

Journal Homepage: -www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

ENTERNATIONAL ADCRINAL OF ART ANCRE MEDIANCES MEDIANCES MEDIANCES MEDIANCES

Article DOI:10.21474/IJAR01/22037
DOI URL: http://dx.doi.org/10.21474/IJAR01/22037

RESEARCH ARTICLE

SOCIODEMOGRAPHIC FACTORS AFFECTING PRIMARY INFERTILITY IN BENGALI AND PAKISTANI WOMEN:A CROSS-SECTIONAL STUDY

Faiqa A. Tullah¹, Saima Iqbal², Muhammad Kashif Malik³, Sadia Farooq⁴, Samia Baig⁵, and Seemin Kashif⁶

- 1. Dallah Hospital Namar, Riyadh, Saudi Arabia
- 2. Al-Abeer Medical Center, Shumaisy, Riyadh, Saudi Arabia
- 3. ICU, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- 4. College of Physicians and Surgeons Pakistan CPSP)
- 5. Farooq Hospital, DHA/ National Hospital, DHA Lahore, Pakistan
- 6. Allama Iqbal Open University, Islamabad, Pakistan

Manuscript Info

Manuscript History

Received: 19 August 2025 Final Accepted: 21 September 2025 Published: October 2025

Key words: -

Infertility, Pakistan, Bangladesh, women, sociodemographic factors

Abstract

Objectives:To identify sociodemographic factors associated with primary infer tility in bengali and pakistani women.

Methods: Demographic and HealthSurvey (DHS) datafor Bangladesh (2022) and Pakistan(2017 18)were used.DHS Pakistanlasted from 22/11/2017 to 30/04 /2018, and DHS Bangladesh lasted from 27/06/2022 to 12/12/2022. Women 20-49 years old, married for ≥5 years, not using contraceptives since marriage, and never conceived during this period were included in study, and women <20 years old, married for <5 years, using contraceptives since marriage, and ever gave birth to a child were excluded. SPSS 22.0was used for statistical analysis. Results: A total of 2.9% of Bengali and 4.7% of Pakistani women had primary infertility. The Bengali women were better educated thanthe Pakistani women. About40% of the women in both populations were poor. An age of≥30 years at the time of survey had inverse relationship, while an age of≥30 years at the time of first sexual union was directly related to primary infertility in Bangladesh and Pakistan. Urban or rural residence, wealth status, and education did not show any significant relationship with primary infertilityamong Pakistani wom en; however, better education was inversely related to primary infertility among Bengali women.

"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed with credit to the author."

Conclusion: Women's present age and age at first sexual union were the only significant factors affecting primary infertility in Pakistani women; however, education level also affected fertility among Bengali women.

Introduction: -

The term "primary infertility" is used when a woman has never conceived a child. Couples and families face considerable financial, psychological, and health issues during infertility treatments [1, 2]. The global prevalence of primary infertility has been reported to be 10%–15% [3]. The WHO reported that one in every four couplesis affected by infertility in developing countries [4]. Various genetic and environmental factors have been associated with

1399

infertility. Researchersmustidentify factors affecting fertility in developing countries to counter them and decrease the financial burden on individuals in these populations. Bangladesh and Pakistan are overpopulated developing countries; still, they have high ratesof primary infertility. The present study aimed to identify and analyze the sociodemographic factors associated with primary infertility among Bengali and Pakistani women.

Materials and Methods:-

The latest Demographic and HealthSurvey (DHS) standard data for Bangladesh (2022) and Pakistan (2017–18), a cross-sectional survey, wasusedfor this research. The DHS program provided ethical approval letters from Bangladesh and Pakistan for our study. The reference number for ethical approval from Bangladesh was BMRC/NREC/2019-2022/156, given on June 06, 2022, and the reference number for ethical approval from Pakistan was 4-87/NCB-285//17/1438, given on November 17, 2017. The fieldwork of the Pakistan DHS 2017-18 lasted from 22 November 2017 to 30 April 2018, and Bangladesh DHS 2022 lasted from27 June 2022 till12 December2022. The WHO defines infertility as the "failure of a couple to conceive after 12 months or more of regular sexual unprotected intercourse"; whereas, demographers define infertility as "the inability to have a live birth after five years of unprotected sexual intercourse" [2]. Demographers uselive birth rather than conception as the endpoint. In this study, the demographic definitions of primary infertility and fertilitydeveloped by Mascarenhas et al. 2012a were used to analyze global infertilityin a DHSreport [5].

