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Introduction:- 
Nonlinear differential equations and integral equations with bounded intervals have been studied in the literature as 

various aspects existence, uniqueness, stability and externality of solutions. However the study of nonlinear 

differential and integral equations with unbounded intervals is new and exploited for the new characteristics of 

attractivity and asymptotic attractivity of solutions. There are two approaches for dealing with these characteristics of 

solutions one is classical fixed point theorems involving the hypothesis from analysis and topology, the second is the 

fixed point theorems involving the use of measure of noncompactness approaches has some advantages and 

disadvantages over the others Dhage[2,3]. In this paper, we prove some theorems on the existence and global 

attractivity and positivity of solutions for functional differential equations by using fixed point theorems involving the 

use of measures of noncompactness. Our study will be situated in the Banach space of real-valued functions which are 

defined, continuous and bounded on the real half axis R_+. The main tool used in our considerations is the technique 

of measures of noncompactness and fixed point theorem of B.C.Dhage type [1]. The assumptions imposed in our 

main existence theorems admit several natural realizations. These realizations are constructed with help of a certain 

class of sub additive functions. The results obtained in this paper generalized and extend several ones obtained earlier 

in a lot of papers concerning asymptotic stability of solutions for some functional integral equations [cf.1,4,5,6,7]. 

Our approach consists mainly in the possibility of obtaining the global attractivity, asymptotic attractivity and 

positivity of solutions for considered nonlinear functional Differential equations. 

 

Auiliary Results:- 

At the beginning we present some basic facts concerning the measures of noncompactness. We accept the following 

definitions of the concept of a measure of noncompactness given in Dhage[1].The details measures of 
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noncompactness appear in Banas and Goebel[8] and the references therein. Let E be a Banach space and let 𝒫𝓅 E be 

denote the class of all non-empty subsets ofE with property 𝒫. Here 𝒫 may be 𝒫cl = closed, 𝒫bd = bounded, 𝒫rcp = 

relatively compact. Thus, 𝒫cl  E , 𝒫bd  E , 𝒫cl ,bd  E  and 𝒫rcp  E denotes the classes of closed, bounded, closed and 

bounded and relatively compact subsets of E respectively.A functiondH A, B =

max d A, B , d b, A ,b∈B
sup

a∈A
sup

 Satisfies all the conditions of a metric on 𝒫bd  E  is called Hausdrorff-Pompeiu metric 

on E, where d a, B = inf  a − b : b ∈ B . It is known that the hyperspace  𝒫cl  E , dH  is a complete metric space. 

In this paper, we adopt the following axiomatic definition of the measure of noncompactness in a Banach space given 

by Dhage[1]. The other useful forms appear in Banas and Goebel[8] and the references therein. We need the 

following definitions in the sequel. 

 

Definition:2.1. A sequence  An  of non-empty sets in 𝒫bd  E  is said to converges to a set A, called the limiting set if 

dH An , A → 0 as n → ∞. A mapping μ: 𝒫bd  E → ℝ+ is called continuous if for any sequence  An  in 𝒫bd  E   we 

have  

d_H (A_n, A) → 0 ⇒ |μ(A_n ) − μ(A) | → 0asn → ∞. 

Definition:2.2. A mapping μ: 𝒫bd  E → ℝ+ is said to be nondecreasing if A, B ∈ 𝒫bd  E  are any two sets with A ⊆ B, 
then μ A ≤ μ B , where≤ is a order relation by inclusion in 𝒫bd  E . 
Definition:2.3. A function μ: 𝒫bd  E → ℝ+ is called a measure of noncompactness if it satisfies  

i. ϕ ≠ μ−1 0 ⊂ 𝒫rcp  E , 

ii. μ A  = μ A , where A   denotes the closure of A, 
iii. μ convA = μ A , where convA denotes the convex hull of A, 
iv. μ is nondecreasing, and 

v. If  An  is a decreasing sequence of sets in 𝒫bd  E  such tha  

μ An 
n→∞

lim
= 0, then the limiting set  A∞ = Ann→∞

lim  is non-empty  

The family kerμ  described in (i) is said to be the kernel of the measure of noncompactness μ and kerμ =
 A ∈ 𝒫bd  E : μ A = 0 ⊆ 𝒫rcp  E . The measureμ is called complete if the kerμ of μ consists of all possible relatively 

compact subsets of E. 
The measureμ is called sublinear if it satisfies 

vi. μ λA =  λ μ A  for  λ ∈ ℝ,  and 

vii. μ A + B ≤ μ A + μ B .  

There do exist the sublinear measures of noncompactness on Banach space E. Observe that the limiting set 

 A∞ from (v) is a member of family kerμ. In facts, science μ  A∞ ≤ μ  An  for any n, we infer that μ  A∞ =
0. There fore  A∞ ∈ ker μ. 
 

Definition:2.4. A mapping Q: E → E is called D − set − Lipschitz if there exists a continuous nondecreasing function 

ϕ: ℝ+ → ℝ+ such that μ Q(A) ≤ ϕ μ A   for all A ∈ 𝒫bd  E  with Q A ∈ 𝒫bd  E , where ϕ 0 = 0. Sometimes we 

call the function ϕ to be D-function of Q on E. When ϕ r = kr, k > 0 then Q is called a K-set contraction on E. 
Further if ϕ r < r for r > 0, then Q is called a nonlinear D-set contraction on E. 

 

Theorem:2.1(Dhage[1]): Let C be a non-empty, closed, convex and bounded subset of a Banach space E, and let 

Q: C → C be a continuous and nonlinear D-set contraction. Then Q has a fixed point. 

