

Journal Homepage: -www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

Article DOI:10.21474/IJAR01/22062 DOI URL: http://dx.doi.org/10.21474/IJAR01/22062

RESEARCH ARTICLE

PHYSICOCHEMICAL TYPOLOGY OF WATERS FROM WEATHERED AQUIFERS IN THE MAN DEPARTMENT, WESTERN COTE D'IVOIRE

Ismaila Ouattara¹, Moussa Ouedraogo¹, Kouadio Assemien Francois Yao¹, Lereyaha Coulibaly¹, Yves Magloire Constantin Mahan¹, Amidou Dao² and Bamory Kamagate²

- 1. Department of Mines and Reservoirs, Faculty of Geological and Mining Sciences, University of Man, Man, Cote d'Ivoire.
- 2. Geosciences and Environment Laboratory, Faculty of Environmental Sciences and Management, NANGUI ABROGOUA University, Abidjan, Côte d'Ivoire.

Manuscript Info

..... Manuscript History

Received: 21 August 2025 Final Accepted: 23 September 2025 Published: October 2025

Key words:-

Hydrogeochemistry, PCA, Well water, Basementaquifers, Granitoid, Nitrate, Western Côte d'Ivoire

Abstract

The hydrogeochemical study conducted in the Man Department (western Côte d'Ivoire) aims to characterise the physicochemical quality of well water in relation to the local geological formations. The investigation was carried out on 56 wellsevenly distributed across the department. The physical parameters considered include temperature, pH, turbidity, redox potential, total dissolvedsolids (TDS), and electrical conductivity (EC). The chemical parameters include the major cations and anions. The hydraulic structures are mainlyunderlain by three lithological units: anorthosites, norites, and charnockites, which correspond to heterogeneous biotite-bearinggranitoids and migmatites covering nearly 88% of the study area. These crystalline rocks, characterised by lowpermeability, host discontinuousaquiferswhose waters exhibit generally lowmineralisation (mean EC = 129.98 ± 123.56 μ S/cm) and slightlyacidic to neutral pH values (5.11 \pm 0.56). Multivariate statistical analysis (Principal Component Analysis, PCA) indicates that the chemical variability of the groundwater is mainlycont rolled by electricalconductivity, NO₃-, HCO₃-, Cl⁻ ions, and redox potential. Two main groups of waters were identified:oxidising, weakly mineralised waters, and more reducing waters enriched in oxidised anions. The high conductivities observed in the Logouale area, alongwi thmoderate nitrate levels(up to 40 mg/L), suggest a localisedanthropoge nic influence, probablylinked to domestic and agricultural activities.

.....

"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed with credit to the author.

The dominant hydrochemical facies is of the calcium-bicarbonate type, typical of tropical crystalline basement aquifers. Overall, the well waters of the Man Department complywith WHO drinking-water standards; however, certain areas, particularly in the north and within the municipality of Man, show signs of diffuse contamination. Regular monitoring of electrical conductivity and nitrate concentrations is recommended to prevent future degradation of the water resource.

Corresponding Author:-Ismaila Ouattara

Address:-Department of Mines and Reservoirs, Faculty of Geological and Mining Sciences, University of Man, Man, Cote dIvoire.

Introduction:-

Water resources are increasingly under pressure worldwide due to the combined effects of growing demand (driven by rapid population growth and the expansion of irrigated areas) and the reduction of available resources. Integrated Water Resources Management (IWRM) appears to be the only sustainable alternative to the global water crisis. This holistic approach to water management is based on the guiding principles of the Dublin–Rio Conference, which states that freshwater is a finite and vulnerable resource, essential to economic development and sustainable environmental well-being (McCammon, 1992). The widespread use of phytosanitary products since the end of the Second World War has led to a remarkable increase and stabilisation of agricultural yields. However, this progress has not been without environmental consequences, particularly regarding water quality (Lopez et al., 2015; Real et al., 2005). In addition to pesticide use in agriculture, mining activities whether artisanal (gold panning) or industrial represent a significant source of land and water pollution. It is now well established that the influence of land use on water quality is multifactorial. In a review of the literature, Baker (2005) highlighted the complexity of the relationships between land use and water quality.

The impact of land use on water quality is modulated by the physical and chemical characteristics of the landscape through complex processes that vary in space and time. Infiltration is the main driver of solute percolation into aquifers, while temperature and rainfall govern the processes controlling contaminant mobility. Moreover, the influencing factors are anthropogenic, hydrological, geological, and edaphic in nature (Johnson et al., 1997). In industrialised countries, groundwater and surface water contamination by domestic effluents causes serious public health issues. In addition, agriculture through the extensive use of fertilisers is a major aggravating factor. Several studies worldwide (Girard, 1993; Groen et al., 1988; Mariotti, 1986) and those cited by Bolduc et al. (2006) demonstrate a strong correlation between agricultural activity and elevated nitrate concentrations in groundwater. Developing countries such as Côte d'Ivoire are not exempt from this situation. Water resources in these regions are severely affected by industrial and agricultural effluents. Surface waters are increasingly eutrophic, and groundwater exhibits nitrate enrichment as a result of anthropogenic activities.

Nitrate pollution is a global issue, particularly in regions of intensive agricultural production. Agricultural lands act as diffuse sources of nitrate infiltration into the environment. Unlike point sources (such as domestic effluents), diffuse sources can only be managed effectively through an integrated approach. Once nitrogen from any source enters the environment, it undergoes a series of chemical transformations culminating in the production of nitrate. Unlike the ammonium ion (N–NH₄+), the nitrate ion (N–NO₃-) is highly soluble in water and is not retained by organic matter (humus) or clay complexes. It is therefore highly mobile and easily leached by infiltrating water into the underlying aquifers. Existing literature indicates that water sources with high nitrate levels can cause infant mortality due to methaemoglobinaemia. The World Health Organization (WHO, 2017) recommends that water containing more than 10 mg/L of N–NO₃- should not be used for preparing infant food. Under high pH conditions, nitrates can also lead to the formation of nitrosamines, which lower stomach pH; many of these compounds are carcinogenic in animals and potentially in humans. These chemical characteristics of nitrate its solubility and mobility make it a significant threat to water resources.

