

Journal Homepage: - www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

Article DOI: 10.21474/IJAR01/22504
DOI URL: <http://dx.doi.org/10.21474/IJAR01/22504>

RESEARCH ARTICLE

POLLUTION AND HEALTH RISKS RELATED TO HEAVY METAL CONTAMINATION OF WATER RESOURCES IN THE KOKO RIVER WATERSHED IN THE CITY OF KORHOGO (NORTH OF COTE D'IVOIRE)

Toe-Bi Kahou Katel Kizito^{1,2}, Kpan Oulaijean-Gautier^{2,1}, Koffi Yao Honore^{2,1}, Gnamba Franck Maxime^{2,1}
and Digbehi Zeli Bruno^{1,2}

1. Department of Geosciences, Training Unit and Research of Biological Sciences, University Peleforo GON COULIBALY-Korhogo, BP 1328 Korhogo (Cote d'Ivoire).
2. Laboratory of Geosciences of Sedimentary Environments and Energies, Training Unit and Research of Earth Sciences and Mineral Resources. University Felix Houphouët-Boigny of Abidjan-Cocody, 22 BP 582 Abidjan 22 (Cote d'Ivoire).

Manuscript Info

Manuscript History

Received: 16 October 2025

Final Accepted: 18 November 2025

Published: December 2025

Key words:-

Trace metals, Pollution assessment, Risk assessment, Surface waters.

Abstract

The present study aimed to evaluate the distribution of Hg, As, Cd, Cr, Cu, Ni, Pb and Zn as well as the health risks in surface water in northern Cote d'Ivoire. The pollution of the waters was determined by pollution indices. The human health risks were assessed using non carcinogenic and carcinogenic risks indices. In surface waters, concentrations of trace metals (Hg, As, Cd, Cr, Cu, Ni, and Zn) in groundwater respected the guideline values. However, the total concentrations of Pb in surface waters exceeded the guideline values. The pollution indices HPI, HEI, and WQI revealed very low pollution in the surface waters. The total non-carcinogenic risk values for Hg, As, Cd, Cr, Cu, and Ni in surface waters varied from 1.02×10^{-3} to 8.22×10^{-1} , indicating low adverse on human health effects. In contrast, the total non-carcinogenic risk values for Pb and Zn suggest adverse on human health effects. The total carcinogenic risk (CR) values for Ni, Cd, and Cr in all surface waters varied from 3.11×10^{-4} to 2.36×10^{-1} for children. Concerning adults, these values ranged between 1.88×10^{-3} and 4.80×10^{-2} for Ni and Cr. These results indicate that possible carcinogenic effects may occur for humans exposed to these waters. The values of CRing (carcinogenic risk by ingestion) of Pb vary between 1.93×10^{-3} and 10^{-2} , showed potentially significant carcinogenic effects for all surface waters. However, the CRing values for As for children and Cd for adults indicate possible carcinogenic effects by ingestion for these two metals. Therefore, it is essential to treat water to remove trace metals before any domestic or agricultural use.

"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed with credit to the author."

Corresponding Author:- Toe-Bi Kahou Katel Kizito

Address:- 1. Department of Geosciences, Training Unit and Research of Biological Sciences, University Peleforo GON COULIBALY-Korhogo, BP 1328 Korhogo (Cote d'Ivoire). 2. Laboratory of Geosciences of Sedimentary Environments and Energies, Training Unit and Research of Earth Sciences and Mineral Resources. University Felix Houphouët-Boigny of Abidjan-Cocody, 22 BP 582 Abidjan 22 (Cote d'Ivoire).

Introduction:-

The town of Korhogo (Figure.1) located in the Poro region (northern Côte d'Ivoire) is experiencing industrial, tourist and agricultural development, which is increasing the pressure on water resources already threatened by climate change. The KOKO river is affected by this economic dynamic. The massive and sustainable intensification of urban agriculture poses a several challenges for the quality of the river water resources. The use of chemical and biological inputs as well as maintenance chemicals (pesticides) in this type of agricultural practice pollutes surface water (1). The development of urban agriculture may compromise, in the long term, the availability of potable water. In addition, the entire northern zone has become in recent years the cradle of many illegal gold miners from here and the sub-region who extract minerals through artisanal mining practices (gold, diamonds, etc.). This exposes water resources to various metallic pollutions resulting from mining activities. Generally, these metal pollutants end up in runoff water, which contaminates surface water and groundwater, ending up in the food chain with all the harmful consequences this represents for our health (2,3). Surface waters are known to be the ultimate reservoirs of heavy metals released into the environment (4).

However, in this city, the drinking water supply relies mainly on surface water reservoirs. It is in this perspective that the Koko dam has been the subject of many. The studies (5) showed that the metal elements analyzed do not present a risk of toxicity for consumers, according to the guidelines (6). Conversely, studies (7) showed that the KOKO dam is polluted by trace metal elements (Lead and Zinc). This dam is fed by four water sources in addition to rainwater. To date, no study on the evolution of metals in these effluents has been carried out to diagnose their pollution and their impacts on humans. Although no outbreaks of illness attributable to heavy metal poisoning have been reported in the city, it is known that increased concentrations of heavy metals in drinking water can cause immediate and chronic health problems for residents (8). The common approach to evaluate health risks consists of directly compare the values determined with the permissible limits. This system, although acceptable, does not correctly represent the levels of danger and does not allow differentiation of the risk agents of greatest concern (9). By assessing the potential risk involved, it is possible to estimate the likely health consequences of many pollutants present in an environment (10). Thus, the objective of the study is to assess pollution by heavy metals and the health risks linked to exposure to pollutants from water samples collected inside and around the KOKO river, in the town of Korhogo,

