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Introduction:-

Nonlinear differential equations and integral equations with bounded intervals have been studied in the literature as
various aspects existence, uniqueness, stability and externality of solutions. However the study of nonlinear
differential and integral equations with unbounded intervals is new and exploited for the new characteristics of
attractivity and asymptotic attractivity of solutions. There are two approaches for dealing with these characteristics of
solutions one is classical fixed point theorems involving the hypothesis from analysis and topology, the second is the
fixed point theorems involving the use of measure of noncompactness approaches has some advantages and
disadvantages over the others Dhage[2,3]. In this paper, we prove some theorems on the existence and global
attractivity and positivity of solutions for functional differential equations by using fixed point theorems involving the
use of measures of noncompactness. Our study will be situated in the Banach space of real-valued functions which are
defined, continuous and bounded on the real half axis R_+. The main tool used in our considerations is the technique
of measures of noncompactness and fixed point theorem of B.C.Dhage type [1]. The assumptions imposed in our
main existence theorems admit several natural realizations. These realizations are constructed with help of a certain
class of sub additive functions. The results obtained in this paper generalized and extend several ones obtained earlier
in a lot of papers concerning asymptotic stability of solutions for some functional integral equations [cf.1,4,5,6,7].
Our approach consists mainly in the possibility of obtaining the global attractivity, asymptotic attractivity and
positivity of solutions for considered nonlinear functional Differential equations.

Auiliary Results:-
At the beginning we present some basic facts concerning the measures of noncompactness. We accept the following
definitions of the concept of a measure of noncompactness given in Dhage[1].The details measures of
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noncompactness appear in Banas and Goebel[8] and the references therein. Let E be a Banach space and let P, (E)be
denote the class of all non-empty subsets ofE with property P. Here P may be P = closed, P,q = bounded, ., =
relatively compact. Thus, Py (E), Pog (E), P pa (E) and P, (E)denotes the classes of closed, bounded, closed and
bounded and relatively compact subsets of E respectively.A functiondy (A, B) =

max{;ggd(A, B), pend(b, A), }Satisﬁes all the conditions of a metric on P4 (E) is called Hausdrorff-Pompeiu metric
on E, where d(a, B) = inf{|l]a — b]|:b € B}. It is known that the hyperspace (P, (E), dy) is a complete metric space.
In this paper, we adopt the following axiomatic definition of the measure of noncompactness in a Banach space given

by Dhage[1]. The other useful forms appear in Banas and Goebel[8] and the references therein. We need the
following definitions in the sequel.

Definition:2.1. A sequence {A,} of non-empty sets in P4 (E) is said to converges to a set A, called the limiting set if
dy(A,,A) > 0 as n - . A mapping p: Py (E) > R* is called continuous if for any sequence {A,} in P4 (E) we
have
d_H((AnA) - 0= |uw(An)—p(A) | = Oasn = .
Definition:2.2. A mapping u: P, 4 (E) —» R™ is said to be nondecreasing if A, B € P4 (E) are any two sets with A € B,
then p(A) < u(B), where< is a order relation by inclusion in P4 (E).
Definition:2.3. A function p: Ppq (E) — R™ is called a measure of noncompactness if it satisfies
i ¢#p(0) € R, (B),
ii.  p(A) = n(A), where A denotes the closure of A,
iii.  p(convA) = p(A), where convA denotes the convex hull of A,
iv.  pis nondecreasing, and
v. If{A,}is a decreasing sequence of sets in P,y (E) such tha
nin;u(An) = 0, then the limiting set A, = ,'™ A, is non-empty
The family kerp described in (i) is said to be the kernel of the measure of noncompactness p and kerpy =
{A € Ppq (E): u(A) = 0} € R, (E). The measurep is called complete if the kerp of u consists of all possible relatively
compact subsets of E.
The measurep is called sublinear if it satisfies
vi.  u(A) = [A|lu(A) for A € R, and
vii. A+ B) < u(A) + u(B).
There do exist the sublinear measures of noncompactness on Banach space E. Observe that the limiting set
A, from (v) is a member of family kerp. In facts, science p( A,,) < p( A,) for any n, we infer that p( A,,) =
0. There fore A, € ker p.