 

Remark.2.1: Let Fix(Q) denote the set of all fixed points of the operator Q which belong to c. It can be shown in 

theorem.2.1 Fix Q ∈ kerμ. In fact if  Fix Q ∉ kerμ, then  μ Fix Q  > 0 and Q Fix Q  = Fix Q . Now from 

nonlinear D-set contraction,  μ  Q Fix Q   ≤ Q  μ Fix Q    This is a contradiction. 

Since ϕ r < r for  r > 0. Hence Fix Q ∈ kerμ. Our further considerations will be placed in Banach 

space BC ℝ+, ℝ   with standard supremum norm   

 x = sup  x t  : t ∈ ℝ+  
for our purpose we will use the Hausdorff measure of noncompactness in BC ℝ+, ℝ  and is defined as follows. Let 

us fix a nonempty and bounded subset X of the space  BC ℝ+, ℝ  and positive number T. For x ∈ X, ϵ ≥ 0 denote by     

ωT x, ϵ = sup  x t − x s  : t, s ∈  0, T ,  t − s ≤ ϵ  
Next, let us put  

𝜔𝑇 𝑋, 𝜖 = 𝑠𝑢𝑝 𝜔𝑇 𝑥, 𝜖 : 𝑥 ∈ 𝑋  
𝜔0

𝑇 𝑋 = 𝑙𝑖𝑚
𝜖→0

𝜔𝑇 𝑋, 𝜖 . 
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It is known that 𝜔0
𝑇  is a measure of noncompactness in the Banach space 𝐶  0, 𝑇 , ℝ  of continuous and real-

valued functions defined on a closed and  bounded interval  0, 𝑇  in ℝ which is equivalent to Hausdroff or ball 

measure on noncompactness in it. Now one has  

𝜒 𝑋 =
1

2
𝜔0

𝑇 𝑋  

 For any bounded subset 𝜒 of 𝐶  0, 𝑇 , ℝ  see Banas and Goebel [3] and the reference therein. We define                         

𝜔𝑜 𝑋 = 𝑙𝑖𝑚
𝑇→∞

𝜔0
𝑇 𝑋  

Now, for a fixed number 𝑡 ∈ ℝ+, let us denote 𝑋 𝑡 =  𝑥 𝑡 : 𝑥 ∈ 𝑋 , 

 𝑋 𝑡  = 𝑠𝑢𝑝  𝑥 𝑡  : 𝑥 ∈ 𝑋 . 
         and  

 𝑋 𝑡 − 𝑐 = 𝑠𝑢𝑝  𝑥 𝑡 − 𝑐 : 𝑥 ∈ 𝑋 . 
Let us consider the function 𝜇 defined on the family 𝒫𝑏𝑑  𝑋  by  

     s𝜇𝑎 𝑋 = 𝑚𝑎𝑥 𝜔0 𝑋 , 𝑙𝑖𝑚𝑡→∞ 𝑠𝑢𝑝 𝑑𝑖𝑎𝑚𝑋 𝑡  , 

𝜇𝑏 𝑋 = 𝑚𝑎𝑥 𝜔0 𝑋 , 𝑙𝑖𝑚𝑡→∞ 𝑠𝑢𝑝 𝑋 𝑡   , 
and                               𝜇𝑐 𝑋 = 𝑚𝑎𝑥 𝜔0 𝑋 , 𝑙𝑖𝑚𝑡→∞ 𝑠𝑢𝑝 𝑋 𝑡 − 𝑐  . 
For any bounded subset 𝑋 of 𝐵𝐶 ℝ+, ℝ  define  

𝛿 𝑋 = 𝑠𝑢𝑝 𝑙𝑖𝑚𝑡→∞ 𝑠𝑢𝑝  𝑥 𝑡  − 𝑥 𝑡  : 𝑥 ∈ 𝑋 . 

Define the functions 𝜇𝑎𝑑 , 𝜇𝑏𝑑 ,   𝜇𝑐𝑑 : 𝒫𝑏𝑑  𝐸 → ℝ+ by 

𝜇𝑎𝑑  𝑋 = 𝑚𝑎𝑥 𝜇𝑎 𝑋 , 𝛿 𝑋                                                                                              2.2 

𝜇𝑏𝑑  𝑋 = 𝑚𝑎𝑥 𝜇𝑏 𝑋 , 𝛿 𝑋                                                                                             2.3 

𝜇𝑐𝑑 𝑋 = 𝑚𝑎𝑥 𝜇𝑐 𝑋 , 𝛿 𝑋                                                                                             2.4 

for all  𝑋 ∈ 𝒫𝑏𝑑  𝐸  

It can be shown as in Banas[4] that the functions 𝜇𝑎 , 𝜇𝑏,   𝜇𝑐,𝜇𝑎𝑑 , 𝜇𝑏𝑑 𝑎𝑛𝑑𝜇𝑐𝑑  are measures of noncompactness 

in the space𝐵𝐶 ℝ+, ℝ . The 𝑘𝑒𝑟𝜇𝑎,𝑘𝑒𝑟𝜇𝑏𝑎𝑛𝑑𝑘𝑒𝑟𝜇𝑐  of the measures 𝜇𝑎,𝜇𝑏𝑎𝑛𝑑𝜇𝑐  consist of non empty and 

bounded subsets 𝑋 are locally equicontinuous on ℝ+. 
 In order to introduce further concepts used in this article, let us assume that 𝐸 = 𝐵𝐶 ℝ+, ℝ  and let 𝛺 

be a subset of 𝑋. Let 𝑄: 𝐸 → 𝐸 be a operator and consider the following operator equation in E, 

𝑄𝑥 𝑡 = 𝑥 𝑡                                                                                                            2.5 

For all 𝑡 ∈ ℝ+.  Below we give different characterizations of the solutions for the operator (2.5) on ℝ+. 
 