Materials and Methods:-**Description of the Study Area:-**

The KOKO river is located in the Koko district of the city of Korhogo in northern Côte d'Ivoire. The city has two climates: hot and humid. The year is divided into two main seasons: the rainy season (May to October), with average precipitation of 1300 to 1400 mm per year, and the dry season (November to April), with average annual temperatures of 20°C and 37°C (8). The dam is located between longitudes 5°38'45" W and latitudes 9°28'05"N (Figure.1). It has an area of 62 hectares (9). Four streams dissect the plateau on which the basin of this body of water is located. They constitute canals for collecting rainwater runoff and wastewater from commercial and domestic activities. We have a canal to the south (the Koko district), to the west another marks the boundary between Mongaha and Koko. We also have a canal to the north (between the Sonzoribougou and Mongaha district) and finally, still to the north, an artificial stream created by the inhabitants to facilitate the passage of their wastewater (9).

Sampling Methods:-

The water sampling was carried out in July 2019 from the tributaries and within the KOKO river. Preliminary measures have been taken in accordance with standard guidelines (10) to avoid contamination. Surface waters were sampled with a Niskin bottle (5 L) at 15 cm depth. To prevent metal precipitation, water samples were acidified with 1 mL of nitric acid (65% suprapur, E. Merck, Germany) and stored at 4°C until analysis(11).

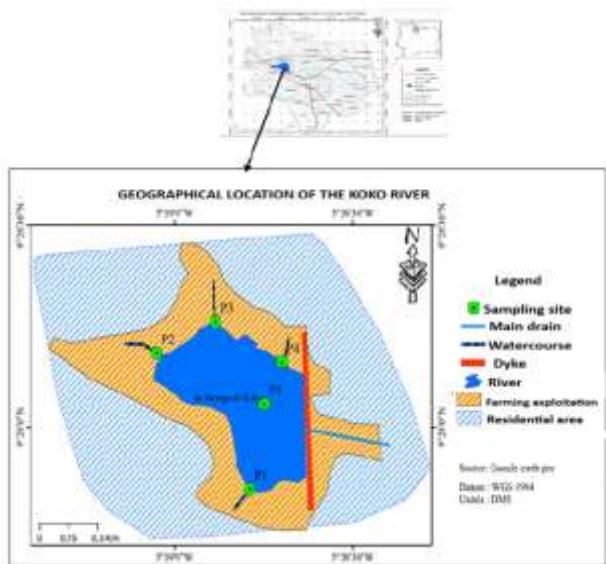


Figure 1: Geographic location of the study area

Assessment of the degree of metal contamination in surface water:-

Standard solutions were prepared for calibration, and the total concentrations of Hg, As, Cd, Cr, Cu, Ni, Pb, and Zn in the samples were determined using an atomic absorption spectrophotometer HACH DR 6000. The determination of heavy metals were applied in accordance with standard guidelines (12). The detection limit for trace metals were 0.0001 ppm for Cd and As, 0.0005 mg/L for Hg and Pb, 0.001 ppm for Cu and Ni, and finally 0.005 mg/L for Zn.

Assessment of the pollution level:-

Metal Pollution Index:-

The heavy metal pollution index (HPI) is an index proposed by (13). The index is a global indicator used to assess the level of contamination of water (surface or groundwater) by many heavy metals simultaneously. It is used by many authors (12; 13) in the context of their studies to evaluate the metal pollution of surface waters. This method is based on weighted arithmetic quality. HPI is calculated from equation below :

$$HPI = \frac{\sum_{i=0}^n Q_i * W_i}{\sum_{i=0}^n W_i} \quad \text{Equation 1}$$

$$W_i = \frac{k}{S_i} \quad \text{Equation 2}$$

$$Q_i = \left(\frac{V_i}{S_i} \right) * 100 \quad \text{Equation 3}$$

Qi is the sub-index for ith trace metal. The unit weighting of ith metal is defined by wi. n is the number of metals analysed. Vi was the determined concentration of the pollutant i. K is the proportionality constant which is equal to 1, while Si is the standard value of the parameter (as a reference the limit established by (6)).

The pollution risk based on the HPI value can be classified into three categories. HPI < 100 indicates low pollution of heavy metal. HPI = 100 indicates that harmful health effects are probable. HPI > 100 suggests that the water is not suitable for drinking (14).

Heavy Metal Evaluation Index (HEI):-

The HEI is an indicator used to assess the overall quality of an aquatic environment (surface water, groundwater, etc.) based on the presence of heavy metals. It is used to determine whether the cumulative concentration of many metals exceeds the limit values established by reference organizations (6). The HEI index is calculated as follows (14, 15).

$$HEI = \sum_{i=1}^n \frac{C_i}{H_{MAC_i}} \quad \text{Equation 4}$$

Where C_i is the measured concentration of the i th heavy metal. MAC_i is the maximum admissible concentration of metal i . The HEI value below 10 indicates low pollution level. The water is moderately polluted when HEI is between 10 and 20. HEI higher than 20 indicates high pollution level (14).

Water Quality Indices (WQI):-

The water quality index (WQI) was proposed by (16) with the following equation: Where C_i was the determined value of i th parameter. S_i was the standard value according to WHO.

$$IQE = \sum (PR_i \times C_i / S_i \times 100) \quad \text{Equation 5}$$

$$PR_i = P_{ui} / \sum P_{ui} \quad \text{Equation 6}$$

Where :

PR_i and P_{ui} : PR_i and P_{ui} were the relative weight and the weight attributed to the element i , respectively.

C_i : Concentration of element i

S_i : was the standard value according to WHO

WQI value below 50 indicates excellent quality; water quality is good when $50 \leq WQI < 1$; when $100 \leq WQI < 200$, water quality is poor; if $200 \leq WQI < 300$, water quality is very poor; $WQI \geq 300$ indicates that water is not drinkable (17; 18).