Definition:2.4. A mapping Q: E — E is called D — set — Lipschitz if there exists a continuous nondecreasing function
®:R* - R* such that p(Q(A)) < ¢(n(A)) for all A € Pyq (E) with Q(A) € Poq (E), where ¢(0) = 0. Sometimes we
call the function ¢ to be D-function of Q on E. When ¢(r) = kr,k > 0 then Q is called a K-set contraction on E.
Further if ¢(r) < r for r > 0, then Q is called a nonlinear D-set contraction on E.

Theorem:2.1(Dhage[1]): Let C be a non-empty, closed, convex and bounded subset of a Banach space E, and let
Q: C - C be a continuous and nonlinear D-set contraction. Then Q has a fixed point.

Remark.2.1: Let Fix(Q) denote the set of all fixed points of the operator Q which belong to c. It can be shown in
theorem.2.1 Fix(Q) € kerp. In fact if Fix(Q) € Kkery, then p(Fix(Q)) >0 and Q(Fix(Q)) = Fix(Q). Now from
nonlinear D-set contraction, (Q(FiX(Q))) <Q (p(FiX(Q))) This is a contradiction.
Since ¢(r) <r for r>0. Hence Fix(Q) € kerp. Our further considerations will be placed in Banach
space BC(R,, R) with standard supremum norm
lIxIl = sup{|x(D)|:t € R}

for our purpose we will use the Hausdorff measure of noncompactness in BC(R,, R) and is defined as follows. Let
us fix a nonempty and bounded subset X of the space BC(R,, R) and positive number T. For x € X, € = 0 denote by

oT(x,€) = sup{|x(t) — x(s)|:t,s € [0, T], |t — s| < €}

Next, let us put
w'(X,e) = sup{w’ (x,€):x € X}
wl (X) = é%wT(X, €).
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It is known that w} is a measure of noncompactness in the Banach space C([0,T],R) of continuous and real-
valued functions defined on a closed and bounded interval [0, T] in R which is equivalent to Hausdroff or ball

measure on noncompactness in it. Now one has

1.

X0 = Z6F (0

For any bounded subset y of C([0, T], R) see Banas and Goebel [3] and the reference therein. We define
@, (X) = Lim wg (X)
Now, for a fixed number t € R, let us denote X(t) = {x(¢t): x € X},
IXOI = sup{lx()|:x € X}.
and
IX(@) = cll = sup{lx(t) — cl:x € X}.
Let us consider the function u defined on the family P, (X) by
sig (X) = max{wy,(X), lim,_,., sup diamX(t)},

Hp (X) = max{wo (X), limt—»oo Sup”X(t) ”}a
and He (X) = max{wo (X)’ limt—)oo Sup”X(t) - C”}
For any bounded subset X of BC(R,,R) define
0(X) = sup{limt_m sup(lx(t)l — x(t)) (X € X}.
Define the functions paq, Upa, Hea: Ppa (E) = Ry by

Haa (X) = max{p, (X),6(X)} 22
tpa (X) = max{u, (X), 5(X)} 23
teqa (X) = max{p (X)), 5(X)} 2.4

forall X € P, (E)
It can be shown as in Banas[4] that the functions u,, pp He Haq, Hpaandi.y are measures of noncompactness
in the spaceBC(R4,R). The kery, keru,andkerp, of the measures u, pandp, consist of non empty and
bounded subsets X are locally equicontinuous on R .

In order to introduce further concepts used in this article, let us assume that E = BC(R,, R) and let 2
be a subset of X. Let Q: E — E be a operator and consider the following operator equation in E,
Qx(t) = x(t) 2.5

Forall t € R,. Below we give different characterizations of the solutions for the operator (2.5) on R,.

Definition:2.5. We say that solutions of equation (2.5) are locally attractive if there exists a closed ball
3, (x,) in space BC(R,,R) for some x, € BC(R,,R) such that for arbitrary solutions x = x(t) and y = y(t)
of equation (2.5) belonging to %, (x,) N £. we have
lim, _,(x(©) —y(©)) =0 2.6

In the case when the limit (2.3) is uniform with respect to the set %,(x,) N2 1i.e. when for each € >
0,3T > 0 such that
[x(®) —y@)| <€ 2.7
for all x,y € %’T (x,) N2 Dbeing solutions of (2.1) and fort > T, we will say that solutions of (2.5) are
uniformly locally attractive onR .
Definition:2.6. The solution x = x(t) of equation (2.5) is said to be globally attractive if (2.7) holds for each
solutiony = y(t) of (2.5) on £2. In the case when the condition (2.9) is satisfied uniformly with respect to the
setf2 i.e. if for every € > 0,3T > 0 such that the inequality (2.7) is satisfied for all x,y € £ being the solution
of (2.5) and
t > T, we will say that solutions of the equation (2.5) are uniformly globally attractive onR .