Definition:2.5. We say that solutions of equation (2.5) are locally attractive if there exists a closed ball 

ℬ 𝑟 𝑥𝑜  in space 𝐵𝐶 ℝ+, ℝ  for some  𝑥𝑜 ∈ 𝐵𝐶 ℝ+, ℝ  such that for arbitrary solutions 𝑥 = 𝑥 𝑡  and 𝑦 = 𝑦 𝑡  

of equation (2.5) belonging to ℬ 𝑟 𝑥𝑜 ∩ 𝛺.  we have  

𝑙𝑖𝑚𝑡→∞ 𝑥 𝑡 − 𝑦 𝑡  = 0                                                                                                        2.6 

   In the case when the limit (2.3) is uniform with respect to the set ℬ 𝑟 𝑥𝑜 ∩ 𝛺  i.e. when for each 𝜖 >
0, ∃𝑇 > 0 such that   

 𝑥 𝑡 − 𝑦 𝑡  ≤ 𝜖                                                                        2.7  

for all 𝑥, 𝑦 ∈ ℬ 
𝑟
 𝑥𝑜 ∩ 𝛺  being solutions of (2.1) and for𝑡 ≥ 𝑇, we will say that solutions of (2.5) are 

uniformly locally attractive onℝ+. 

Definition:2.6. The solution 𝑥 = 𝑥 𝑡  of equation (2.5) is said to be globally attractive if (2.7) holds for each 

solution𝑦 = 𝑦 𝑡   of (2.5) on 𝛺. In the case when the condition (2.9) is satisfied uniformly with respect to the 

set𝛺 i.e. if for every 𝜖 > 0, ∃𝑇 > 0 such that the inequality (2.7) is satisfied for all  𝑥, 𝑦 ∈ 𝛺 being the solution 

of (2.5) and 

𝑡 ≥ 𝑇, we will say that solutions of the equation (2.5) are uniformly globally attractive onℝ+.     

 

The following definitions appear in Dhage[2]  

Definition:2.7. A line 𝑦 𝑡 = 𝑐 where c a real number is called a attractor for a solution𝑥 ∈ 𝐵𝐶 ℝ+, ℝ   to the 

equation (2.5) if 𝑙𝑖𝑚𝑡→∞ 𝑥 𝑡 − 𝑐 = 0. In such case the solution 𝑥 to the equation (2.6) is called to be 

asymptotic to the line 𝑦  𝑡  = 𝑐  and the line is asymptote for the solution𝑥  on ℝ+. 
Let us mention that the concepts of global attractivity of solutions are recently introduced in Hu and Yan[7] 

while the concepts of local and global asymptotic attractivity have been presented in Dhage[2]. Similarly, the 

concepts of uniform local and global attractivity were introduced in Banas and Rzepka[5].   

Next we introduce the new concept of local and global asymptotic positivity of solution for 

equation2.5) in 𝐵𝐶  ℝ+, ℝ . 
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Definition:2.8. A solution𝑥  of equation (2.5) is called locally ultimately positive if there exist a closed ball 

ℬ 𝑟  𝑥 𝑜   in 𝐵𝐶  ℝ+, ℝ  for some 𝑥 ∈ 𝐵𝐶  ℝ+, ℝ  such that 𝑥 ∈ ℬ 𝑟  𝑥 𝑜   and  

𝑙𝑖𝑚 𝑡 →∞  𝑥  𝑡   − 𝑥  𝑡   = 0                                                          2.8 

When for each  𝜖 > 0, ∃𝑇 > 0 such that 

  𝑥  𝑡   − 𝑥  𝑡   ≤ 𝜖                                                             2.9 

For all 𝑥  being solutions of (2.5) and for 𝑡 ≥ 𝑇 , we will say that solutions of equations (2.5) are uniformly 

locally ultimately positive on ℝ+. 
 

Definition:2.9: A solution 𝑥 ∈ 𝐶  ℝ+, ℝ  of equation (2.5) is called globally ultimately positive if equation 

(2.9) is satisfied. In this case when the limit (2.8) is uniform with respective to the solution set of the operator 

equation (2.5) in 𝐶  ℝ+, ℝ . i.e. when for each 𝜖 > 0, ∃𝑇 > 0 such that (2.9) is satisfied for all 𝑥  being 

solutions of equations of (2.5) and for 𝑡 ≥ 𝑇 , we will say that solutions of equations (2.5) are uniformly 

globally ultimately positive on ℝ+. In the following section we prove the main results of this article. 

 

Attrctivity And Positivity Solution:- 

Let ℝ be the real line and let ℝ+ be the set of non negative real numbers. Consider the functional differential 

equation (in short FDE)  

𝑑

𝑑𝑡
 

𝑥  𝑡  

𝑓  𝑡 ,𝑥  𝛼  𝑡    
 = 𝑔  𝑡 , 𝑥  𝛾  𝑡                                                 3.1 

for 𝑡 ∈ ℝ+,  where 𝑓 : ℝ+ × ℝ → ℝ , 𝑔 : ℝ+ × ℝ → ℝ , and  𝛼 , 𝛾 : ℝ+ → ℝ+. 

By a solution of the FDE (3.1) we mean a function in 𝐶  ℝ+, ℝ  that satisfies the equation (3.1), where 

𝐶  ℝ+, ℝ  is the space of continuous real-valued functions defined on ℝ+. For  𝑡 ∈ ℝ+,  the FDE (3.1) reduces 

to the functional integral equation (in short FIE) 

𝑥  𝑡  = 𝑞  𝑡  + 𝑓  𝑡 , 𝑥  𝛼  𝑡    +  𝑔  𝑡 , 𝑥  𝜔 𝑠    
𝛽  𝑡  

0
𝑑𝑠                                     3.2 

where : ℝ+ → ℝ , 𝛽 : ℝ+ → ℝ+. 