According to these definitions, a woman must be married for at least five years. The DHS records the data of women aged 15–49years; thus, a woman married for five yearswouldbe at least 20 years old. Consequently, we excluded the data subset 15–19 years of age from our data and included women aged 20–49years [5] (Fig. 1). Inclusion criteria were women from 20-49 years of age, who were married for ≥5 years, with no use of contraceptives for last 5 years, and never conceived during this period (Fig. 1). Exclusion criteria were women below 20 years of age, those married for less than 5 years, those using contraceptives since marriage, and those who ever gave birth to a child. The dependent variable was fertility status (i.e., primary infertility and fertile groups). Independent sociodemographic variables were the age of the participantsat the time of the survey, the participant'sage at first sexual union and marriage, the area of residence (urban/rural), the household wealth status, and the women's education level. The frequencies and percentages of all categorical variables were computed. A binary logistic regression analysis was performed using SPSS 22.0 software.

Results:-

In our study, 2.9% of Bengali women and 4.7% of Pakistani women had primary infertility (Table 1). Almost all thewomen had their first sexual union at <30 years of age (Table 1). About 55% of Pakistani women were not formally educated, whileabout 40% of Bengali women wereeducatedup to asecondary level (Table 1). About 40% of the women in both populationshad poor wealth status (Table 1). About 50% of Pakistani women and 65% of Bengali womenresided in rural areas (Table 1).Binary logistic regression analysis found that in both populations, the age of women≥30 years at the time of the survey was inverselyassociated with primary infertility (Table 2). It also determined that the age of women ≥30 years at the time of first sexual union was directly related to primary infertility in both countries (Table 2). Urban or rural residence, wealth status, and the educational level of women were not significantly related toprimary infertility in Pakistani women; however, a higher education level was directly associated with improved fertility (Table 2).

Discussion:-

Our study found that the younger the present age of the participants, the higher the odds of their having primary infertility. Our findings align with other studies, finding that younger women were more likely to have primary infertilitythan older women [6, 7]. Women older than 30 years are expected to have at least one child, as they have moretime to manage infertility. However, the age of marriage and first intercourse hada more significant effect on primary infertilitybecause fertility declines as age advances [7]. A woman's fertility peaks between the ages of 18 and 24 years; however, it beginsdecreasing steadily at 27 years of age and declines sharply around the age of 35 years [3]. An age older than 30 years at first marriage (delayed marriage) reduces the available time for childbearing and directly affects fertility [4, 6, 7]. Similarly, our study foundthatan age of \geq 30 years at the time of first sexual unionwas directly related to primary infertility.

According to the literature, women with a middle school education were more than twice as likely tobe infertile as women with a lower level of education[4]. Changing societal trends have increased the level of women's

education, thus prolonging the age of marriage [4, 6, 8]. Women who complete their education and focus on developing a career marry late and are thus prone to primary infertility. Career interests also encouragewomen to limit the number of children [7–10]. Nevertheless, the literature also found an inverse relationship between a higher level of education and primary infertility, likely due to agreater awareness of infertility treatments among highly educated women [1]. Less than 15% of Pakistani women were found to have an education higher than the secondary level, but the educational level of Bengali women is much higher than that of Pakistani women (Table 1). Since Pakistani women are less educated than Bengali women, they marry at a younger age. Although our study could not establishare lationship between education level and primary infertility in the Pakistani community, it identified a significant inverse relationship between primary and secondary education levels and primary infertility in the Bengali population (Table 2).