Health Risk Assessment:-

This study used the CDI to calculate the non-carcinogenic and carcinogenic risks associated with ingestion and dermal exposure to trace elements present in water samples (19, 20).

$$CDI_{ing} = \frac{C_i \times IR \times EF \times ED}{BW \times AT_{nc}} \quad \text{Equation 7}$$

$$CDI_{der} = \frac{C_i \times SA \times K_p \times ET \times EF \times ED \times CF}{BW \times AT_{nc}} \quad \text{Equation 8}$$

Where CDI_{ing} ($\mu\text{g}/\text{Kg} \cdot \text{day}$) indicates the chronic daily intake through ingestion. CDI_{der} ($\mu\text{g}/\text{Kg} \cdot \text{day}$) expresses the chronic daily intake through dermal contact.

Non-carcinogenic risks:-

The hazard quotient (HQ) was used to assess the non carcinogenic risk. The hazard index (HI) expresses the total non-carcinogenic risk. HI is computed as follows (21)

$$HQ_{ing} = \frac{CDI_{ing}}{RFD_{ing}} \quad \text{Equation 9}$$

$$HQ_{der} = \frac{CDI_{der}}{RFD_{der}} \quad \text{Equation 10}$$

$$RFD_{der} = RFD_{ing} \times ABS_g \quad \text{Equation 11}$$

$$HI = \Sigma (HQ_{ing} + HQ_{der}) \quad \text{Equation 12}$$

The HI value below 1 indicates low adverse effects. When $HI \geq 1$, adverse effects can occur on human health (21).

Carcinogenic risks:-

Trace metals AS, Cd, Cr, Ni et Pb were used to assess the carcinogenic risk. The carcinogenic risk is calculated as follows (22, 23) :

$$CR_{ing} = CDI_{ing} \times SF_{ing} \quad \text{Equation 13}$$

$$CR_{der} = CDI_{der} \times SF_{der} \quad \text{Equation 14}$$

Where SF represents the carcinogenicity factor. The dermal carcinogenicity factor is calculated using the following formula:

The total carcinogenic risk is determined by the equation:

$$SF_{der} = \frac{SF_{ing}}{ABS_g} \quad \text{Equation 15}$$

$$CR = \sum (CR_{ing} + CR_{der}) \quad \text{Equation 16}$$

The range of acceptable carcinogenic risk is 10^{-6} to 10^{-4} . CR value $\leq 10^{-6}$ indicates no significant risk. When CR value $\geq 10^{-4}$, humans can develop a cancer (22). The other exposure parameters were reported in Table 1.

Table 1 :Exposure assessment parameters.

Parameter	Meaning	Adult	Child	Unit	References
IR	Ingestion rate	2,2	1	L/jour	(23)
EF	Exposure frequency	365	365	Jour/an	(23)
ED	Exposure duration	30	10	An	(22)
BW	Body weight	70	15	Kg	(23)
AT _{nc}	Average time for non-carcinogenic	DE x 365=25550	DE x 365= 3650		(25)
AT _c	Average time for carcinogenic	EDV x 365=21170 365=21170	EDV x 365=21170		(25)
SA	Skin-surface area	5700	2800	Cm ²	(23)
K _p	Permeability coefficient	As, Hg, Cu, et Cd :0,001 Cr :0,002 ; Ni :0,0002 ; Zn, Pb : 0,0001		Cm /h	(23)
ET	Exposure time	0,58	1	h/jour	(23).
CF	Conversion factor	0,001			(23)
RfD _{ing}	Reference dose of heavy metals through ingestion	As et Hg :0,3 ; Pb: 0,001 ; Zn: 0,0006 ; Cd :0,5 ; Cr :3, Ni :20 ; Cu : 20		µg/Kg/Jour	(23)
S _{ing}	Slop factor of metal through ingestion	Cd : 0,38 ; Ni :0,91 ; Cr : 0,42, As : 0,0015 ; Pb : 0,0085		µg /Kg/Jour	(23)
ABS _g	Gastrointestinal absorption factor	As :1,5 et Cu :1 ; Hg : 0,07 ; Cd : 0,05 ; Ni :0,04 ; Cr : 0,025 ; Pb : 0,3 ; Zn : 0,02			(24)

Results and Discussion:-

Characteristics of trace metal elements in water:-

The distributions of total concentrations of Hg, As, Cd, Cr, Cu, Ni, Pb, and Zn in the tributaries and the Koko River are shown in Table 2. Hg concentrations varied between 0,37 and 0,11 µg/L. The Hg values were more concentrated of 0,37 µg/L, 0,31 µg/L, 0,27 µg/L, 0,24 µg/L, and 0,11 µg/L, in the river and tributaries 1, 4, 2, and 3, respectively. As concentrations varied between 0,9 µg/L and 3,69 µg/L. The values were 0,9 µg/L in tributary 1 ; 1,5 in tributary 3 ; 2,43 µg/L in tributary 4 ; 2,68 in the river, and 3,69 µg/L in tributary 2. As shown in Table 1, Cd concentrations varied between 0,19 and 0,40 µg/L. Cd concentrations were 0,219 µg/L; 0,258 µg/L; 0,304 µg/L; 0,322 µg/L, and 0,40 µg/L in tributaries 2, 4, 3, the river, and tributary 1, respectively. Concentrations of Cr varied between 1,16 µg/L to 4,61 µg/L. The values were 1,16 µg/L in tributary 1; 1,81 µg/L in tributary 3; 2,77 µg/L in tributary 2; 4,15 µg/L in tributary 4; and 4,61 µg/L in the river. Cu Concentrations varied between 2,57 and 4,81 µg/L. The values