The following definitions appear in Dhage[2]
Definition:2.7. A line y(t) = ¢ where ¢ a real number is called a attractor for a solutionx € BC(R,,R) to the
equation (2.5) if lim,_.(x(t) —c) = 0. In such case the solution x to the equation (2.6) is called to be
asymptotic to the line (#) = ¢ and the line is asymptote for the solution.t on R,.
Let us mention that the concepts of global attractivity of solutions are recently introduced in Hu and Yan[7]
while the concepts of local and global asymptotic attractivity have been presented in Dhage[2]. Similarly, the
concepts of uniform local and global attractivity were introduced in Banas and Rzepka[5].

Next we introduce the new concept of local and global asymptotic positivity of solution for
equation2.5) in 2 (R, R).
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Definition:2.8. A solutionr of equation (2.5) is called locally ultimately positive if there exist a closed ball
B, (x,) in BC (Ry,R) for some x € AC (R4, R) such that ¥ € &, (x,) and

When for each € > 0,37 > 0 such that
[lr () -x()|<e 2.9

For all » being solutions of (2.5) and for # = 7', we will say that solutions of equations (2.5) are uniformly
locally ultimately positive on R .

Definition:2.9: A solution .+ € (R, R) of equation (2.5) is called globally ultimately positive if equation
(2.9) is satisfied. In this case when the limit (2.8) is uniform with respective to the solution set of the operator
equation (2.5) in (R4, R). i.e. when for each € > 0,37 > 0 such that (2.9) is satisfied for all .r being
solutions of equations of (2.5) and for # > 7", we will say that solutions of equations (2.5) are uniformly
globally ultimately positive on R, In the following section we prove the main results of this article.

Attrctivity And Positivity Solution:-
Let R be the real line and let R, be the set of non negative real numbers. Consider the functional differential
equation (in short FDE)

74 x(2) _

ar [f(t,x(a([))) _‘g(t'x(}/(t ))) 31

for £ €R,, where /"R, XxR->R,g:R;, XxR—>R,and «,y:R, = R,.

By a solution of the FDE (3.1) we mean a function in (R, R) that satisfies the equation (3.1), where

C (R4, R) is the space of continuous real-valued functions defined on R,. For # € R, the FDE (3.1) reduces
to the functional integral equation (in short FIE)

2(e)=g()+f (2, 2(a(@))+ [/ g (¢, 2(w(s))) & 3.2

where :R, - R, /R, - R,.

The type of integral equation (3.2) has been studied in Dhage[3] and references given therein. For global
attractivity of solutions via classical hybrid fixed point theory observe that the type of above integral equation
(3.2) includes several classes of functional, integral and functional integral equations considered in the
literature (cf[1,4,5,6,7] and references therein). Let us also mention that the following type of functional
integral equation considerd in Banas and Dhage[6],

x(z‘)=f(z‘,;r(a(z‘)))+ff(t)y(z‘,5,x(a)($)))df 3.3
is also special case of the equation (3.2) which further includes the functional integral equation considered in
Banas and Rzepk[5] where @ (¢) = £(¢) = y(¢),¢ € R,. Therefore FIE(3.2) means FDE(3.1) is more
general and so the attractivity and positivity of this paper include the attractivity and positivity results for all
the above mentioned integral equations which are also new to the literature.
The equation (3.2) will be considered under the following assumptions.
(A¢) The functions @, £, y: R, — R, are continuous and satisfy £ < @ (¢) for £ € R,.
(A}) The function ¢:R, — R is continuous and bounded.
(A,) The function /:R, X R = R is continuous and there exists a bounded function
£: R, — R with bound L and a positive constant M such that
(¢ )max {|lx -y}
) = f e S
for # € R, and for x, y € R. Moreover, we assume that Z < /.
(A3) The function £ - £ (¢, 0) is bounded on R, with /'y = sz {|f(2,0)|: ¢ € R}
(A4) The function g: R, X R X R — R is continuous and there exists a continuous
function 4:Ry X Ry » Ry suchthat |g(z,5,x)| < 46(¢,s5)forz,s €ER,.