The type of integral equation (3.2) has been studied in Dhage[3] and references given therein. For global 

attractivity of solutions via classical hybrid fixed point theory observe that the type of above integral equation 

(3.2) includes several classes of functional, integral and functional integral equations considered in the 

literature (cf[1,4,5,6,7] and references therein). Let us also mention that the following type of functional 

integral equation considerd in Banas and Dhage[6], 

𝑥  𝑡  = 𝑓  𝑡 , 𝑥  𝛼  𝑡    +  𝑔  𝑡 , 𝑠 , 𝑥  𝜔 𝑠    
𝛽  𝑡  

0
𝑑𝑠                                          3.3 

is also special case of the equation (3.2) which further includes the functional integral equation considered in 

Banas and Rzepk[5] where 𝛼  𝑡  = 𝛽  𝑡  = 𝛾  𝑡  , 𝑡 ∈ ℝ+.  Therefore FIE(3.2) means FDE(3.1) is more 

general and so the attractivity and positivity of this paper include the attractivity and positivity results for all 

the above mentioned integral equations which are also new to the literature. 

 The equation (3.2) will be considered under the following assumptions. 

(A0) The functions 𝛼 , 𝛽 , 𝛾 : ℝ+ → ℝ+ are continuous and satisfy 𝑡 ≤ 𝛼  𝑡   for 𝑡 ∈ ℝ+. 
(A1) The function 𝑞 : ℝ+ → ℝ is continuous and bounded. 

(A2) The function 𝑓 : ℝ+ × ℝ → ℝ is continuous and there exists a bounded function    

ℓ: ℝ+ → ℝ with bound L and a positive constant M such that  

 𝑓  𝑡 , 𝑥  − 𝑓  𝑡 , 𝑦   ≤
ℓ 𝑡  𝑚𝑎𝑥   𝑥 − 𝑦   

𝑀 + 𝑚𝑎𝑥   𝑥 − 𝑦   
 

         for 𝑡 ∈ ℝ+ and for 𝑥 , 𝑦 ∈ ℝ. Moreover, we assume that 𝐿 ≤ 𝑀. 

(A3)  The function 𝑡 → 𝑓 (𝑡 , 𝑜 ) is bounded on ℝ+ with 𝐹 0 = 𝑠𝑢𝑝   𝑓 (𝑡 , 𝑜 ) : 𝑡 ∈ ℝ+ . 
(A4)  The function 𝑔 : ℝ+ × ℝ × ℝ → ℝ is continuous and there exists a continuous     

          function 𝑏 : ℝ+ × ℝ+ → ℝ+ such that  𝑔  𝑡 , 𝑠 , 𝑥   ≤ 𝑏  𝑡 , 𝑠   for 𝑡 , 𝑠 ∈ ℝ+. 

Moreover, we assume that 𝑙𝑖𝑚 𝑡 →∞  𝑏  𝑡 , 𝑠  𝑑𝑠 = 0
𝛽  𝑡  

0
. 

Remark.3.1: Hypothesis (A2) is satisfied if the function and satisfied the condition, 

 𝑓  𝑡 , 𝑥  − 𝑓  𝑡 , 𝑦   ≤
ℓ(𝑡 ) 𝑥 −𝑦  

2𝑀+ 𝑥 −𝑦  
                                                                    3.4 

for all 𝑡 ∈ ℝ+ and 𝑥 , 𝑦 ∈ ℝ, where 𝐿 ≤ 𝑀, and the function ℓ is defined as in hypothesis (A2) which further 

yields the usual Lipschitz condition on the function 𝑓 , 

 𝑓  𝑡 , 𝑥  − 𝑓  𝑡 , 𝑦   ≤
ℓ(𝑡 )

2𝑀
 𝑥 − 𝑦                                                                       3.5 
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for all 𝑡 ∈ ℝ+ and 𝑥 , 𝑦 ∈ ℝ provided 𝐿 < 𝑀. Our hypothesis (A2) is more general that existing in the 

literature. 

 We will proceed for our main results. 

Theorem:3.1: Under the above assumptions (A0)- (A4),  FDE (3.1) has at least one solution in the space 

𝐵𝐶  ℝ+, ℝ . Moreover, solutions of the equation FDE (3.1) are globally uniformly attractive on ℝ+. 
Proof: Consider the operator𝑄defined on the space 𝐵𝐶  ℝ+, ℝ  be the formula  

𝑄𝑥  𝑡  = 𝑞  𝑥  + 𝑓  𝑡 , 𝑥  𝛼  𝑡    +  𝑔  𝑡 , 𝑠 , 𝑥  𝛼  𝑠    𝑑𝑠
𝛽  𝑡  

0
      3.6 

Observe that for any 𝑥 ∈ 𝐵𝐶  ℝ+, ℝ  the function 𝑄𝑥  is continuous on ℝ+. Moreover for any fixed 𝑡 ∈ ℝ+ 

 we obtain  

 𝑄𝑥  𝑡   ≤  q 𝑥   +  𝑓  𝑡 , 𝑥  𝛼  𝑡     +   𝑔  𝑡 , 𝑠 , 𝑥  𝛼  𝑠     𝑑𝑠

𝛽  𝑡  

0

 

≤  𝑞  𝑥   +  𝑓  𝑡 , 𝑥  𝛼  𝑡    − 𝑓 (𝑡 , 0) +  𝑓 (𝑡 , 0) +  𝑏  𝑡 , 𝑠  𝑑𝑠

𝛽  𝑡  

0

 

≤  𝑞  +
𝐿𝑚𝑎𝑥   𝑥  𝛼  𝑡     

𝑀 + 𝑚𝑎𝑥   𝑥  𝛼  𝑡     
+  𝑓 (𝑡 , 0) +  𝑏  𝑡 , 𝑠  𝑑𝑠

𝛽  𝑡  

0

 

≤  𝑞  +
𝐿  𝑥  

𝑀 +  𝑥  
+ 𝐹 0 + 𝜐 (𝑡 ) 

≤  𝑞  +
𝐿  𝑥  

𝑀 +  𝑥  
+ 𝐹 0 + 𝑉  

where 𝜐  𝑡  =  𝑏  𝑡 , 𝑠  𝑑𝑠
𝛽  𝑡  

0
, 𝑉 = 𝑠𝑢𝑝  𝜐  𝑡  : 𝑡 ∈ ℝ+  is finite by (A4).  