The literature shows that women with a rich wealth status have more than twice the risk of infertility than those with a poor wealth status [4]. Women with a high socioeconomic status (SES) are more likely to delay childbearing than women with lower wealth status and thusare more likely tobecome infertile. The relationship between SES and infertility varies among countries. In the UK, women with a higher SES have higher rates of fertility problems. However, a Portuguese study found no significant differences among different socioeconomic groups [9]. An inverse relationship was also found between SES and primary infertility, likelybecause of the increased access of wealthypeople to expensive treatments [1]. However, our study did not establisharelationship between wealth status and primary infertility in either population.

The literature found that urban women were more prone to infertility than rural women, likelydue to lifestyle differences [1].Rapid urbanization has increasedliving standards, accordingly raisingwomen's educational status. Education has increased women's socioeconomic status and contributed to modified dietary habits and physical inactivity. These three factors i.e., socioeconomic status, nutritional habits, and physical inactivity are interrelated. Thus, primary infertility was higher among women withhigher education levels and higher socioeconomic status in the urban population [4, 6, 10]. Our study, however, did not find are lationship between urban dwelling and primary infertility in either population.

The education rate of women is low in Pakistan, withabout 50% of women not having formal education. Pakistani customs, traditions, and society deprive women of a basic education [11]. Urbanization is increasing in Pakistan, and improving women's SES. However, the improvement in women's education has led to delayed marriages and primary infertility. Urbanization could also have impacted lifestyles, leading topolycystic ovarian syndrome, a significant cause of primary infertility in women [12]. In contrast to Pakistani women, most Bengali women have attained a primary education or higher. Bangladesh has undergone considerable changes due to urbanization, including a sharpincrease in the number of girls attending primary and high school [13]. Infertility in Bangladesh was found to be impacted by women's education, improved economic status, social media access, and urbanization.

The study's key findings were that a woman's age, age of first sexual union, and education were significant factors affecting primary infertility in Bangladesh, but that education did not affect it in Pakistan. Reproductive health policy has focused on the problem of overpopulation in South Asian developing countries [14],but no epidemiological studies have assessed infertility in these populations. Infertility issue causes considerable financial, psychological, and health issues for couples and families during treatments. This burden becomes even heavier for individuals from low-income countries. The study'smain strength was its collection of data from a reliable source. Alimitation of the study was that the information collected could be biased because its focus was not on infertility but on fertility and family planning. A second limitation is that because infertility in developing countries is aninfrequently discussed topic due to the shame attached to it, it has not been explored in these communities.

Table 1: Frequencies and percentages of variables in the study:								
Variable:	Categories:	Pakistan: (n=11742)		Bangladesh: (n=16254)				
		Frequency:	(%) Percent:	Frequency:	(%) Percent:			
Fertility:	Primary infertility	550	4.7	466	2.9			
	Fertile group	11192	95.3	15788	97.1			
Age (years) at	<30 years	3065	26.1	4845	29.8			
survey:	30-39 years	5303	45.2	6665	41.0			

	≥40 years	3374	28.7	4744	29.2
Age at first	<30 years	11577	98.6	16187	99.6
union:	30-39 years	163	1.4	65	0.4
	≥40 years	2	0	2	0
Educational level:	No education	6398	54.5	2618	16.1
	Primary	1651	14.1	4728	29.1
	Secondary	2259	19.2	6949	42.8
	Higher	1434	12.2	1959	12.1
Wealth status:	Poor	4943	42.1	6168	37.9
	Middle	2306	19.6	3196	19.7
	Rich	4493	38.3	6890	42.4
Residence:	Urban	5664	48.2	5710	35.1
	Rural	6078	51.8	10544	64.9