Located in a highly agricultural region and within a mountainous crystalline basement setting, the Man Department in western Côte d'Ivoire faces multiple environmental challenges. Interest in groundwater stems from its use via village wells to meet daily domestic needs. However, access to potable water in these areas is limited by the type of aquifers present (fractured and weathered zones) and by increasing demand (Savane, 1997). A gradual deterioration in water quality has been observed, resulting from intensive agricultural practices and uncontrolled urban expansion (Faillat, 1990; Levêque et al., 1983). In such a context, nitrate remains one of the principal pollutants. Several hypotheses have been proposed regarding the origin of nitrates in Ivorian groundwater. According to Faillat (1990), in the Bandama watershed, this contamination partly results from extensive deforestation in favour of urban and cultivated land. Deforestation releases nitrogen stored in root systems, which is then leached into aquifers.

Ouattara (2009) showed that several groundwater abstraction structures in central Côte d'Ivoire are contaminated by nitrates, with maximum concentrations of 37.5 mg/L and 23 mg/L in weathered and fractured aquifers, respectively. Although these concentrations remain below the WHO guideline value for drinking water (50 mg/L), shallow wells may be at greater risk of future contamination, especially as anthropogenic pressures persist. Therefore, the present study aims to assess the physicochemical status of groundwater from the weathered-zone aquifers in the Man Department. Specifically, it seeks to (i) identify the lithologies tapped by the sampled wells, (ii) discriminate the

physicochemical quality of well water according to depth and electrical conductivity, and (iii) provide a diagnostic framework for prioritising the most affected water points requiring intervention.

Materials and Methods:-

Study area:

Located approximately 600 km from Abidjan, Man is the administrative capital of the Tonkpi Region and the principal city of the Montagnes District, which also includes the Guemon and Cavally regions. The city is often referred to as the "City of 18 Mountains" because of the numerous mountain ranges that encircle it, positioning Man within a natural basin. It lies between 7°20′ and 7°35′ N latitude and 7°25′ and 7°45′ W longitude (Figure 1). Geographically, the region represents the eastern extension of the Guinean Mountain Chain, most of which lies within Guinea, and it is located near the Liberian border. The area includes several villages that have been absorbed by the city's expansion, where traditional housing types coexist with modern urban dwellings (RGPH, 2014). Recent geochemical investigations by Kouamelan (1996), along with petrological, petrographic, and geochronological studies by Camil (1984), have contributed to a better understanding of the geological formations of the region. From a lithological perspective, two major geological units can be distinguished, located on either side of the Danane–Man fault (N70°), which divides the area into three main domains: the northern granulitic domain, the intermediate granulitic and migmatitic domain, and the southern biotite-bearing migmatitic domain. The latter two domains together form what is referred to as the anatectic complex.

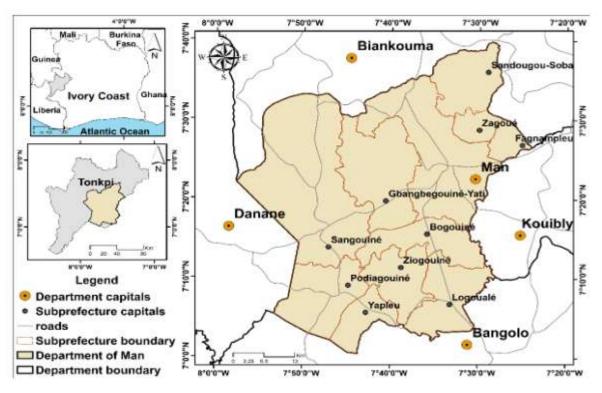


Figure 1. Location of the Man department

Sampling strategy:

As part of this study, 56 wells tapping the weathered-zone aquifers were sampled over a three-dayperiod, from 4 to 7 April 2022. Prior to fieldwork, various sampling sites (localities) were selected based on the administrative map of the Man Department. During the fieldcampaign, the following operations were carried out:

- Measurement of water level and wellheadheight using a piezometric probe and a measuring tape;
- Water collection fromeach well using a bailer, withsamplestransferred into polyethylene bottles;
- Description of the immediateenvironment of each well and recording of its geographical coordinates using a GPS device.

Figure 2 shows the spatial distribution of the sampled points, which is relativelyhomogeneous and covers the entire Man Department. After sampling, all water samples were stored in a cool box and transported to the Laboratory of the University of Man for analysis. The physical parameters, sulphates, and nitrates were measured at the Central Laboratory of the University of Man (LC-UMan), while cations and other major anions were analysed at the Institut National Polytechnique Houphouët-Boigny (INPHB). The analytical methods used for the determination of the various parameters are summarised in Table 1.

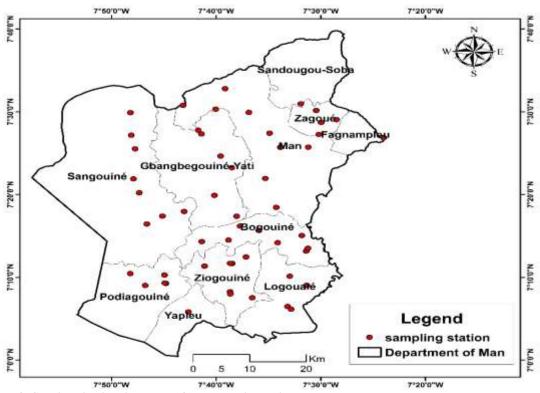


Figure 2. Spatial distribution map of the sampling points

Table 1. Analytical methods used for the determination of chemical parameters

Chemical parameters	Analytical methods	Standards / References
Nitrites (NO ₂ ⁻)	Molecular absorption spectrophotometry	NF EN 26777
Nitrates (NO ₃ ⁻)	Molecular absorption spectrophotometry	NF EN 26777
Sulphates (SO ₄ ²⁻)	Molecular absorption spectrophotometry	NF T 90-040
Orthophosphates (PO ₄ ³⁻)	Molecular absorption spectrophotometry	NF EN ISO 15681-2
Calcium (Ca ²⁺)	Titrimetry	NF T 90-003
Magnesium (Mg ²⁺)	Titrimetry	NF T 90-003
Bicarbonate (HCO ₃ ⁻)	Titrimetry	NF EN ISO 9963-2
Chloride (Cl ⁻)	Titrimetry (silver nitrate method)	NF ISO 9

Electrical conductivity classes of well water:

Table 2 presents the electrical conductivity (EC) classes based on World Health Organization (WHO) standards. According to this classification, waters with EC values below 200 μ S/cm are considered low-mineralised, whereas those with EC values above 600 μ S/cm are regarded as highly mineralised. This classification was used to group the wells of the Man Department according to their total dissolved solids (TDS) content (WHO, 2017).