From the above estimate we deduce that  
 𝑄 ≤  𝑞  + 𝐿 + 𝐹 0 + 𝑉       3.7 

for all 𝑥 ∈ B𝐶  ℝ+, ℝ . This means that the operator 𝑄  transforms the space 𝐵𝐶  ℝ+, ℝ  into itself from (3.7) the 

operator 𝑄  transforms continuously the space 𝐵𝐶  ℝ+, ℝ  into the closed ball ℬ 𝑟  0 , where 𝑟 =  𝑞  + 𝐿 + 𝐹 0 +
𝑉 . Because of this fact, the existence of solutions for the FDE (3.1) is global in nature. 

 We will consider the operator 𝑄  as a mapping from ℬ 𝑟  0  into itself. New we show that the operator 𝑄   is 

continuous on the ball ℬ 𝑟  0 . Let 𝜖 > 0 and take 𝑥 , 𝑦 ∈ ℬ 𝑟  0  such that  𝑥 − 𝑦  < 𝜖 . Then we get 

 𝑄𝑥  𝑡  − 𝑄𝑦  𝑡   ≤  𝑓  𝑡 , 𝑥  𝛼  𝑡    − 𝑓  𝑡 , 𝑦  𝛼  𝑡      

+   𝑔  𝑡 , 𝑠 , 𝑥  𝛼  𝑠    − 𝑔  𝑡 , 𝑠 , 𝑦  𝛼  𝑠     𝑑𝑠

𝛽  𝑡  

0

 

≤
𝐿𝑚𝑎𝑥   𝑥  𝛼  𝑡   − 𝑦  𝛼  𝑡     

𝑀 + 𝑚𝑎𝑥   𝑥  𝛼  𝑡   − 𝑦  𝛼  𝑡     
+    𝑔  𝑡 , 𝑠 , 𝑥  𝛼  𝑠     +  𝑔  𝑡 , 𝑠 , 𝑦  𝛼  𝑠      𝑑𝑠

𝛽  𝑡  

0

 

≤
𝐿  𝑥 − 𝑦  

𝑀 +  𝑥 − 𝑦  
+ 2  𝑏  𝑡 , 𝑠  𝑑𝑠

𝛽  𝑡  

0

 

≤ 𝜖 + 2𝜐  𝑡  . 

Hence, in virtue of assumption (A4) we infer that there exists 𝑇 > 0 such that 𝜐  𝑡  ≤ 𝜖  for 𝑡 ≥ 𝑇 . Thus for 𝑡 ≥ 𝑇  

from (3.3) we derive that  

 𝑄𝑥  𝑡  − 𝑄𝑦  𝑡   ≤ 3𝜖                                                              3.8 

Further let us assume that 𝑡 ∈  0, 𝑇   then evaluating similarity s above we get 

 𝑄𝑥  𝑡  − 𝑄𝑦  𝑡   ≤ 𝜖 +   𝑔  𝑡 , 𝑠 , 𝑥  𝛼  𝑠    − 𝑔  𝑡 , 𝑠 , 𝑦  𝛼  𝑠     𝑑𝑠

𝛽  𝑡  

0

 

≤ 𝜖 +  𝜔𝑟
𝑇  𝑔 , 𝜖  𝑑𝑠

𝛽  𝑡  

0
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≤ 𝜖 𝛽 𝑇 𝜔𝑟
𝑇  𝑔 , 𝜖   

Where  𝛽 𝑇 = 𝑠𝑢𝑝  𝛽  𝑡  : 𝑡 ∈  0, 𝑇    and  

𝜔𝑟
𝑇  𝑔 , 𝜖  = 𝑠𝑢𝑝   𝑔  𝑡 , 𝑠 , 𝑥  − 𝑔  𝑡 , 𝑠 , 𝑦   : 𝑡 ∈  0, 𝑇  , 𝑠 ∈  0, 𝛽 𝑇  , 𝑥 , 𝑦 ∈  −𝑟 , 𝑟  ,  𝑥 − 𝑦  ≤ 𝜖   

3.10  

Obviously we have that 𝛽 𝑇 < ∞. Moreover from the uniform continuity of the function 𝑔  𝑡 , 𝑠 , 𝑥   on the set 

 0, 𝑇  ×  0, 𝛽 𝑇  ×  −𝑟 , 𝑟  . we derive that 𝜔𝑟
𝑇  𝑔 , 𝜖  → 0 as𝜖 → 0. Now from (3.9),(3,10) and above established 

facts we conclude that the operator 𝑄  maps continuously  the closed ball ℬ 𝑟  0  into itself. 