Moreover, we assume that 277z, ff(t) b(¢,s)ds =0.
Remark.3.1: Hypothesis (A,) is satisfied if the function and satisfied the condition,

VF(2,x) = f(¢,p)| <] 34

= 2MF|xr—p|
forall # € R, and x, ¥ € R, where Z < A4/ and the function £ is defined as in hypothesis (A,) which further
yields the usual Lipschitz condition on the function /,

f(,2) = f(, I <52 1r =y 35
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for all # € R, and x,y € R provided Z < A Our hypothesis (A;) is more general that existing in the
literature.

We will proceed for our main results.
Theorem:3.1: Under the above assumptions (Ag)- (A4), FDE (3.1) has at least one solution in the space
BC (R, R). Moreover, solutions of the equation FDE (3.1) are globally uniformly attractive on R,.
Proof: Consider the operator @defined on the space A (R, R) be the formula

or () =qg(x) +/(t,x(a(z‘))) + foﬂ([)g (z‘,s,r(a(s))) ds 3.6
Observe that for any ¥ € A (R, R) the function ¢ is continuous on R . Moreover for any fixed # € R
we obtain

L)
|0,1/(t)|Slq(r)|+|f(t,x(a(z‘)))|+J- |g(t,$,z(a(s)))|df
‘ £(t)
< Iyl +|f (2, 2(a@)) = @0+ @01+ [ b05)E
0
£)
{|x ()]}
<llgll+ e {|I(6r(z‘))|}+|f(t'0)|+bf 5, 5)ds
Lzl
<Nl + 5+ ot 2 ()
<lgll+——— e +Fy+V

M+ x|
where v (¢) = foﬁ(t)b(t,s)ds‘ ,V=spp {v(¢£):¢ €R,}is finite by (Ay).
From the above estimate we deduce that
el <lgll+2+#+ vV 37
for all x € BC(R,,R). This means that the operator ¢ transforms the space AC (R,,R) into itself from (3.7) the
operator ¢ transforms continuously the space 2 (R, R) into the closed ball &,.(0), where 7 = ||g || + £ + £, +
V. Because of this fact, the existence of solutions for the FDE (3.1) is global in nature.

We will consider the operator ¢ as a mapping from 2, (0) into itself. New we show that the operator ¢ is
continuous on the ball &, (0). Let € > 0 and take v, ¥ € %, (0) such that ||.x — y|| < £. Then we get

e () - (N < |/ (e, 2(a@)) - /F(2,7(a2)))

£(&)
+j |.9(l‘,5,f(¢(5)))—g(t,s,y(a(s)))|dy
e {|x(a@) =y} T
3t e (e ) O f lo(esrtan)+lo (e tan)l| @
£(¢)
Ll =all

< +2J o(t,s)ds
ARSI,

<e+2v().
Hence, in virtue of assumption (A4) we infer that there exists 77 > 0 such that # (¢ ) < € for £ = 7. Thus for £ = 7
from (3.3) we derive that

logr (¢)— oy (¢)| <3¢ 3.8
Further let us assume that # € [0, 7] then evaluating similarity s above we get
£@&)
lgr (¢)—y ()| <€+ f |g (z‘,s,;r(a(s))) - g (z‘,s,y(a(s)))| s
0
£(2)

<e+ J @ (g, e)ds

0
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<epfrwl(g,€)

Where g, = sip {F(¢):¢ €0, 7]} and
3.10 w;@'é-) = sip {ly(tf‘f"r) _ﬂ(f'5'7)|5f € [O,T],S € [OJ/ET]:X:.V € [—r,r],lﬂf _.yl < E}
Obviously we have that £, < oo. Moreover from the uniform continuity of the function g (#,s,.x) on the set
[0, 7] % [0,£ ] X [=7,7]. we derive that @/ (g,€) = 0 ase — 0. Now from (3.9),(3,10) and above established
facts we conclude that the operator ¢ maps continuously the closed ball %, (0) into itself.