Table 2. Electrical conductivity classes of well water according to WHO standards (WHO, 2017)

ElectricalConductivity (μS/cm)	Mineralisation class	Interpretation
< 200	Low mineralisation	Soft, weaklymineralised water
200 - 600	Moderatemineralisation	Moderatelymineralised water
> 600	High mineralisation	Hard, stronglymineralised water

Inverse Distance Weighting (IDW) interpolation method:

Interpolation predicts the values of raster cellsfrom a limited number of sampled points. It allows the estimation of unknown values for any type of geospatial point data, such as elevation, rainfall, or chemical concentrations. One of the mostwidely used barycentric interpolation techniques is the Inverse Distance Weighting (IDW) method, in which the influence of each sampling point decreases with increasing distance, controlled by a power parameter (d) (Pingale et al., 2014).

Using this method, the predicted value at a point so is expressed as follows:

$$Z(s_0) = \sum_{i \in V(s_0)} \frac{1/|s_i - s_0|^d}{\sum_{i \in V(s_0)} \left(1/|s_i - s_0|^d\right)} Z(s_i), \text{ with } d > 0 (1)$$

Let V(so) represent the set of observations located within a certain neighbourhood of so. The weighting is a function of the inverse distance.

The formula defining the weighting is given in Equation 2:

$$\lambda_i = \frac{d_{10}^{-p}}{\sum_{i=1}^{N} d_{10}^{-p}} (2)$$

The IDW method requires the selection of a power parameter and a search radius. The power parameter (p) controls the influence of measured values on the interpolated value according to their distance (d) from the prediction point (Erdogan, 2009). A relatively highpower parameter assigns greater weight to nearby points, resulting in a surface that captures more local detail (Yavuz & Erdoğan, 2012). In this study, the IDW method was employed to generate the spatial distribution maps of electrical conductivity (EC) and nitrate concentrations in well waters.

Principal Component Analysis (PCA):

Principal Component Analysis (PCA) allows the summarization and visualization of information contained in a dataset composed of individuals or observations described by multiple inter-correlated quantitative variables. Each variable can beconsidered a separate dimension. When a dataset contains more than three variables, visualizing this multidimensionalspace becomes verychallenging. PCA is therefore used to extract the most important information from a multivariate data table and to express it as a set of new variables called principal components. These new variables correspond to linear combinations of the original variables. The number of principal components is lessthan or equal to the number of original variables. The information contained in a dataset corresponds to the total variation it exhibits. The goal of PCA is to identify directions (or principal components) along which the variation in the data is maximized. In otherwords, PCA reduces the dimensionality of a multivariate dataset to two or three principal components that can begraphically represented, with minimal loss of information (Abdi & Williams, 2010; Kassambara, 2017). PCA is a multidimensional statistical method that enables the synthesis of information to compare different systems. It is particularly suitable for: (i) explaining chemical similarities between different waters and/or between different points of mineralization measurement, and (ii) identifying the variables governing these mechanisms.

Results:-

Lithology of the investigated wells and descriptive statistics of in-situ parameters:-

The water supply structures (wells) in the Man department are predominantly located on three major geological units: anorthosites, norites, and charnockites; heterogeneous biotite-bearinggranitoids; and migmatites on heterogeneous biotite-bearinggranitoids (Figure 3). Approximately 88% of the wells are situated within these formations, while the remaining 12% are distributed across othergeologicalunits. Anorthosites, norites, charnockites, and heterogeneous biotite-bearinggranitoids are the most widespread lithologies in the department, coveringroughly 80% of the territory. Being crystalline rocks, they exhibit medium to lowpermeability, hostingaquiferswhose water resources are modestcompared to porousaquifers (sands, gravels, sandstones, etc.). Overall, waters in contact with these rocks are weakly to moderatelymineralized and are potentiallyenriched in Ca²⁺, Mg²⁺, Fe²⁺, K⁺, Na⁺, and HCO₃⁻, with a neutral to slightly basic pH. In contrast, waters in contact with migmatites over heterogeneous biotite-bearinggranitoids tend to beslightlyacidic to neutral.

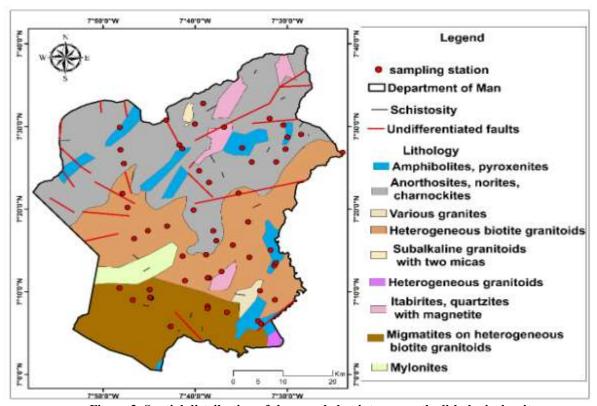


Figure 3. Spatial distribution of the sampled points across the lithological units

The waters of the Man department have an average pH of 5.11 ± 0.56 , indicating that the well waters are slightlyacidic to neutral. Regarding the redox potential, values range from 114.40 mV to 308.30 mV, with a mean of 220.01 ± 45.93 mV. Dissolvedoxygen, electricalconductivity, TDS, and turbidity exhibit standard deviations that are high or close to the mean (Table 3), reflecting the presence of wellswith extreme or exceptional values of these parameters compared to the average. The waters have an average dissolvedoxygen content of 2.57 ± 5.44 mg/L, indicating that most are poorlyoxygenated. The average electricalconductivity of 129.98 ± 123.56 µS/cm suggests that the wells in the Man department are weakly to moderatelymineralized. However, some wells exhibit conductivity values approaching those of highly mineralized waters. Based on lithology, the waters wouldbeexpected to beweakly to moderatelymineralized. Wells exhibiting these elevatedconductivity values warrant particular attention regardingpotential contamination.