           Further on let us take nonempty subset 𝑋  of the ball ℬ 𝑟  0 . Next 𝑇 > 0 and 𝜖 > 0, let us choose 𝑥 ∈ 𝑋  and 

𝑡 1, 𝑡 2 ∈  0, 𝑇   with  𝑡 1 − 𝑡 2 ≤ 𝜖 . Without loss of generality we may assume that 𝑡 1 < 𝑡 2. Then taking into 

account our assumptions, we get 

  𝑄𝑥   𝑡 2 −  𝑄𝑥   𝑡 1  ≤  𝑞  𝑡 2 − 𝑞  𝑡 1  +  𝑓  𝑡 2, 𝑥  𝛼  𝑡 2   − 𝑓  𝑡 1, 𝑥  𝛼  𝑡 1     

+   𝑔  𝑡 2, 𝑠 , 𝑥  𝛼  𝑠    

𝛽  𝑡 2 

0

𝑑𝑠 −  𝑔  𝑡 1, 𝑠 , 𝑥  𝛼  𝑠    

𝛽  𝑡 2 

0

𝑑𝑠  

+                                                                𝑔  𝑡 1, 𝑠 , 𝑥  𝛼  𝑠    

𝛽  𝑡 2 

0

𝑑𝑠

−  𝑔  𝑡 1, 𝑠 , 𝑥  𝛼  𝑠    

𝛽  𝑡 1 

0

𝑑𝑠   

≤ 𝜔𝑇  𝑞 , 𝜖  +
𝐿𝑚𝑎𝑥   𝑥  𝛼  𝑡 2  − 𝑥  𝛼  𝑡 1    

𝑀 + 𝑚𝑎𝑥   𝑥  𝛼  𝑡 2  − 𝑥  𝛼  𝑡 1    
+ 𝜔𝑟

𝑇  𝑓 , 𝜖   

                                           +   𝑔  𝑡 1, 𝑠 , 𝑥  𝛼  𝑠    − 𝑔  𝑡 2, 𝑠 , 𝑥  𝛼  𝑠     

𝛽  𝑡 2 

0

𝑑𝑠  

                                                               +    𝑔  𝑡 , 𝑠 , 𝑥  𝛼 𝑠     𝑑𝑠

𝛽  𝑡 2 

𝛽  𝑡 1 

  

≤ 𝜔𝑇  𝑞 , 𝜖  +
𝐿𝑚𝑎𝑥   𝜔𝑇  𝑥 ,𝜔𝑇  𝛼 ,𝜖     

𝑀+𝑚𝑎𝑥   𝜔𝑇  𝑥 ,𝜔𝑇  𝛼 ,𝜖     
+ 𝜔𝑟

𝑇  𝑓 , 𝜖  +  𝜔𝑟
𝑇  𝑔 , 𝜖  𝑑𝑠 + 𝜔𝑇  𝛽 , 𝜖  𝐺 𝑇

𝑟𝛽 𝑇

0
     3.11 

Where 𝜔𝑟
𝑇  𝑞 , 𝜖  = 𝑠𝑢𝑝   𝑞  𝑡 2 − 𝑞  𝑡 1  : 𝑡 1, 𝑡 2 ∈  0, 𝑇  ,  𝑡 1 − 𝑡 2 ≤ 𝜖   

𝜔𝑟
𝑇  𝑓 , 𝜖  = 𝑠𝑢𝑝   𝑓  𝑡 2,𝑥  − 𝑓  𝑡 1, 𝑥   : 𝑡 1, 𝑡 2 ∈  0, 𝑇  ,  𝑡 1 − 𝑡 2 ≤ 𝜖 , 𝑥 , 𝑦 ∈  −𝑟 , 𝑟    

𝜔𝑟
𝑇  𝑔 , 𝜖  = 𝑠𝑢𝑝  

 𝑔  𝑡 2, 𝑠 , 𝑥  − 𝑔  𝑡 1, 𝑠 , 𝑥   : 𝑡 1, 𝑡 2 ∈  0, 𝑇  ,  𝑡 1 − 𝑡 2 ≤ 𝜖 ,

𝑠 ∈  0, 𝛽 𝑇  , 𝑥 , 𝑦 ∈  −𝑟 , 𝑟  
  

𝐺 𝑇
𝑟 = 𝑠𝑢𝑝   𝑔  𝑡 , 𝑠 , 𝑥   : 𝑡 ∈  0, 𝑇  , 𝑠 ∈  0, 𝛽 𝑇  , 𝑥 ∈  −𝑟 , 𝑟   .  

from the above estimate we derive the following  

𝜔𝑇  Q𝑥 , 𝜖  ≤ 𝜔𝑇  𝑞 , 𝜖  +
𝐿𝑚𝑎𝑥   𝜔𝑇  𝑥 ,𝜔𝑇  𝛼 ,𝜖     

𝑀+𝑚𝑎𝑥   𝜔𝑇  𝑥 ,𝜔𝑇  𝛼 ,𝜖     
+ 𝜔𝑟

𝑇  𝑓 , 𝜖  +  𝜔𝑟
𝑇  𝑔 , 𝜖  𝑑𝑠 + 𝜔𝑇  𝛽 , 𝜖  𝐺 𝑇

𝑟𝛽 𝑇

0
 3.12 

Observe that 𝜔𝑇  𝑞 , 𝜖  → 0, 𝜔𝑟
𝑇  𝑓 , 𝜖  → 0 and 𝜔𝑟

𝑇  𝑔 , 𝜖  → 0 as 𝜖 → 0, which is a simple consequence of the 

uniform continuity of the functions 𝑞 , 𝑓 , 𝑔  on the set  0, 𝑇  , 
 0, 𝑇  ×  −𝑟 , 𝑟    and  0, 𝑇  ×  0, 𝛽 𝑇  ×  −𝑟 , 𝑟   respectively. Moreover it is obvious that the constant 𝐺 𝑇

𝑟  is finite 

and 𝜔𝑇  𝛼 , 𝜖  → 0, 𝜔𝑇  𝛽 , 𝜖  → 0 as 𝜖 → 0. Thus linking the established facts with the estimate (3.12) we get, 