Further on let us take nonempty subset X" of the ball %,.(0). Next 7> 0 and € > 0, let us choose x € X and
£,,2,€[0,7] with |2, — #,| < €. Without loss of generality we may assume that #,; < £,. Then taking into
account our assumptions, we get

(@ )2 ) = (@) e DI lge) = gDl +|/ (222 (a(e ) - (21,2 (a2 )

£(t2) £(z2)
+ f g(tz,s,x(a(s)))df —J. g(z‘l,s,x(a/(y)))df
0 0
£(¢2)
+ fg(tl,s,x(a(s)))df
A1) ’

- f g(z‘ l,s,x(a'(s)))ds‘

: Lmar {|x(a(27)) = x(a(z)]}

/I/+(77fbl” {lx(a(z)) - x(a(z D)}
A

+ J |ﬂ (t 1.5,)((6?(5))) _ﬂ(“2'5"f(”(’")))| @

0

<o’ (g,6)+ +wl(f,€)

A7)
+ f |g(t,5,,r(a(s)))|ds‘

£ 1)
v | (20" @)} sr 7 r .
e ([ (e @) + wl(f, )+ fo wl(g,e)ds + o’ (F, )67 3.11

Wherew;(?ﬂf):w {lq(tZ)_q(tl)ltlitZE [OIT]Jll.l _l'zl Sé—}
Wl (f, €)= sy {|f(z‘2,x)—f(t1,x)|:z‘1,z‘2 €0, 7], — ¢, <e,x,y€ [—r,r]}
7 _ |g(l‘2,s,1)—g(l‘l,s,x)hl‘l,l‘zE[O,T],|t1—t2|S€,}
o) =ap | sel0,p)ry€l-rr]

;'zw {lg([l-y:'r)l[E[OJT]NS'E[Oiﬁr]l're[_rir]}
from the above estimate we derive the following

Lmax [la/r(;r,alr(ﬂ,f))“
M+ max {|a}7(x,a}7(a,5))|}
Observe that w’ (g,€) = 0, w7 (f,€) > 0 and @’ (g,€) - 0 as € — 0, which is a simple consequence of the
uniform continuity of the functions ¢, /, ¢ on the set [0, 77],

[0,7] % [=7,7] and [0, 7] X [0, £ ] X [—7, 7] respectively. Moreover it is obvious that the constant &7 is finite
and @’ (a,€) = 0,w” (F,€) = 0as € — 0. Thus linking the established facts with the estimate (3.12) we get,

7 La{ (D)
wy (Qr ) < Tl D 3.13

Now, taking into account our assumptions, for fixed # € R, and for &, » € X we deduce the following
Lmar {|x(a(2))—y(a(®))|}
lgr (¢) -y (£)] <
el = = S [ (@) — ()]}
£(£)

[ llo(ersxGen)+|o (e sG]«

<o’ (g,e)+

" Qx,e) < (g,€)+ + Wl (f,€)+ foﬁrwf(g,f)dy + &7 (F, )G 3.12
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tmr {|x(a()) - y(a(®)]}

T M+ max {|x(a(2)) - y(a(2))|}
e {diam¥ (a(2))}

= Ut (dank (a(2)))

+2v(2)

+2v(2)
Hence we obtain
Lmax {tﬁa m/I’(a(t ))}

din ()< S e (ot (a(2)))

+2v(2)

In view of assumptions (A4,) and (A4,) yields
L/i"m Ssup mcaf{tﬁwm’ (a/(t))}
lim aaim w)(2) < =
e (@r)(@) M+ lim sy max {dz’cmz X(a/(z‘))}

t >0

Lhm g st dian¥  (¢)
< - . 3.14

Mylim ¢ g sup  diamX  (2)
Further using the measure of noncompactness # , defined by the (2.2) and keeping in mind the estimate (3.13) and
(3.14), we get

(@) = max {w(@0), lin s diamgk  (¢)}
£ wy(¥) Z /1[77_{00 sup  dionX  (t)
< max ) - -
M+ wy(X) M+ %@w s dian¥ ()

tmar {wy(X), lm s diam@k  (2)}
< >0
w4 e (D, lm s damgk (2)}

— Lt q(X)
M+/1a(/y) y
Since Z < Mby of assumption (A4,) from the above estimate, # ,(@2F) < ¢(/lg(/l’)) where #(7) = # < 7 for