Table 3. Descriptive statistics of in-situ physicochemical parameters

Parameter	pН	Redox (mV)	DO (mg/L)	EC (μS/cm)	Depth (m)
Mean	5.11	220.01	2.57	129.98	6.92
Standard Deviation	0.56	45.93	5.44	123.56	2.44
Minimum	3.24	114.40	1.09	16	2.20
Maximum	6.55	308.30	42.43	806	12.45

Typology of wells according to depth:

The depths of the wells were classified into three arbitrarycategories to assess the relationship between depth and the concentrations of chemicalelements (Figure 4). The wells are generallylow in chloride, orthophosphate, and, to a lesserextent, sulfate. The electricalconductivity (EC) of the wells ranges between 0 and 400 µS/cm, while nitrate concentrations vary from 0 to 40 mg/L. Regardingchloride, orthophosphate, and sulfate concentrations, the scatter plots according to depth classes remain highly heterogeneous, indicating that the chemical characteristics of the water are generally similar regardless of well depth and EC. Differentiation is observed only for nitrate concentrations (0–20 mg/L and 20–40 mg/L) and EC values (0–200 µS/cm and 200–400 µS/cm). Wells with higher conductivity tend to have higher nitrate concentrations. Therefore, EC is used as a distinguishing parameter to differentiatewells based on their nitrate content.

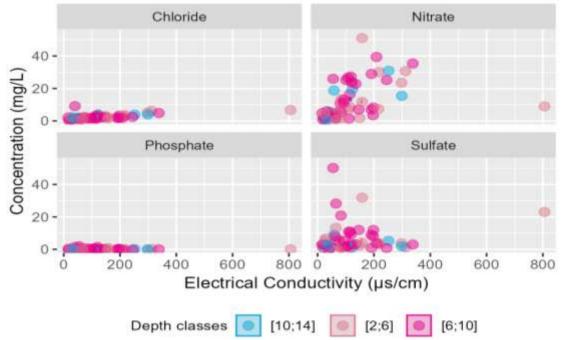


Figure 4. Concentrations of nitrate, chloride, orthophosphate, and sulfate in wells according to depth and electrical conductivity (EC)

Typology of wells based on electricalconductivity: Distribution of Major Ion Concentrations:

Figure 5 illustrates the distribution of the main ion concentrations in wellsfrom the Man department. Overall, the mostrepresentative anions are bicarbonate (HCO₃⁻) and nitrate (NO₃⁻).

- For wellswithlowelectricalconductivity, HCO₃⁻ concentrations range from 22 to 38 mg/L, with a median NO₃⁻ concentration of 5 mg/L.
- For wellswithmoderateconductivity, HCO₃⁻ ranges between 48 and 62 mg/L, and the median NO₃⁻ concentration is 30 mg/L.

Other ions exhibit nearly identical distributions regardless of the conductivity class, indicating that their concentrations do not vary significantly withelectrical conductivity. The dominant hydrochemical facies in the region is therefore calcium-bicarbonate, irrespective of whethermineralisation is low or moderate. The secondary facies is characterised by magnesium as the dominant cation and nitrate as the dominant anion.

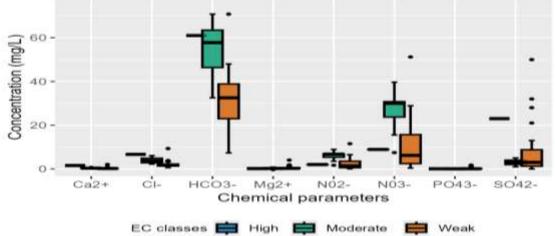


Figure 5. Distribution of major ion concentrations according to electricalconductivity classes

Figure 6 is a Piper diagram, used to represent the chemical composition of groundwater or surface water. It allowshydrochemical facies to be distinguished according to the dominance of the main cations (Ca²+, Mg²+, Na²+K+) and anions (HCO₃⁻+CO₃²-, SO₄²-, Cl⁻+NO₃⁻). The points are mainly located along the Ca–Mg axis, indicating a dominance of calcium and magnesium. This suggests an originlinked to the dissolution of carbonates (calcite, dolomite) and/or calcium-magnesium silicates.

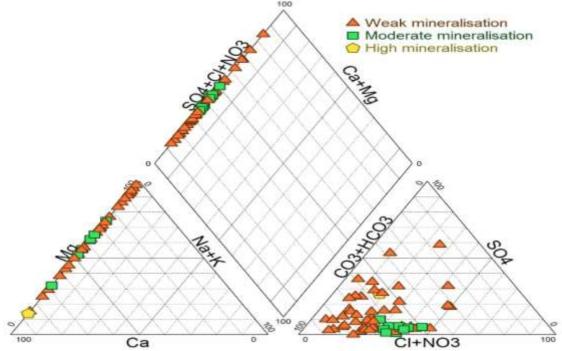


Figure 6. Hydrogeochemical characteristics of well water in the department of Man

The points are groupedtowards the Cl+NO₃ pole, with a notable contribution from HCO₃ for certain waters. This indicates a predominance of chlorides and nitrates, often linked to anthropogenic influence (agricultural and domestic activity) or increasedmineralisation. The majority of samples (especially the orange triangles, 'lowmineralisation') are concentrated towards the Ca–Mg–Cl–NO₃ facies. Samples with moderate (green) and high (yellow) mineralisation follow the same trend, but show a slight dispersion towardsCa–Mg–HCO₃, reflecting a mixture of bicarbonate and chloride waters.

Principal component analysis:

• Distribution of inertia:

This dataset comprises 56 individuals (or wells) and 16 variables, with one qualitative variable used illustratively. The inertia of the factorial axes indicates whether the variables are structured and also suggests an appropriate number of principal components to consider. The first two axes of the analysis account for 40.96% of the total inertia of the dataset, meaning that 40.96% of the overall variability of the cloud of individuals (or variables) is represented in this plane (Figure 7). This is a relatively moderate percentage, indicating that the first plane captures only part of the total variability contained within the active dataset. This value exceeds the reference value of 27.2%, implying that the variability explained by this plane is significant. Consequently, it may be necessary to consider higher dimensions, such as the third axis or beyond, in the analysis.