Cu were 2.57 µg/L, 3.03 µg/L, 3.77 µg/L, 4.21 µg/L, and 4.81 µg/L in tributaries 1, 3, 2, the river, and tributary 4, respectively. Trace metal Nickel concentrations varied between 1.42 and 3.89 mg/L. Concentrations were 1.42 µg/L, 2.18 µg/L, 2.83 µg/L, 3.37 µg/L, and 3.89 µg/L in tributaries 1, 3, 2, 4, and the river, respectively. Trace metal Pb concentrations varied between 16.90 µg/L to 25.2 µg/L. The values were 22.1 µg/L in tributary 1; 25.2 µg/L in tributary 3; 16.90 µg/L in tributary 2; 24.5 µg/L in tributary 4; and 17.7 µg/L in the river. Zn concentrations varied between 15.21 µg/L and 43.11 µg/L. The values were 15.21 µg/L in tributary 1, 19.67 µg/L in tributary 3, 39.41 µg/L in tributary 4, 43.11 µg/L in the river, and 28.44 µg/L in tributary 2. The trace metal concentrations measured in the tributaries and River varied between 0.11 and 43.11 µg/L. These values generally respect the standards recommended by (6), with the exception of Pb, which has high values in the sampling areas. These results corroborate those of (7), which had demonstrated a particularly high concentration of Pb in the water of the Koko River. The high concentrations of Pb observed could be attributed to significant anthropogenic pressure on the city of Korhogo, particularly due to agricultural, and agro-industrial activities (26). (27) have reported that vehicular exhausts from leaded gasoline are a source of Pb in the environment. Therefore, proximity of the study area to the road, may also explain the high concentration of Pb. Pesticides and fertilizers used on surrounding farms contain heavy metals (Cd, Hg, Pb, Al, As, Cr, Cu, Mn, Ni et Zn etc.). These heavy metals may be introduced into the river through natural processes. (28, 29, 30). According to (31), their persistence in the environment (water, soil, air) can lead to the accumulation of these molecules in the food chain. Surface water pollution is influenced by anthropogenic activities (32).

Table 2. Concentrations of trace metals (µg/L) in the tributaries and the KOKO River.

Stations	Hg(µg/L)	AS(µg/L)	Cd(µg/L)	Cr(µg/L)	Cu(µg/L)	Ni(µg/L)	Pb(µg/L)	Zn(µg/L)
River	0.37	2.68	0.322	4.61	4.21	3.89	17.7	43.11
Tributary 1	0.31	0.9	0.40	1.16	2.57	1.42	22.1	15.21
Tributary 2	0.24	3.69	0.219	2.77	3.77	2.83	16.90	28.44
Tributary 3	0.11	1.5	0.304	1.81	3.03	2.18	25.2	19.67
Tributary 4	0.27	2.43	0.258	4.15	4.81	3.37	24.5	39.41

Pollution indices and water quality assessment:-

The pollution indices HPI, HEI, and WQI values are shown in Table 3. The HPI values obtained in tributaries 1, 2, 3, 4, and the river are 57.50 ; 52.50 ; 65.01 ; 67.49 and 34.32, respectively. According to the HPI scale, the HPI values obtained in surface waters indicate low pollution of heavy metal. The HEI values in tributaries 1, 2, 3, 4, and the river are 2.62 ; 2.36 ; 2.90 ; 3.06 and 2.49, respectively, which indicated a low pollution. For the WQI, tributaries 1, 2, 3, 4, and the river have respective values of 38.6 ; 32.45 ; 41.48 ; 41.86, and 34.34. These results showed that the quality of the groundwater was excellent. Whatever the index, we noted that these values are significantly higher of tributaries 3 and 4. The high pollution level of surface waters may be due to Domestic wastewater and waste residues from agricultural activities discharge in the surface waters. Therefore, environmental management and reduced surface waters pollution by trace metals are highly crucial.

Table 3: values of WQI, HPI, and HEI.

Water	WQI	HPI	HEI
River	34.34	34.32	2.49
Tributary 1	38.60	57.50	2.64
Tributary 2	32.45	51.78	2.36
Tributary 3	41.48	65.01	2.90
Tributary 4	41.86	67.49	3.06

Health risk assessment:-

Assessment of non-carcinogenic risks in adults and children:-

The HQder, HQing, and HI values were reported in Table 4. The values of the HQder, HQing and HI indices of Hg, As, Cd, Cr, Cu and Ni were lower than 1 for adults and children in the various tributaries and the KOKO River. The results showed that these trace metals have no adverse effects on humans. However, the HQing, HQder, and HI values for Pb and Zn in all of these surface waters varied between 1.05 and 1.68×10^{-3} . the values were higher 1 for adults and children. All values suggested that adverse effects could occur on human health through ingestion or

dermal contact with these metals (Pb and Zn). According to (33), Pb was reported as a major contributor to non-carcinogenic risk. In this study, the values of HQing were higher than those of HQder. Tributaries 3 and 4 showed high HQing and HI index values compared to other surface waters. It can therefore be inferred that the population living around these surface waters could develop non-carcinogenic risks related to Pb and Zn through water ingestion. It is therefore important to prohibit this population to swim in these waters.

Table 4: Values of non-carcinogenic risk indices for dermal contact (HQder), ingestion (HQing), and total non-carcinogenic risk (HI) related to trace metals.