ndependent ariables:	Categories:	Pakistan: AOR*: (95% CI†)	Bangladesh: AOR: (95% CI)
Age at survey (years)	<30 years	Reference	Reference
	30-39 years	1.571‡ (CI: 1.292-1.910)	1.523‡ (CI: 1.237-1.875)
	≥40 years	2.229‡ (CI: 1.745-2.847)	3.022‡ (CI: 2.259-4.043)
Age at first union(years)	<30 years	Reference	Reference
	30-39 years	0.252‡ (CI: 0.154-0.413)	0.077‡ (CI: 0.041-0.145)
	≥40 years	NS§	0.014** (CI: 0.001-0.236)
Residence	Urban	Reference	Reference
	Rural	NS	NS
Wealth	Poor	Reference	Reference
	Middle	NS	NS
	Rich	NS	NS
Education	No education	Reference	Reference
	Primary	NS	1.608** (CI: 1.179-2.193)
	Secondary	NS	1.465†† (CI: 1.087-1.975)
	Higher	NS	NS

Conclusion:-

The study concluded that a woman's age, age at first sexual union, and education were significant factors affecting primary infertility in Bangladesh, but education did not affect it in Pakistan. Information about infertility and its causes must be disseminated to the public via the mass media so that misconceptions of infertility can be corrected, and timely treatment can be undertaken.

Conflict of interest: None

Reference:-

- 1. Purkayastha N, Sharma H. Prevalence and potential determinants of primary infertility in India: Evidence from Indian demographic health survey. CEGH. 2021; 9:162-70.
- Nasrabad HB, Hosseini-Chavoshi M, Abbasi-Shavazi MJ. Socio-demographic Determinants of Infertility: A Study in Four Selected Provinces of Iran. IJWHR. 2024;12(2).
- 3. Moridi A, Roozbeh N, Yaghoobi H, Soltani S, Dashti S, Shahrahmani N, Mojdeh Banaei. Etiology and risk factors associated with infertility. Int J Women's Health Reprod Sci. 2019;7(3):346-53.
- 4. Katole A, Saoji AV. Prevalence of primary infertility and its associated risk factors in urban population of central India: A community-based cross-sectional study. IJCM. 2019;44(4):337-41.
- 5. Riese S. Levels and Trends of Infertility and Childlessness. DHS Comparative Reports. 2021; 50:1-37.
- 6. Legese N, Tura AK, Roba KT, Demeke H. The prevalence of infertility and factors associated with infertility in Ethiopia: Analysis of Ethiopian Demographic and Health Survey (EDHS). Plos one. 2023;18(10):e0291912.
- 7. Liang S, Chen Y, Wang Q, et al. Prevalence and associated factors of infertility among 20–49 year old women in Henan Province, China. Reprod. Health. 2021;18:1-3.
- 8. Alghamdi A, Bahnsawy N, Afefy N, Gouda AD. Assessment of Prevalence and Risk Factors of Infertility among Saudi Women: A Cross-Sectional Study. IJGHR. 2023;5(1):77-94.
- 9. Chen X, Liang J, Yang Q, Huang J, Li L, Deng K. Age affects the association between socioeconomic status and infertility: a cross-sectional study. BMC Women's Health. 2023;23(1):675.
- 10. Sadecki E, Weaver A, Zhao Y, Stewart EA, Ainsworth AJ. Fertility trends and comparisons in a historical cohort of US women with primary infertility. Reprod. Health. 2022;19(1):13.
- 11. Mehmood S, Chong L, Hussain M. Females higher education in Pakistan: An analysis of socio-economic and cultural challenges. ASSRJ. 2018;5(6).
- 12. Yousaf J, Khadija S, Arshad N, Amjad MR, Gulzar J, Ullah A. The Chances of Infertility in a Patient Presenting with PCOS in Childbearing Age. SJM. 2022;7(1):15-21.
- 13. Bora JK, Saikia N, Kebede EB, Lutz W. Revisiting the causes of fertility decline in Bangladesh: the relative importance of female education and family planning programs. Asian Popul. Stud. 2023 Jan 2;19(1):81-104.
- 14. Borumandnia N, Majd HA, Khadembashi N, Alaii H. Worldwide trend analysis of primary and secondary infertility rates over past decades: A cross-sectional study. IJRM. 2022 Jan;20(1):37.