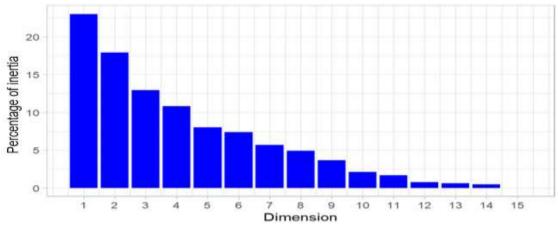


Figure 7. Decomposition of total inertia

An assessment of the relevant number of axes to be interpreted suggests restricting the analysis to the description of the first four axes. These components exhibit an inertia rate higher than the 0.95 quantile of random distributions (64.73% compared to 47.36%). This observation indicates that only these axes carry meaningful information. Consequently, the interpretation of the analysis will be limited to these axes alone. For improved readability of the plots resulting from the PCA, the names of the localities where the wells were investigated have been replaced with codes (P1 to P56). Table 4 provides the correspondence between the well names and their respective codes, as well as their geographical coordinates.

Locality	Code	Latitude	Longitude	Locality	Code	Latitude	Longitude
Saguipleu	P1	7.26972	-7.6284	Logouale 1	P29	7.10256	-7.5472
Podiogouine 1	P2	7.15439	-7.7466	Logouale 2	P30	7.1505	-7.5223
Podiogouine 2	P3	7.15517	-7.7483	Koulinie	P31	7.16875	-7.5493
Gouepleu	P4	7.17411	-7.8034	Saopleu	P32	7.21944	-7.5233
Douleu	P5	7.15028	-7.7797	Glole 1	P33	7.22508	-7.5203
Kpankepleu	P6	7.09706	-7.7109	Glole 2	P34	7.25078	-7.5301
Yapleu	P7	7.17122	-7.7488	Glêgouine	P35	7.23642	-7.5686
Gotongouine-B.	P8	7.27392	-7.7771	Lepkepleu	P36	7.30753	-7.5709
Sangouine	P9	7.36494	-7.7983	Botongouine	P37	7.38733	-7.6417
Gotongouine	P10	7.49828	-7.8031	Tiakepleu	P38	7.41058	-7.6595
Ligbale	P11	7.45289	-7.8018	Lamapleu	P39	7.45536	-7.6900
Drangouine	P12	7.42525	-7.7957	Biakale	P40	7.46286	-7.6952
Damakoupleu	P13	7.33678	-7.7891	Biakale	P41	7.51297	-7.7193
Gotongouine 2	P14	7.28986	-7.7522	Gbêle	P42	7.50514	-7.6673
Zoba	P15	7.29914	-7.7175	Kiele	P43	7.54647	-7.6523
Gouagounompleu	P16	7.33156	-7.6695	Melapleu	P44	7.49869	-7.6144
Gbangbegouine	P17	7.28969	-7.6339	Gueupleu	P45	7.45683	-7.5816
Mlonguine	P18	7.261	-7.5987	Yebegouin	P46	7.42839	-7.5643
Bogouine	P19	7.24169	-7.6468	Blauckauss	P47	7.42869	-7.5200
Gouekangouine	P20	7.23858	-7.6895	Godegouin	P48	7.45436	-7.5030
Gouegole	P21	7.20758	-7.6189	Goualepleu	P49	7.50272	-7.5072
Trinle-Diaple	P22	7.19472	-7.6411	Deoule	P50	7.51592	-7.5318
Zogouine	P23	7.18917	-7.6851	Gbatta	P51	7.47833	-7.4993
Gouegouine	P24	7.19481	-7.6444	Zagoue	P52	7.48414	-7.4750
Zogouine	P25	7.13764	-7.6444	Singouin	P53	7.44767	-7.3997

Goule 1	P26	7.13319	-7.6442	Gbone	P54	7.44767	-7.3997
Goule 2	P27	7.12558	-7.6091	Fagnampleu	P55	7.36558	-7.5883
Gbloale	P28	7.10794	-7.5528	Zele	P56	7.36558	-7.5883

• Description of the plane 1:2

The critical probability of the Wilks test (p-value = 5.34 × 10⁻¹⁰) identifies the variable whosecategories best discriminateamongindividuals on the plane (i.e. the one that best explains the distances between them). Only one qualitative variable can account for the separation of individuals: the ElectricalConductivity (EC) Classes. Individuals are therefore coloured according to their membership in the modalities of the EC Classes variable (Figure 8). Dimension 1 separatesindividuals such as P47, P35, P54, P18, P25, P50, P29, P46, P37, and P31 (located on the right-hand side of the plot, characterised by strongly positive coordinates on the axis) fromindividuals such as P30, P28, P10, P2, P56, P33, and P6 (on the left-hand side, characterised by stronglynegative coordinates). The group including individuals P35, P25, P31, and P22 (with positive coordinates) is associated with high values of PO₄³⁻, Turbidity, SO₄²⁻, and DissolvedOxygen (frommost to least extreme). The group including P47, P54, P18, P50, P29, P46, P37, and P9 (also with positive coordinates) is characterised by high values of ElectricalConductivity (EC), HCO₃-, NO₂-, NO₃-, and Cl⁻ (frommost to least extreme), and by lowRedox potential values. Conversely, the group including P30, P28, P10, P2, P56, P33, and P6 (withnegative coordinates) shows high Redox potential values and low values for NO₂-, NO₃-, Cl⁻, HCO₃-, EC, and Ca²⁺ (frommost to least extreme).

Dimension 2 contrastsindividuals such as P35, P25, P31, and P22 withindividuals like P47, P54, P18, P50, P29, P46, P37, and P9 (located at the bottom of the plot, characterised by stronglynegative coordinates on the axis). The group comprising P35, P25, P31, and P22 exhibits high values of PO₄³⁻, Turbidity, SO₄²⁻, and DissolvedOxygen. The group comprising P47, P54, P18, P50, P29, P46, P37, and P9 is associated with high EC, HCO₃⁻, NO₂⁻, NO₃⁻, and Cl⁻ values, and lowRedox potential values.