		Children								
Water	Indice	Hg (ug/L)	AS(ug/L)	Cd(ug/L)	Cr(ug/L)	Cu(ug/L)	Ni(ug/L)	Pb(ug/L)	Zn(ug/L)	
River	HQing	$8,22 \times 10^{-2}$	$5,97 \times 10^{-1}$	$4,29 \times 10^{-2}$	$1,02 \times 10^{-1}$	$1,40 \times 10^{-2}$	$1,30 \times 10^{-2}$	$1,18 \times 10^3$	$4,79 \times 10^3$	
	HQder	$3,29 \times 10^{-3}$	$1,11 \times 10^{-3}$	$2,40 \times 10^{-3}$	$2,29 \times 10^{-2}$	$3,93 \times 10^{-5}$	$1,82 \times 10^{-4}$	1,10	$6,71 \times 10^1$	
	HI	$8,55 \times 10^{-2}$	$5,98 \times 10^{-1}$	$4,53 \times 10^{-2}$	$1,25 \times 10^{-1}$	$1,41 \times 10^{-2}$	$1,31 \times 10^{-2}$	$1,18 \times 10^3$	$4,86 \times 10^3$	
Tributary 1	HQing	$7,00 \times 10^{-2}$	$2,00 \times 10^{-1}$	$6,00 \times 10^{-2}$	$2,58 \times 10^{-2}$	$8,57 \times 10^{-3}$	$4,73 \times 10^{-3}$	$1,47 \times 10^3$	$1,69 \times 10^3$	
	HQder	$2,76 \times 10^{-3}$	$3,73 \times 10^{-4}$	$2,99 \times 10^{-3}$	$5,77 \times 10^{-3}$	$2,40 \times 10^{-5}$	$6,63 \times 10^{-5}$	1,38	$2,37 \times 10^1$	
	HI	$7,28 \times 10^{-2}$	$2,00 \times 10^{-1}$	$6,30 \times 10^{-2}$	$3,16 \times 10^{-2}$	$8,59 \times 10^{-3}$	$4,80 \times 10^{-3}$	$1,47 \times 10^3$	$1,71 \times 10^3$	
Tributary 2	HQing	$5,30 \times 10^{-2}$	$8,20 \times 10^{-1}$	$3,00 \times 10^{-2}$	$6,16 \times 10^{-2}$	$1,26 \times 10^{-2}$	$9,43 \times 10^{-3}$	$1,13 \times 10^3$	$3,16 \times 10^3$	
	HQder	$2,13 \times 10^{-3}$	$1,53 \times 10^{-3}$	$1,64 \times 10^{-3}$	$1,38 \times 10^{-2}$	$3,52 \times 10^{-5}$	$1,32 \times 10^{-4}$	1,05	$4,42 \times 10^1$	
	HI	$5,51 \times 10^{-2}$	$8,22 \times 10^{-1}$	$3,16 \times 10^{-2}$	$7,53 \times 10^{-2}$	$1,26 \times 10^{-2}$	$9,57 \times 10^{-3}$	$1,13 \times 10^3$	$3,20 \times 10^3$	
Tributary 3	HQing	$2,00 \times 10^{-3}$	$3,30 \times 10^{-1}$	$4,00 \times 10^{-2}$	$4,02 \times 10^{-2}$	$1,01 \times 10^{-2}$	$7,27 \times 10^{-3}$	$1,68 \times 10^3$	$2,19 \times 10^3$	
	HQder	$9,78 \times 10^{-4}$	$6,22 \times 10^{-4}$	$2,27 \times 10^{-3}$	$9,01 \times 10^{-3}$	$2,83 \times 10^{-5}$	$1,02 \times 10^{-4}$	1,57	$3,06 \times 10^1$	
	HI	$2,98 \times 10^{-3}$	$3,31 \times 10^{-1}$	$4,23 \times 10^{-2}$	$4,92 \times 10^{-2}$	$1,01 \times 10^{-2}$	$7,37 \times 10^{-3}$	$1,68 \times 10^3$	$2,22 \times 10^3$	
Tributary 4	HQing	$6,00 \times 10^{-2}$	$5,40 \times 10^{-1}$	$3,40 \times 10^{-2}$	$9,22 \times 10^{-2}$	$1,60 \times 10^{-2}$	$1,12 \times 10^{-2}$	$1,63 \times 10^3$	$4,38 \times 10^3$	
	HQder	$2,40 \times 10^{-3}$	$1,01 \times 10^{-3}$	$1,93 \times 10^{-3}$	$2,07 \times 10^{-2}$	$4,49 \times 10^{-5}$	$1,57 \times 10^{-4}$	1,52	$6,13 \times 10^1$	
	HI	$6,24 \times 10^{-2}$	$5,41 \times 10^{-1}$	$3,59 \times 10^{-2}$	$1,13 \times 10^{-1}$	$1,61 \times 10^{-2}$	$1,14 \times 10^{-2}$	$1,63 \times 10^3$	$4,44 \times 10^3$	
		Adults								
		Hg (ug/L)	AS (ug/L)	Cd(ug/L)	Cr(ug/L)	Cu(ug/L)	Ni(ug/L)	Pb(ug/L)	Zn(ug/L)	
River	HQing	$1,67 \times 10^{-2}$	$1,20 \times 10^{-1}$	$8,67 \times 10^{-3}$	$2,07 \times 10^{-2}$	$2,84 \times 10^{-3}$	$2,62 \times 10^{-3}$	$2,38 \times 10^2$	$9,68 \times 10^2$	
	HQder	$3,29 \times 10^{-3}$	$1,11 \times 10^{-3}$	$2,40 \times 10^{-3}$	$2,29 \times 10^{-2}$	$3,93 \times 10^{-5}$	$1,82 \times 10^{-4}$	1,10	$6,71 \times 10^1$	
	HI	$2,00 \times 10^{-2}$	$1,21 \times 10^{-1}$	$1,11 \times 10^{-2}$	$4,36 \times 10^{-2}$	$2,87 \times 10^{-3}$	$2,80 \times 10^{-3}$	$2,40 \times 10^2$	$1,03 \times 10^3$	
Tributary 1	HQing	$1,39 \times 10^{-2}$	$4,04 \times 10^{-2}$	$1,08 \times 10^{-2}$	$5,21 \times 10^{-3}$	$1,73 \times 10^{-3}$	$9,56 \times 10^{-4}$	$2,98 \times 10^2$	$3,41 \times 10^2$	
	HQder	$2,76 \times 10^{-3}$	$3,73 \times 10^{-4}$	$2,99 \times 10^{-3}$	$5,77 \times 10^{-3}$	$2,40 \times 10^{-5}$	$6,63 \times 10^{-5}$	1,38	$2,37 \times 10^1$	
	HI	$1,67 \times 10^{-2}$	$4,08 \times 10^{-2}$	$1,38 \times 10^{-2}$	$1,10 \times 10^{-2}$	$1,75 \times 10^{-3}$	$1,02 \times 10^{-3}$	$2,99 \times 10^2$	$3,65 \times 10^2$	
Tributary 2	HQing	$1,08 \times 10^{-2}$	$1,66 \times 10^{-1}$	$5,90 \times 10^{-3}$	$1,24 \times 10^{-2}$	$2,54 \times 10^{-3}$	$1,91 \times 10^{-3}$	$2,28 \times 10^2$	$6,38 \times 10^2$	
	HQder	$2,13 \times 10^{-2}$	$1,53 \times 10^{-3}$	$1,64 \times 10^{-3}$	$1,38 \times 10^{-2}$	$3,52 \times 10^{-5}$	$1,32 \times 10^{-4}$	1,05	$4,42 \times 10^1$	
	HI	$1,29 \times 10^{-2}$	$1,67 \times 10^{-1}$	$7,53 \times 10^{-3}$	$2,62 \times 10^{-2}$	$2,57 \times 10^{-3}$	$2,04 \times 10^{-3}$	$2,29 \times 10^2$	$6,83 \times 10^2$	
Tributary 3	HQing	$4,94 \times 10^{-3}$	$6,73 \times 10^{-2}$	$8,19 \times 10^{-3}$	$8,13 \times 10^{-3}$	$2,04 \times 10^{-3}$	$1,47 \times 10^{-3}$	$3,39 \times 10^2$	$4,42 \times 10^2$	
	HQder	$9,78 \times 10^{-4}$	$6,22 \times 10^{-4}$	$2,27 \times 10^{-3}$	$9,01 \times 10^{-3}$	$2,83 \times 10^{-5}$	$1,02 \times 10^{-4}$	1,57	$3,06 \times 10^1$	
	HI	$5,92 \times 10^{-3}$	$6,80 \times 10^{-2}$	$1,05 \times 10^{-2}$	$1,71 \times 10^{-2}$	$2,07 \times 10^{-3}$	$1,57 \times 10^{-3}$	$3,41 \times 10^2$	$4,72 \times 10^2$	
Tributary 4	HQing	$1,21 \times 10^{-2}$	$1,09 \times 10^{-1}$	$6,95 \times 10^{-3}$	$1,86 \times 10^{-2}$	$3,24 \times 10^{-3}$	$2,27 \times 10^{-3}$	$3,30 \times 10^2$	$8,84 \times 10^2$	
	HQder	$2,40 \times 10^{-3}$	$1,01 \times 10^{-3}$	$1,93 \times 10^{-3}$	$2,07 \times 10^{-2}$	$4,49 \times 10^{-5}$	$1,57 \times 10^{-4}$	1,52	$6,13 \times 10^1$	
	HI	$1,45 \times 10^{-2}$	$1,10 \times 10^{-1}$	$8,88 \times 10^{-3}$	$3,93 \times 10^{-2}$	$3,28 \times 10^{-3}$	$2,43 \times 10^{-3}$	$3,32 \times 10^2$	$9,46 \times 10^2$	

