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Introduction:- 
Fourier analysis has been widely recognized as a powerful tool in time series studies. Multiple researchers, including 

Brillinger [1] and Elhassancin [6], have contributed to its theoretical development. Extending this line of inquiry, 

Ghazal et al. [12] examined the asymptotic properties of discrete stable time series with missing observations 

between two vector-valued stochastic processes. Ghazal et al. [13] further studied the statistical properties of the 

periodogram for two vector-valued stability series with missed observations. El-Deoskey et al. [8] investigated the 

extended finite Fourier transform for firmly fixed continuous time series with missing data, while El-Deoskey et al. 

[7] analyzed linearly immutable continuous time series modeled as bivariate stochastic processes with vector values, 

focusing on their distinguishing features. Additionally, Alargt and Ben Aros [14] explored the asymptotic properties 

of the finite Fourier transform for filtered series. Building on these works, the present paper conducts a statistical 

analysis of the finite Fourier transform and periodogram within the framework of discrete-time series. 

Suppose we observe a stretch of T consecutive values 1...,,0),(  TttX from an r-vector-valued strictly 

stationary series with mean function XCEX  and spectral density matrix 







u

XXXX uiuCf )exp()()(  ,    . 

This paper studies several statistical properties of the finite Fourier transform and the periodogram derived from 

such series. 

 

Definitions:- 

Definition 1(Brillinger[1]) 

Given a sequence X(t) for t=0,1,…,T−1, the finite Fourier transform of this segment is defined as 
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Definition 2(Brillinger[1]) 

A standard estimator for the power spectrum )(XXf is the periodogram, given by 

Estimating the power spectrum )(XXf , is suggested by the periodogram that is defined by 

    A common estimator for the power spectrum )(XXf is the periodogram, which is calculated as: 

2
)(1)( )()2()(  T

X

T

XX dTI                    (2) 

typically considered for frequencies ,...2,,0    

Definition 3(Brillinger[1]) 

A data window function )()( th T

a is used to taper the series. It is defined as )()( )()(

T

t
hth T

a

T

a   for ),0( Tt , is 

bounded and of bounded variation, and vanishes outside the interval [0, T]. 

 

Theorems and Proofs:- 

Theorem1 

Assume )(tX is a strictly stationary discrete-time series, and let )()( T

Xd be its finite Fourier transform as defined 

in (1). When a data window )()( th T

a is applied, the asymptotic distribution of the transform is as follows: 
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Proof:| 

Let )(tX  be a strictly stationary discrete-time series, and consider its windowed finite Fourier transform: 
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Calculation of the Mean: 

Taking the expectation: 
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Since the process is stationary with mean aC , this becomes: 
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    When ,....20   , we have )exp( ti =1, yielding: 

  )0()0()()(
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T
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T
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    When ,...3,   , the term )exp( ti  alternates in sign, and for large T with a smooth taper, the sum 

tends to zero: 

  .0)()( T

XdE
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Calculation of the Covariance: 

We compute: 
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where )(uCab  is the cross-covariance function. 

Let 
21 ttu   and 

2tt  . For sufficiently large T, we approximate: 
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and 
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Thus: 
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Asymptotic Distribution: 

Under the given conditions, and invoking a central limit theorem for weighted sums of stationary sequences, 

)()( T

Xd converges in distribution to a multivariate normal: 

    Case 1: ,...20    
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    Case 2: ,...3,    
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This completes the proof. 

 

Theorem2:- 

Let ,...1,0),( ttX , be an r -vector-valued strictly stationary series with mean XC and cross-covariance 

function )(uCXX
. Assume 

 
u

XX uC )(  

Let )()( T

XXI be the periodogram defined in (2), and let )()( th T

a  be a data window. Then: 
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Proof: 

Starting from the definition of the periodogram: 
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where )()( T
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is the windowed finite Fourier transform. Taking expectations: 
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Expanding the expectation: 
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The second term simplifies to )()( )()(  T

b

T

aba HHCC . 

 

For the first term, let
21 ttu   and

2tt  : 
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For large T, the inner sum over u approximates the spectral density: 
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The outer sum over t approximates: 
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which, after applying Parseval’s identity, leads to: 
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Combining these approximations and integrating over α, we obtain: 
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This completes the proof:- 

Corollary (Asymptotic Unbiasedness of the Periodogram): 

Under the assumptions stated in Theorem 1, and provided that 

  oduuhuh ba )()( for rba ,...,1,  , 

 

the expected value of the periodogram converges asymptotically as follows: 

  ),()()(  XX
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provided that either: 

1.  )(mod20   #0(mod2 ), or 

2. the mean vector 0XC . 

 

Interpretation: 

- The periodogram serves as an asymptotically unbiased estimator of the spectral density matrix )(XXf under 

the stated conditions. 
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- If the process has a non-zero mean ( 0XC ) and λ is near frequencies 0,±2π,…0,±2π,…, the estimator may 

exhibit significant bias. 

- In practice, this bias can be mitigated by subtracting an estimate of the mean from the series before computing 

the finite Fourier transform. 

 

Practical Implication: 

A modified statistic can be considered to reduce mean-induced bias: 
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where aC


 is a consistent estimate of aC , such as the sample mean. 

 

Theorem3:- 

Let )(tX be a strictly stationary discrete-time r-vector-valued series, and let )()( th T

a be a data window. Consider the 

periodogram )()( T

XXI as defined in (2). Then, the covariance between two periodogram components is given by: 
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where the remainder term ),( TR satisfies: 
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for some constants 4321 ,,, KKKK and for all
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Proof: 

We start from the representation: 
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The covariance between two periodogram entries can be expressed as: 
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Using properties of cumulants for stationary processes, this covariance decomposes into three main 

components: 

- Product of Covariances (Term F): 
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which asymptotically behaves as: 
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- Product of Cross-Covariances (Term M): 
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asymptotically: 
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- Fourth-Order Cumulant Term (Term K): 
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Combining these three contributions and noting that: 
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we obtain the stated expression. The remainder term ),( TR collects lower-order terms and is bounded as 

indicated.Thus, the theorem is proved. 

 

Conclusion:- 
This paper has presented a statistical analysis of the finite Fourier transform and the periodogram in the context of 

discrete-time series.  

 

Through the derivation of key asymptotic properties, we have established: 

- Distributional Results: Under strict stationarity and appropriate windowing conditions, the finite Fourier 

transform converges to a multivariate normal distribution, with distinct behavior at zero and non-zero 

frequencies. 

- Expectation of the Periodogram: The expected value of the periodogram was derived, revealing its 

relationship with the spectral density matrix and highlighting conditions under which it serves as an 

asymptotically unbiased estimator. 

- Covariance Structure: The covariance between periodogram components was characterized, providing insight 

into the dependency structure of spectral estimates across frequencies and components. 

 

These results contribute to the theoretical foundation for spectral estimation in multivariate time series analysis, 

particularly in settings involving filtered, windowed, or incompletely observed data. The findings may support 

further research in areas such as spectral inference, hypothesis testing, and the analysis of nonstationary or 

irregularly sampled time series. 
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