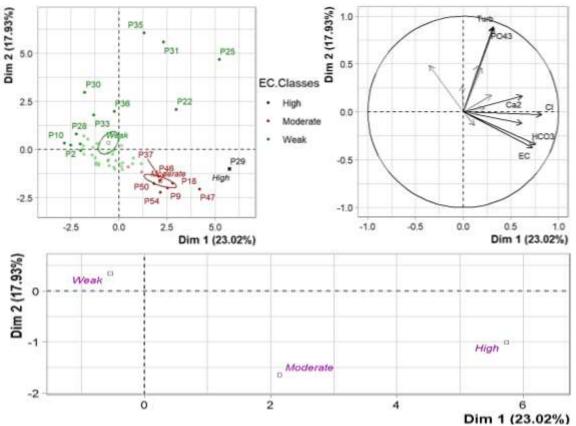


Figure 8. Plot of individuals, variables, and categories on the 1:2 plane

• Description of the plan 3:4

Dimension 3 separatesindividuals such as P24, P22, P16, P43, P44, and P46 (located on the right-hand side of the plot, characterised by strongly positive coordinates on the axis) fromindividuals such as P40, P38, P19, P8, P23, and P25 (Figure 9). The group including P24, P22, P16, P43, P44, and P46 is associated with high values of NO₂⁻ and NO₃⁻ (frommost to least extreme). In contrast, the group including P40, P38, P19, P8, P23, and P25 shows high values of pH and depth, but low values of NO₂⁻, NO₃⁻, and Electrical Conductivity (EC). Dimension 4 contrasts individuals such as P40, P38, P19, P8, P23, and P25 withindividuals such as P9, P37, P10, and P36. The group comprising P40, P38, P19, P8, P23, and P25 is characterised by high pH and depth values and low mineralisation, withlow concentrations of NO₂⁻ and NO₃⁻. Conversely, the group including P9, P37, P10, and P36 exhibits high Dissolved Oxygen (DO) and EC values, and low pH, Temperature, and depth values.

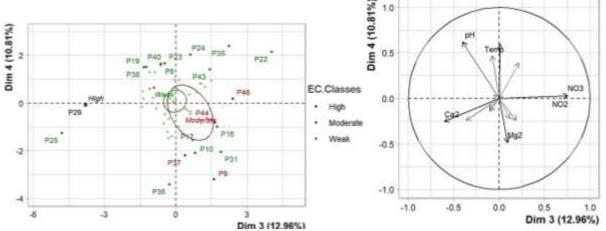


Figure 9. Plot of individuals and variables on the 3:4 plane

Spatial distribution of electrical conductivity and nitrate concentrations:

Across the entire Man Department, electricalconductivity values are generallylow, with an average of 129.98 μS/cm, indicating that the well waters are weaklymineralised (Figure 10). The Logouale area shows the highestconductivity values, ranging from 280 to 804 μS/cm. The southern part of the department is weaklymineralised, withelectricalconductivity values ranging between 16 and 103 μS/cm. In the northern zone, conductivity also remains low. The municipality of Man and the localities of Sandougou-Soba (in the north-east) and Sangouine (in the north-west) display intermediateconductivity values, between 192 and 279 μS/cm (Figure 9). Overall, in almost all wells across the Man Department, nitrate concentrations are below 15 mg/L. The Podiagouine and Yapleulocalities show the lowest nitrate concentrations (0.9–5 mg/L). The municipality of Man and the Bogouinelocalitypresentslightly higher concentrations, ranging between 10 and 26 mg/L in certaines areas. These results indicate that the sampledwells do not show nitrate contamination relative to the WHO standards. However, wells located in the northern part of the department deserveparticular attention.

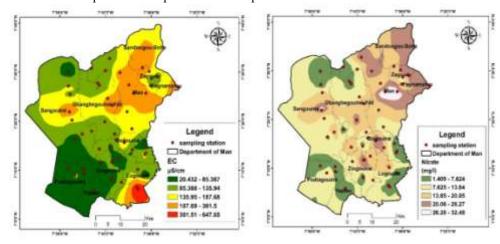


Figure 10. Spatial distribution of electrical conductivity and nitrate concentrations in the Man Department

Discussion:-

The distribution of hydraulic structures in the Man Department is strongly influenced by the geological substratum, which is composed predominantly ($\approx 88\%$) of anorthosites, norites, charnockites, biotite-bearing granitoids, and migmatites. These crystalline formations, beinglow in porosity and permeability, allow only limited water infiltration. Consequently, the associated aquifers are discontinuous, of low productivity, and possess limited storage capacity, which explains the low average mineralisation observed (EC $\approx 130~\mu\text{S/cm}$). The chemical composition of the groundwater is consistent with this geological context. The dominance of a calcium—bicarbonate facies indicates that mineralisation mainly results from the weathering of silicate minerals (feldspars, biotite, amphiboles), rather than from evaporitic processes or saline intrusions. Waters in contact with these rocks typically exhibit slightly acidic to neutral pH values ($\approx 5.11 \pm 0.56$), linked to the limited dissolution of carbonates and the acidic nature of the host rocks (Appelo&Postma, 2004; Faillat & Blavoux, 1989; Freeze & Cherry, 1979). Comparable studies conducted in crystalline basement areas of Côte d'Ivoire have reported similar patterns of low mineralisation with localised peaks related to diffuse pollution and the vulnerability of shallow aquifers (Kouassi, 2007; Lasm et al., 2011; Rashrash et al., 2015).

The relativelylow average electrical conductivity (EC) values confirm the absence of high concentrations of dissolvedsalts. However, the high standard deviations suggest local variability influenced by factors such as pointsource contamination, variation in groundwaterdepth, and fracture heterogeneity within the substratum. The high EC values observed in Logouale (280-804 µS/cm) mayresultfromprolonged water circulation in open fracture zones, which promotesionic exchange, or from local domestic or agricultural pollution. A particularlystrongrelationship between EC and nitrate concentrations is observed: wells with higher EC values also show higher NO₃concentrations (up to 40 mg/L). This correlation likely reflectsanthropogenic inputs (domesticwastewater, latrines, fertilisers), compounded by the shallowdepth of wells and the absence of sanitary protection around wellheads. The EC-NO₃⁻ correlations are consistent with global observations in groundwaterfromurbanised or intensively farmed areas (Dassargues, 2020; WHO, 2017). Nevertheless, the measured concentrations remainbelow the WHO limit (50 mg/L), indicating moderate contamination. The spatial distribution of EC and nitrate shows lowmineralisation across most of the department, withlocalisedincreases in the Man municipality and Logouale. These areas also correspond to zones of intense human activity, supporting the hypothesis of anthropogenic influence on groundwaterchemistry. In contrast, the southern (16–103 μS/cm) and northern sectors, characterised by lowmineralisation, indicate younger waters withlimited interaction with host rocks. The low nitrate concentrations in Podiagouine and Yapleu (0.9-5 mg/L) further confirm the lowanthropogenic impact in these zones.