𝜔0
𝑇  𝑄𝑥  ≤

𝐿 𝜔0
𝑇  𝑋 

𝑀+𝜔0
𝑇  𝑋 

       3.13 

Now, taking into account our assumptions, for fixed 𝑡 ∈ ℝ+ and for 𝑥 , 𝑦 ∈ 𝑋  we deduce the following 

 𝑄𝑥  𝑡  − 𝑄𝑦  𝑡   ≤  
𝐿𝑚𝑎𝑥   𝑥  𝛼  𝑡   − 𝑦  𝛼  𝑡     

𝑀 + 𝑚𝑎𝑥   𝑥  𝛼  𝑡   − 𝑦  𝛼  𝑡     
+ 

   𝑔  𝑡 , 𝑠 , 𝑥  𝛾  𝑠     +  𝑔  𝑡 , 𝑠 , 𝑦  𝛾  𝑠      𝑑𝑠

𝛽  𝑡  

0
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≤  
𝐿𝑚𝑎𝑥   𝑥  𝛼  𝑡   − 𝑦  𝛼  𝑡     

𝑀 + 𝑚𝑎𝑥   𝑥  𝛼  𝑡   − 𝑦  𝛼  𝑡     
+ 2𝜐  𝑡   

≤  
𝐿𝑚𝑎𝑥  𝑑𝑖𝑎𝑚𝑋  𝛼  𝑡    

𝑀 + 𝑚𝑎𝑥  𝑑𝑖𝑎𝑚𝑋  𝛼  𝑡    
+ 2𝜐  𝑡   

Hence we obtain 

𝑑𝑖𝑎𝑚  𝑄𝑥   𝑡  ≤  
𝐿𝑚𝑎𝑥  𝑑𝑖𝑎 m𝑋 𝛼  𝑡    

𝑀 + 𝑚𝑎𝑥  𝑑𝑖𝑎𝑚𝑋  𝛼  𝑡    
+ 2𝜐  𝑡   

In view of assumptions  𝐴 0  and  𝐴 4  yields  

𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝 𝑑𝑎𝑖𝑚  𝑄𝑥   𝑡  ≤
𝐿 𝑙𝑖𝑚

𝑡 →∞
𝑠𝑢𝑝 𝑚𝑎𝑥  𝑑𝑖𝑎𝑚𝑋  𝛼  𝑡    

𝑀 + 𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝 𝑚𝑎𝑥  𝑑𝑖𝑎𝑚 𝑋 𝛼  𝑡    
 

≤
𝐿 𝑙𝑖𝑚 𝑡 →∞ 𝑠𝑢𝑝 𝑑𝑖𝑎𝑚𝑋  𝑡  

𝑀+𝑙𝑖𝑚 𝑡 →∞ 𝑠𝑢𝑝 𝑑𝑖𝑎𝑚𝑋  𝑡  
         3.14 

Further using the measure of noncompactness 𝜇 𝑎  defined by the (2.2) and keeping in mind the estimate (3.13) and 

(3.14), we get 

𝜇 𝑎  𝑄𝑋  = 𝑚𝑎𝑥  𝜔0 𝑄𝑥  , 𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝 d𝑖𝑎𝑚𝑄𝑋  𝑡    

≤ 𝑚𝑎𝑥  
𝐿 𝜔0 𝑋 

𝑀 + 𝜔0 𝑋 
,

𝐿 𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝 𝑑𝑖𝑎𝑚𝑋  𝑡  

𝑀 + 𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝 𝑑𝑖𝑎𝑚𝑋  𝑡  
  

≤
𝐿𝑚𝑎𝑥  𝜔0 𝑋 , 𝑙𝑖𝑚

𝑡 →∞
𝑠𝑢𝑝 𝑑𝑖𝑎𝑚𝑄𝑋  𝑡   

𝑀 + 𝑚𝑎𝑥  𝜔0 𝑋 , 𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝 𝑑𝑖𝑎𝑚𝑄𝑋  𝑡   
 

=
𝐿 𝜇 𝑎  𝑋 

𝑀+𝜇 𝑎  𝑋 
     3.15 

Since 𝐿 ≤ 𝑀 by of assumption  𝐴 2  from the above estimate, 𝜇 𝑎  𝑄𝑋  ≤ 𝜙 𝜇 𝑎  𝑋   where 𝜙 𝑟  =
𝐿𝑟

𝑀+𝑟
< 𝑟  for 

𝑟 > 0. Hence we yield theorem (2.1) to deduce that the operator 𝑄  has a fixed point 𝑥  in the ball ℬ 𝑟  0 . Obviously 

𝑥  is solution of the FIE (3.2) means solution of FDE (3.1). Moreover taking into account that the image of the space 

𝐵𝐶  ℝ+, ℝ  under the operator 𝑄 is contained in the ball ℬ 𝑟  0  we infer that the set Fix 𝑄  of all fixed points of 𝑄 is 

contained in ℬ 𝑟  0 . Obviously, the set Fix 𝑄  of all contains all solutions of the FIE (3.2) means FDE (3.1). From 

remark (2.1) the set Fix 𝑄  belongs to the family ker𝜇 𝑎 . Now, taking into account the description of sets belonging 

to ker𝜇 𝑎  we deduce that all solutions for the FIE(3.2) are globally uniformly attractive on ℝ+. This completes the 

proof. 