7 > 0. Hence we yield theorem (2.1) to deduce that the operator ¢ has a fixed point .x in the ball %, (0). Obviously
x is solution of the FIE (3.2) means solution of FDE (3.1). Moreover taking into account that the image of the space
BC (R, R) under the operator ¢is contained in the ball ,.(0) we infer that the set Fix(¢) of all fixed points of @is
contained in 2, (0). Obviously, the set Fix(¢) of all contains all solutions of the FIE (3.2) means FDE (3.1). From
remark (2.1) the set Fix(¢) belongs to the family kerx ,. Now, taking into account the description of sets belonging
to keru , we deduce that all solutions for the FIE(3.2) are globally uniformly attractive on R, . This completes the
proof.

3.15

Remark:3.2: When ¢ =0, /(£,x) and g(¢,s,.x) in our theorem 3.1 we obtain the global attractivity result for the
FDE(3.1). Note that the global attractivity result for (3.3) is also proved in Banas and Dhage[6] under the same
hypothesis, but under the stronger hypothesis of (4,)that/ < A/ Therefore, our theorem 3.1 generalize and improve
the existence results of Dhage[3] and Banas and Dhage[6] and thereby the results of Banas and Rezpka[5] under
weaker conditions with a new measure of noncompactness in the Banach space £ (R, R).

To prove next result concerning the asymptotic positivity of the attractive solution we need the following
hypothesis in the sequel.
(A4s) The functions ¢ and / satisfy
bm  ,_Wllg(2)—g(2)=0and lon ,_ [/ (¢, x)|— fF(£,x)] =0forall ¥ € R,.

Theorem:3.2: Under the hypotheses of theorem 3.1 and (45), the FDE (3.1) has at least one
solution on R . Moreover, solutions of the FDE(3.1) are uniformly globally attractive and ultimately positive on R.
Proof: Consider the closed ball %, (0) in the Banach space £ (R,,R), where the real number 7 is given as in the
proof of theorem 3.1 and define a mapping ¢: 2 (R, R) = £AC (R, R) by (3.7). Then it is shown as in the proof of
theorem 3.1that ¢ defines a continuous mapping from the space £ (R4, R) into ball%,.(0). In particular, ¢maps
#,(0) into itself. Next we show that ¢ is a nonlinear-set-contraction with respective to the measure #,, of
noncompactness in Banach space £ (R, R). We know that for any .+ € R.

Now for any x € &, (0), one has

llor (1= e (O] < ll7 (@] = )| + || (2,4 (2@))| - £ (¢.,2(2)))|
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L)

+ f Hg (t,s,x(;/(s)))l —g(t,s,x(}/(s)))] s
<llg1= @] +||F (¢.2(@@))| - £ (2.2 (a@)))|+ 20D,

Taking the limit supremum over t, we have
bm s |lor ()| - ¢ (2)]

sip ||f(t,,r(a(z‘)))| —f(t,x(a'(z‘)))|

<lm s |lg()|—q(&)|+ lm ,
£oe Lo +2/§77_zmszgn v(t)
=0
for all x € %, (0). This implies thatd'(¢x ) =0 for all subsets X of 2, (0). Further, using the measure of
noncompactness # , defined by the formula (2.2) and keeping in mind the estimates (3.13) and (3.14), we obtain
Har (QX) = max {u 0 (OX), 5(0r )}
Lp,(X)

< (5 )
L a(D)

T Mt u,(X)
Ltz (X)

T M (X)
Since Z < Min view of assumption (A4,), from the above estimate we infer that x# ., (F) < ¢(//w/ (/I’)), where

p(r) = % < 7 for » > 0. Hence we apply theorem 2.2 to deduce that the operator ¢ has a fixed point v in the

ball %, (0). Obviously x is a solution of the FDE (3.1). Moreover, taking into account that the image of the space
BC (R,,R) under the operator ¢ is contained in the ball %, (0) we infer that the set ZZr (Q) of all fixed points of
@ is contained in %, (0). Obviously, the set ZZr (¢) contains all solutions of all the equation (3.1). On the other
hand, from remark 2.1 we conclude that the set ZZr () belongs to the family 4e x,, we deduce that all
solutions of the equation (3.1) are uniformly globally attractive and positive on R . This completes the Proof.
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