The Principal Component Analysis (PCA) results show that the first two axes explain 40.96% of the total variance, revealing a moderate but meaningful data structure. The main discriminating variables are electrical conductivity, nitrate, bicarbonate, chloride, and redox potential. This structure highlights two main groundwater groups: oxidising, weaklymineralised waters (lowNO₃-, NO₂-, Cl-, high redox values), representing recent and uncontaminated recharge waters and more mineralised, reducing waters, rich in oxidised anions, indicative of anthropogenic influence or longer residence times within the porous or fractured medium. This duality is consistent with the presence of populations exposed to varyinganthropogenic pressures and different groundwater flow regimes within fractured networks (Appelo&Postma, 2004). The third and fourth PCA axes, which explain an additional proportion of variance, distinguishshallow, mineralised waters fromdeeper, more basic, and weaklymineralised waters, suggesting a hydrogeochemical stratification withdepth, althoughless pronounced than the stratification associated with EC. Althoughmost wells in the Man Department meet drinking-water quality standards, the elevated nitrate and EC values observed in some localities warrant enhanced monitoring. These parameters, beingindicators of diffuse pollution, can evolverapidly under increasing demographic and agricultural pressures. The lowdissolvedoxygen content (DO $\approx 2.6 \pm 5.4$ mg/L) observed in several samplessuggests stagnant conditions or moderateorganic pollution, as reported in otherIvorian studies (N'Guettia et al., 2019; Ouattara et al., 2016; Sodomon et al., 2024). This underlines the need for targetedsanitationmeasures, such as well sealing and the protection of water points fromnearby contamination sources.

Conclusion:-

This study aimed to characterise the hydrogeochemicaltypology of well waters in the Man Department. The results indicate that the groundwater is slightly to moderatelymineralised, with an acidic pH averaging around 5.11. The waters represented in the Piper diagram are mainly of a calcium-magnesiumchloride and nitrate facies (Ca–Mg–Cl–NO₃–HCO₃). This reflects a predominance of carbonate dissolution processes, a probable anthropogenic influence

(nitrates, chlorides) and hydrochemical evolution consistent with increasing mineralisation. The dominant hydrochemical faciesare typical of tropical crystalline aquifers, and the observed spatial variability resultsfrom the combined effects of lithology, well depth, and land use. Regarding the Principal Component Analysis (PCA), four relevant axes were retained to construct the model. Among the four factorial classifications performed, two (axes 1:2 and 3:4) validated the model. In otherwords, these axes encompass the chemical parameters influencing electricalconductivity classes, namely nitrate (NO₃⁻) and bicarbonate (HCO₃⁻). While bicarbonate concentrations have a naturalorigin, linked to the lithological composition of the host rocks, the higher nitrate levels likely have an anthropogenic source. Some localities show elevated nitrate concentrations, althoughstillbelow the drinking-water limit. This is notably the case in Bogouine and Man, where concentrations reach around 20 mg/L. It is therefore recommended to raisecommunityawareness about activitiesconductednearwells, in order to reduce contamination risks. Overall, the findingsconfirm that the crystalline basementgeologyplays a fundamentalrole in controllinggroundwaterquality, but that anthropogenic factors are becoming increasingly significant in certaines areas. A periodic monitoring programme focusing on nitrate, electricalconductivity, and redox potential, combined withaquifervulnerability mapping, is necessary to anticipate future changes in groundwaterquality within this environmental and socio-economiccontext.

References:-

- 1.Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.101
- 2. Appelo, C. A. J., & Postma, D. (2004). Geochemistry, Groundwater and Pollution (C. A. J. Appelo & D. Postma, Eds; 0 edn). CRC Press. https://doi.org/10.1201/9781439833544
- 3. Baker, A. (2005). Land Use and Water Quality. In M. G. Anderson & J. J. McDonnell (Eds), Encyclopedia of Hydrological Sciences (1st edn). Wiley. https://doi.org/10.1002/0470848944.hsa195
- 4. Bolduc, S., Larocque, M., & Prichonnet, G. (2006). Vulnerabilite de l'eau souterraine à la contamination par les nitrates sur le bassin versant de la rivière Noire (Monteregie, Quebec). Revue Des Sciences de l'eau, 19(2), 87–99. https://doi.org/10.7202/013043ar
- 5. Camil, J. (1984). Petrographie, chronologie des ensembles granulitiques archeens et formations associees de la region de Man (Côte d'Ivoire) [Thèse de Doctorat]. Universite d'Abidjan.
- 6. Dassargues, A. (2020). Introduction à la qualite des eaux souterraines et à l'hydrochimie: In Hydrogeologie appliquee (pp. 179–209). Dunod. https://doi.org/10.3917/dunod.dassa.2020.01.0179
- 7. Erdogan, S. (2009). A comparision of interpolation methods for producing digital elevation models at the field scale. Earth Surface Processes and Landforms, 34(3), 366–376. https://doi.org/10.1002/esp.1731
- 8. Faillat, J. P., & Blavoux, B. (1989). Caractères hydrochimiques des nappes des roches endogènes fissurees en zone tropicale humide: L'exemple de la Côte d'Ivoire. Journal of African Earth Sciences (and the Middle East), 9(1), 31–40. https://doi.org/10.1016/0899-5362(89)90005-5
- 9. Faillat, J.-P. (1990). Origine des nitrates dans les nappes de fissures de la zone tropicale humide: Exemple de la Côte d'Ivoire. Journal of Hydrology, 113(1-4), 231-264. https://doi.org/10.1016/0022-1694(90)90177-Y
- 10. Freeze, R. A., & Cherry, J. A. (1979). Groundwater prentice-hall. Englewood Cliffs, NJ, 176, 161–177.
- 11. Girard, P. (1993). Techniques isotopiques (15N 18O) appliquees à l'étude des nappes des alterites et du socle fracture de l'ouest africain: Etude de cas l'ouest du Niger. Universite du Quebec à Chicoutimi. https://doi.org/10.1522/1486981
- 12. Groen, J., Schuchmann, J. B., & Geirnaert, W. (1988). The occurrence of high nitrate concentration in groundwater in villages in Northwestern Burkina Faso. Journal of African Earth Sciences (and the Middle East), 7(7–8), 999–1009. https://doi.org/10.1016/0899-5362(88)90013-9
- 13. Johnson, L., Richards, C., Host, G., & Arthur, J. (1997). Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biology, 37(1), 193–208. https://doi.org/10.1046/j.1365-2427.1997.d01-539.x
- 14. Kassambara, A. (2017). Principal Component Methods in R: Practical Guidex. Statistical Tools for High-Throughput Data Analysis. https://www.sthda.com/english/articles/31-principal-component-methods-in-r-practical-guide/112-pca-principal-component-analysis-essentials/
- 15. Kouamelan, A. N. (1996). Geochronologie et geochimie des formations archeennes et proterozoïques de la dorsale de Man en Côte d'Ivoire, implication pour la transition archeen-proterozoïque [Thèse de Doctorat,]. Universite Geosciences Rennes 1.
- 16. Kouassi, K. L. (2007). Transport solide et modelisation de la sedimentation dans les lacs des barrages hydroelectriques de côte d'ivoire: Cas du lac de Taabo [Thèse De Doctorat]. Universite d'Abobo-Adjame.