 

Remark:3.2: When 𝑞 = 0, 𝑓 (𝑡 , 𝑥 ) and 𝑔 (𝑡 , 𝑠 , 𝑥 ) in our theorem 3.1 we obtain the global attractivity result for the 

FDE(3.1). Note that the global attractivity result for (3.3) is also proved in Banas and Dhage[6] under the same 

hypothesis, but under the stronger hypothesis of  𝐴 2 that𝐿 < 𝑀. Therefore, our theorem 3.1 generalize and improve 

the existence results of Dhage[3] and Banas and Dhage[6] and thereby the results of Banas and Rezpka[5] under 

weaker conditions with a new measure of noncompactness in the Banach space 𝐵𝐶  ℝ+, ℝ . 

 To prove next result concerning the asymptotic positivity of the attractive solution we need the following 

hypothesis in the sequel.  

 𝐴 5  The functions 𝑞  and 𝑓  satisfy 

𝑙𝑖𝑚 𝑡 →∞  𝑞  𝑡   − 𝑞  𝑡   = 0 and 𝑙𝑖𝑚 𝑡 →∞  𝑓  𝑡 , 𝑥   − 𝑓  𝑡 , 𝑥   = 0 for all 𝑥 ∈ ℝ+. 
 

Theorem:3.2: Under the hypotheses of theorem 3.1 and  𝐴 5 , the FDE (3.1) has at least one 

 solution on ℝ+. Moreover, solutions of the FDE(3.1) are uniformly globally attractive and ultimately positive on ℝ+. 
Proof: Consider the closed ballℬ 𝑟  0  in the Banach space 𝐵𝐶  ℝ+, ℝ , where the real number 𝑟  is given as in the 

proof of theorem 3.1 and define a mapping 𝑄: 𝐵𝐶  ℝ+, ℝ → 𝐵𝐶  ℝ+, ℝ  by (3.7). Then it is shown as in the proof of 

theorem 3.1that 𝑄  defines a continuous mapping from the space 𝐵𝐶  ℝ+, ℝ  into ballℬ 𝑟  0 . In particular, 𝑄maps 

ℬ 𝑟  0  into itself. Next we show that 𝑄  is a nonlinear-set-contraction with respective to the measure 𝜇 𝑎𝑑  of 

noncompactness in Banach space𝐵𝐶  ℝ+, ℝ . We know that for any 𝑥 ∈ ℝ. 

Now for any  𝑥 ∈ ℬ 𝑟  0 , one has  

  𝑄𝑥  𝑡   − 𝑄𝑥  𝑡   ≤   𝑞  𝑡   − 𝑞  𝑡   +   𝑓  𝑡 , 𝑥  𝛼  𝑡     − 𝑓  𝑡 , 𝑥  𝛼  𝑡      
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 +    𝑔  𝑡 , 𝑠 , 𝑥  𝛾  𝑠     − 𝑔  𝑡 , 𝑠 , 𝑥  𝛾  𝑠     𝑑𝑠

𝛽  𝑡  

0

 

≤   𝑞  𝑡   − 𝑞  𝑡   +   𝑓  𝑡 , 𝑥  𝛼  𝑡     − 𝑓  𝑡 , 𝑥  𝛼  𝑡     + 2𝜐  𝑡  .  

Taking the limit supremum over t, we have 

𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝   𝑄𝑥  𝑡   − 𝑄𝑥  𝑡   

≤ 𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝   𝑞  𝑡   − 𝑞  𝑡   + 𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝   𝑓  t, 𝑥  𝛼  𝑡     − 𝑓  𝑡 , 𝑥  𝛼  𝑡     

+2 𝑙𝑖𝑚
𝑡 →∞

𝑠𝑢𝑝 𝜐  𝑡  
 

                                                   = 0 

for all 𝑥 ∈ ℬ 𝑟  0 . This implies that𝛿  𝑄𝑥  = 0 for all subsets 𝑋  of ℬ 𝑟  0 . Further, using the measure of 

noncompactness 𝜇 𝑎  defined by the formula (2.2) and keeping in mind the estimates (3.13) and (3.14), we obtain 

𝜇 𝑎𝑑  𝑄𝑋  = 𝑚𝑎𝑥  𝜇 𝑎𝑑  𝑄𝑋  , 𝛿  𝑄𝑥    

≤ 𝑚𝑎𝑥  
𝐿 𝜇 𝑎  𝑋 

𝑀 + 𝜇 𝑎  𝑋 
, 0  

=
𝐿 𝜇 𝑎  𝑋 

𝑀 + 𝜇 𝑎  𝑋 
 

≤
𝐿 𝜇 𝑎𝑑  𝑋 

𝑀 + 𝜇 𝑎𝑑  𝑋 
 

Since 𝐿 ≤ 𝑀 in view of assumption  𝐴 2 , from the above estimate we infer that 𝜇 𝑎𝑑  𝑄𝑋  ≤ 𝜙 𝜇 𝑎𝑑  𝑋  , where 

𝜙 𝑟  =
𝐿𝑟

𝑀+𝑟
< 𝑟  for 𝑟 > 0. Hence we apply theorem 2.2 to deduce that the operator 𝑄  has a fixed point 𝑥  in the 

ball ℬ 𝑟  0 .  Obviously 𝑥  is a solution of the FDE (3.1). Moreover, taking into account that the image of the space 

𝐵𝐶  ℝ+, ℝ  under the operator  𝑄  is contained in the ball ℬ 𝑟  0  we infer that the set 𝐹𝑖𝑥  Q  of all fixed points of 

𝑄  is contained in ℬ 𝑟  0 . Obviously, the set 𝐹𝑖𝑥  𝑄  contains all solutions of all the equation (3.1). On the other 

hand, from remark 2.1 we conclude that the set 𝐹𝑖𝑥  𝑄  belongs to the family 𝑘𝑒𝑟 𝜇 𝑎𝑑  we deduce that all 

solutions of the equation (3.1) are uniformly globally attractive and positive on ℝ+. This completes the Proof. 
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