Carcinogenic risk assessment:-

The carcinogenic risk was assessed using these trace metals : As, Pb, Cr, Ni, and Cd (34). The CRing, CRder, and total risk (CR) values are reported in Table 5. The total carcinogenic risk (CR) values for Ni, Cd, and Cr in all surface waters ranged between 3.11×10^{-4} and 2.36×10^{-1} for children. For adults, they ranged between 1.88×10^{-3} and 4.80×10^{-2} for Ni and Cr. These results indicate that possible carcinogenic effects can occur for humans who will be in contact with these waters. The CRing values of As ranged between 1.5×10^{-4} and 3.70×10^{-4} , indicating possible great carcinogenic effects for children. In contrast, for adults, ingestion would present a high risk related to Cd ($1.12 \times 10^{-3} \leq \text{CRing} \leq 12.11 \times 10^{-3}$), while no significant risk ($3.04 \times 10^{-8} \leq \text{CRder} \leq 7.47 \times 10^{-8}$ or $1.82 \times 10^{-5} \leq \text{CRing} \leq 7.46 \times 10^{-5}$) would be observed for As in adults. Possible carcinogenic effects through ingestion are also observed in adults ($1.93 \times 10^{-3} \leq \text{CRing} \leq 2.89 \times 10^{-3}$) and children ($9.58 \times 10^{-3} \leq \text{CRing} \leq 10^{-2}$) for Pb. In this study, the CRing values were higher than those of CRder. All tributaries and rivers showed high values of CRing and CRder for Cd, Cr, and Ni. Pb and As showed significant values for the CRing index for all surface waters. Similar results were obtained by (35, 36, and 37), who indicated that these trace metals posed a possible carcinogenic risk. In addition, previous studies have revealed that human exposure to low concentrations of these trace metals over long-term can have toxic and carcinogenic effects (38). (39) also reported that these trace metals in the soil posed a significant carcinogenic risk to adults and children. Particular attention should be paid to the pollution of these elements.

