionsμ

ip ip−1l 

 p 
(oip−1

 p−1 
) and the same number of tuned synaptic weight 

coefficientswip ip−1l 
 p 

. 

The output signal of each nonlinear synapse 𝐍𝐒𝐢𝐩𝐢𝐩−𝟏

 𝐩 
 can be recorded as: 

fip ip−1l 
 p 

 oip−1

 p−1 
 =  wip ip−1l 

 p 

h

l=1

μ
ip ip−1l 

 p 
(oip−1

 p−1 
) 

and the output signal of the neo-fuzzy neuron: 

oip

 p 
=  fip ip−1l 

 p 

np−1

ip−1=1

 oip−1

 p−1 
 =   wip ip−1l 

 p 

h

l=1

np−1

ip−1=1

μ
ip ip−1l 

 p 
(oip−1

 p−1 
) 

As a membership function for nonlinear signals 𝐍𝐒𝐢𝐩𝐢𝐩−𝟏

 𝐩 
 we suggest using the traditional triangular function, 

which satisfies the requirements of Ruspini's unit partition: 

μ
ip ip−1l 

 p 
 oip−1

 p−1 
 =

 
 
 
 

 
 
 oip−1

 p−1 
− сip ip−1 l−1

 p 

с
ip ip−1l

 p 
− с

ip ip−1l−1

 p 
, iff oip−1

 p−1 
∈ [сip ip−1l−1

 p 
, сip ip−1l

 p 
) 

сip ip−1l+1
 p 

− oip−1

 p−1 

с
ip ip−1l+1

 p 
− с

ip ip−1 l

 p 
, iff oip−1

 p−1 
∈ [сip ip−1l

 p 
, сip ip−1l+1

 p 
)

0, otherwise

  

 

Next, it is necessary to select a model optimisation algorithm that can improve the functionality of the deep neural 

network, thereby increasing the accuracy of detecting complex threats.Within the scope of the task at hand, we 

propose using a combined particle swarm and genetic algorithm. The particle swarm algorithm ensures high 

accuracy and quick acquisition of an acceptable solution [25]. At the same time, the genetic algorithm is better 

suited for solving discrete problems and has more sophisticated mechanisms for combating local minima (through 

mutations and successful crossovers) [26]. The combined algorithm allows us to combine the advantages of both 

algorithms and thus achieve a quick and accurate solution to the task at hand. It is based on the idea of sequentially 

performing one iteration of the search by each of the basic algorithms (particle swarm and genetic algorithm), 

comparing the results found, and adding the best of the solutions found to each algorithm. 
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Step 1. Both algorithms are run simultaneously in parallel mode to synthesise the structure of the same neural 

network. 

Step 2. One iteration of each algorithm is performed. 

Step 3. After each iteration, the results found by both methods are compared and the best solution is selected. 

LetYpso
(i)

 – the best solution found by the particle swarm algorithm at the i-th iteration, and Wga
(i)

 – the best solution 

found by the genetic algorithm. If I(Ypso
(i)

) < I(Wga
 i ), that is, the solution obtained using the particle swarm 

algorithm provides a lower value of the quality function І, then we proceed to step 4a. Otherwise, we proceed to step 

4b.  

Step 4а. The worst solution of the genetic algorithm Wga _worst
 i 

 is replaced by the solution Ypso
(i)

Wga _worst
 i ≔ Ypso

(i)
and 

the transition to step 5 is performed.  

Step 4b. The worst solution of the particle swarm algorithm Ypso _worst
(i)

is replaced by the solution Wga
 i , Ypso _worst

(i)
≔

Wga
 i 

 and the transition to step 5 is performed.  

Step 5. If both algorithms continue to run (i.e., the termination criterion is not met for either of them), proceed to 

step 2. The described approach is repeated until one of the algorithms terminates. The best solution found by both 

methods at the moment of termination is accepted as the final solution.  

 

The results of modelling using particle swarm, genetic and combined algorithms are shown in Fig. 2. 

 
 

Fig. 2 Results of modelling the optimal structure of a neural network using various algorithms 

 

As shown in Fig. 2, the combined algorithm allows for the lowest error and requires the fewest iterations to find the 

optimal neural network structure. 

 

Conclusion:- 
Thus, summarising the results of the study, the following conclusions can be drawn: 

Cybersecurity in the modern digital age is a critical area focused on protecting systems, networks, and information 

from malicious attacks. Organisations, businesses, governments, and countries are at great risk from cybercrime, 

which is becoming increasingly widespread, serious, complex, and diverse. The article describes an intelligent 

hybrid system for detecting cybersecurity threats based on a deep neo-fuzzy neural network with a combined 

optimisation algorithm for detecting and preventing such attacks. 
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