- 17. Lasm, T., De Lasme, O., Oga, M.-S., Youanta, M., Baka, D., Kouame, F., & Yao, T. (2011). Caracterisation hydrochimique des aquifères fissures de la region de San-Pedro (Sud-Ouest de la Côte d'Ivoire). International Journal of Biological and Chemical Sciences, 5(2). https://doi.org/10.4314/ijbcs.v5i2.72129
- 18. Levèque, C., Dejoux, C., & Iltis, A. (1983). Limnologie du fleuve Bandama, Côte d'Ivoire. Hydrobiologia, 100(1), 113–141. https://doi.org/10.1007/BF00027426
- 19. Lopez, B., Ollivier, P., Togola, A., Baran, N., & Ghestem, J.-P. (2015). Screening of French groundwater for regulated and emerging contaminants. Science of The Total Environment, 518–519, 562–573. https://doi.org/10.1016/j.scitotenv.2015.01.110
- 20. Mariotti, A. (1986). La denitrification dans les eaux souterraines, principes et me'thodes de son identification: Une revue. Journal of Hydrology, 88(1–2), 1–23. https://doi.org/10.1016/0022-1694(86)90194-0
- 21. McCammon, A. L. T. (1992). United Nations Conference on Environment and Development, held in Rio de Janeiro, Brazil, during 3–14 June 1992, and the '92 Global Forum, Rio de Janeiro, Brazil, 1–14 June 1992. Environmental Conservation, 19(4), 372–373. https://doi.org/10.1017/S0376892900031647
- 22. N'Guettia, G. K., Mangoua, O. M. J., DOUAGUI, A. G., ABOUA, K. N., & Droh, L. D. (2019). Evolution spatio-temporelle des teneurs en nitrates dans les eaux souterraines du bassin versant de la Baya (Est Côte d'Ivoire). International Journal of Innovation and Applied Studies, 27(1), 88–97.
- 23. WHO (World Health Organisation). (2017). Guidelines for drinking water quality (World Health Organisation). 24. Ouattara, I. (2009). Processus hydrogeochimique en milieu soudano-tropical de socle cristallin en Côte d'Ivoire: Bassin versant du Bandama [Memoire de DEAUniversite d'Abobo-Adjame]. Universite d'Abobo-Adjame.
- 25. Ouattara, I., Kamagate, B., Dao, A., Noufe, D., & Savane, I. (2016). Processus de mineralisation des eaux souterraines et transfert de flux en milieu de socle fissure: Cas du bassin versant transfrontalier de la Comoe (Côte d'Ivoire, Burkina Faso, Ghana, Mali). International Journal of Innovation and Applied Studies, 17(1), 57–69.
- 26. Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73–90. https://doi.org/10.1016/j.atmosres.2013.10.024
- 27. Rashrash, S. M., Ghawar, B. M. B., & Hweesh, A. M. (2015). Evaluating Groundwater Pollution Using Hydrochemical Data: Case Study (Al Wahat Area East of Libya). Journal of Water Resource and Protection, 07(04), 369–377. https://doi.org/10.4236/jwarp.2015.74029
- 28. Real, B., Curtis, J. F., Hoan, E. B., Kouakou, M., Me, M., Traore, Y., Kouame, F., Goula, B. T. A., & Koffi, Y. F. (2005). Resultats de 10 campagnes d'experimentation: Les transferts de produits phytosanitaires vers les eaux varient selon les types de sol. Pespect. Agric., 316, 20–24.
- 29. Savane, I. (1997). Contribution à l'etude geologique et hydrogeologique des aquifères discontinus du socle cristallin d'Odienne (Nord-Ouest de la Côte d'Ivoire). Apport de la Teledetection et d'un système d'information hydrogeologique à reference spatiale [Thèse d'Etat]. Universite Nationale de Côte d'Ivoire.
- 30. Sodomon, A. K., Akpataku, K. V., Tampo, L., Alfa-Sika Mande, S.-L., Benavente, J., Rosales, W. M., & Faye, S. (2024). Evaluation de L'evolution hydrogeochimique des eaux souterraines de L'aquifère du socle de la partie superieure du bassin transfrontalier du fleuve mono, togo. SSRN. https://doi.org/10.2139/ssrn.4961616
- 31. Yavuz, H., & Erdoğan, S. (2012). Spatial Analysis of Monthly and Annual Precipitation Trends in Turkey. Water Resources Management, 26(3), 609–621. https://doi.org/10.1007/s11269-011-9935-6