Table 5: Values of carcinogenic risk indices for dermal contact (CRder), ingestion (CRing), and total carcinogenic risk (TCR) related to trace metals.

Children						
Water	Indices	AS(ug/L)	Cd(ug/L)	Cr(ug/L)	Ni(ug/L)	Pb(ug/L)
River	CRing	2.70×10^{-4}	7.60×10^{-3}	1.29×10^{-1}	2.36×10^{-1}	1.00×10^{-2}
	CRder	5.00×10^{-7}	4.57×10^{-4}	2.89×10^{-2}	3.30×10^{-3}	9.36×10^{-6}
	CR	2.71×10^{-4}	8.06×10^{-3}	1.58×10^{-1}	2.39×10^{-1}	1.00×10^{-2}
Tributary1	CRing	9.00×10^{-5}	1.01×10^{-2}	3.25×10^{-2}	8.61×10^{-2}	1.25×10^{-2}
	CRder	1.68×10^{-7}	5.67×10^{-4}	7.28×10^{-3}	1.21×10^{-3}	1.17×10^{-5}
	CR	9.02×10^{-5}	1.07×10^{-2}	3.98×10^{-2}	8.74×10^{-2}	1.25×10^{-2}
Tributary2	CRing	3.69×10^{-4}	5.55×10^{-3}	7.76×10^{-2}	1.72×10^{-1}	9.58×10^{-3}
	CRder	6.89×10^{-7}	3.11×10^{-4}	1.74×10^{-2}	2.40×10^{-3}	8.94×10^{-6}
	CR	3.70×10^{-4}	5.86×10^{-3}	9.49×10^{-2}	1.74×10^{-1}	9.59×10^{-3}
Tributary3	CRing	1.50×10^{-4}	7.70×10^{-3}	5.07×10^{-2}	1.32×10^{-1}	1.43×10^{-2}
	CRder	2.80×10^{-7}	4.31×10^{-4}	1.14×10^{-2}	1.85×10^{-3}	1.33×10^{-5}
	CR	1.50×10^{-4}	8.13×10^{-3}	6.20×10^{-2}	1.34×10^{-1}	1.43×10^{-2}
Tributary4	CRing	2.43×10^{-4}	6.54×10^{-3}	1.16×10^{-1}	2.04×10^{-1}	1.39×10^{-2}
	CRder	4.54×10^{-7}	3.66×10^{-4}	2.60×10^{-2}	2.86×10^{-3}	1.30×10^{-5}
	CR	2.43×10^{-4}	6.90×10^{-3}	1.42×10^{-1}	2.07×10^{-1}	1.39×10^{-2}
Adults						
River	CRing	5.41×10^{-5}	1.65×10^{-3}	2.61×10^{-2}	4.77×10^{-2}	2.03×10^{-3}
	CRder	5.42×10^{-8}	4.95×10^{-5}	3.14×10^{-3}	3.58×10^{-4}	1.02×10^{-6}
	CR	5.42×10^{-5}	1.70×10^{-3}	2.92×10^{-2}	4.80×10^{-2}	2.03×10^{-3}
Tributary1	CRing	1.82×10^{-5}	2.05×10^{-3}	6.56×10^{-3}	1.74×10^{-2}	2.53×10^{-3}
	CRder	1.82×10^{-8}	6.15×10^{-5}	7.89×10^{-4}	1.31×10^{-4}	1.27×10^{-6}
	CR	1.82×10^{-5}	2.11×10^{-3}	7.35×10^{-3}	1.75×10^{-2}	2.53×10^{-3}
Tributary2	CRing	7.46×10^{-5}	1.12×10^{-3}	1.57×10^{-2}	3.47×10^{-2}	1.93×10^{-3}
	CRder	7.47×10^{-8}	3.37×10^{-5}	1.88×10^{-3}	2.61×10^{-4}	9.69×10^{-7}
	CR	7.46×10^{-5}	1.15×10^{-3}	1.76×10^{-2}	3.49×10^{-2}	1.94×10^{-3}

Tributary3	CRing	$3,03 \times 10^{-5}$	$1,56 \times 10^{-3}$	$1,02 \times 10^{-2}$	$2,67 \times 10^{-2}$	$2,89 \times 10^{-3}$
	CRder	$3,04 \times 10^{-8}$	$4,68 \times 10^{-5}$	$1,23 \times 10^{-3}$	$2,01 \times 10^{-4}$	$1,45 \times 10^{-6}$
	CR	$3,03 \times 10^{-5}$	$1,60 \times 10^{-3}$	$1,15 \times 10^{-2}$	$2,69 \times 10^{-2}$	$2,89 \times 10^{-3}$
Tributary4	CRing	$4,91 \times 10^{-5}$	$1,32 \times 10^{-3}$	$2,35 \times 10^{-2}$	$4,13 \times 10^{-2}$	$2,81 \times 10^{-3}$
	CRder	$4,92 \times 10^{-8}$	$3,97 \times 10^{-5}$	$2,82 \times 10^{-3}$	$3,10 \times 10^{-4}$	$1,41 \times 10^{-6}$
	CR	$4,91 \times 10^{-5}$	$1,36 \times 10^{-3}$	$2,63 \times 10^{-2}$	$4,16 \times 10^{-2}$	$2,81 \times 10^{-3}$

Conclusion:-

The objective of the study is to assess heavy metal concentrations and health risks in surface waters around and within the KOKO River in the city of Korhogo, Côte d'Ivoire. The results showed that concentrations of Hg, As, Cd, Cr, Cu, Ni, and Zn in surface water were below WHO guidelines, while Pb values exceeded WHO guideline values. The pollution indices HPI and HEI indicated low pollution of surface water. In addition, WQI Index indicated that surface water quality was excellent. The non-carcinogenic risk assessment showed that, for surface water, the HQder, HQing, and HI values were below 1 for trace metals such as mercury (Hg), arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), and nickel (Ni) in adults and children, indicating low adverse effects. However, the HQing, HQder, and HI values for Pb and Zn in all of these surface waters exceeded 1 for adults and children, indicating potential adverse effects on human health. The assessment of the carcinogenic risk of Ni, Cd, and Cr in children showed CR values for Ni, Cd, and Cr in surface water exceeding 10^{-4} . These indicate a possible carcinogenic risk for children. In contrast, in adults only the CR values of Ni and Cr indicate a potential great carcinogenic risk. The CRing values of As showed potentially significant carcinogenic effects for children. However, for adults, ingestion would present a high risk related to Cd. Possible carcinogenic effects through ingestion also observed in adults and children for Pb. It is therefore essential to treat water in order to remove trace metals before using them for irrigation or domestic purposes. In addition, Complementary studies including Hg, As, Cd, Cr, Cu, Ni, Pb, and Zn accumulation in the blood, urine, and hair of population should be investigated to better understand the risks related to trace metals.

References:-

1. Wade, C.S. (2003). The use of pesticides in peri-urban agriculture and its impact on the environment. Doctoral thesis, No. 66. Department of Pharmacy. Cheikh Anta Diop University, Dakar. p. 59.
2. Jost, J-P. & Jost-Tse, Y. C. (2018). Heavy metal hyperaccumulating plants, a solution to soil and water pollution, Ed. Connaissances et Savoirs, France, 161 p.
3. Dewaele, D.C. D., Toure, A., Cabral, M., Cazier, F., Fall, M., Ouddane B., & DIOUF, A. (2019). Study of heavy metal contamination in coastal sediments at wastewater discharge points in Dakar (Senegal). Revue sciences de l'eau, Vol. 25 No. (3), pp. 277-285. <https://doi.org/10.7202/1013107ar>.
4. Malferrari, D., Brigatti, M. F., Laurora, A., & Pini, S. H. (2009). Metals in sediments from canals for water supplying and drainage: mobilization and control strategies, J. Hazard. Mater. 161, 723– 729.
5. Gnamba, F. M., Baka, D., Brahima, S., Brou, Y. Y. A., & Oga, Y. M. S. (2020). Monitoring from 2016 to 2018 of some physical-chemical parameters and heavy metals in SODECI raw water stations in the Savanes and Denguele districts in northern Côte d'Ivoire. Afrique SCIENCE 17(5): pp. 70–84.
6. WHO. (2017). Guidelines for drinking water quality, 4th ed. Incorporating the first addendum. Geneva: World Health Organization; license: CC BY-NC-SA 3.0 IGO, 539 p.
7. N'guessan, S. A., Kouadio, A. A., Koffi, Y. S. (2018). Impact of urban agriculture on the quality of surface water resources in northern Côte d'Ivoire: the case of the Koko dam in the municipality of Korhogo. International Journal of Humanities and Social Science Research. 4(2): pp. 20–29.
8. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol. 7 (2) 60–72, <https://doi.org/10.2478/intox-2014-0009>.
9. Silue, D.P. (2012). Socio-spatial impact of water reservoirs in northern Côte d'Ivoire, case study of the Savanes region. Doctoral thesis, Felix Houphouët-Boigny University, Cocody; pp. 330.
10. World Health Organization. Guidelines for Drinking Water Quality, 4th edition, Geneva, Switzerland. 2011.
11. Ouattara, A. A., Yao, K. M., Soro, M. P., Diaco, T., Trokourey, A. (2018). Arsenic and Trace Metals in Three West African rivers: Concentrations Partitioning, and Distribution in Particle-Size Fractions. Archives of Environmental Contamination and Toxicology 75: 449-463. <https://doi.org/10.1007/s00244-018-0543-9>.
12. American Public Health Association (APHA). Standard methods for the examination of water and wastewater, 23rd ed, American Public Health Association, Washington DC USA, 2017, pp. 1–1546.

13. Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metal in drinking water and development of heavy metal pollution index. *Journal of Environmental Science & Health. Part A: Environmental Science and Engineering*, 31(2), 283-289.

14. Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T. D., Skoulikidis, N. (2021). Heavy metal contamination status in Greek surface waters : A review with application and evaluation of pollution indices. *Chemosphere* 263 : <https://doi.org/10.1016/j.chemosphere.2020.128192>.

15. Hossain, M., Patra, P. K. (2020). Contamination zoning and health risk assessment of trace elements in groundwater through geostatistical modelling. *Ecotoxicology and Environmental Safety* 189 : 1-11.<https://doi.org/10.1016/j.ecoenv.2019.110038>.

16. Brown R. M., McClelland N. I., Deininger R. A. et Tozer R. G. (1970). A water quality index do we dare? *Water Sew. Works* 117, 339343.

17. Şener S., Şener E. et Davraz A. (2017). Evaluation of water quality using water quality index (WQI)method and GIS in Aksu River (SW-Turkey). *Sciences of the Total Environment*. pp 131–144.

18. Traore T., Kouassi N. L. B., Assemian A. S., Kouassi K. E., Drogui, P. et Kouassi B. Y. (2021). Distribution and Health Risk Assessment of Trace Metals in Surface Waters and Groundwater Around Artisanal Gold Mining Areas in Central-western Côte d'Ivoire, West Africa. *International Journal of Environmental Monitoring and Analysis*, 9(5), pp 136 151.

19. Zhang, Y., Chu, C., Li, T., Xu, S., Liu, L., Ju, M. (2017). A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. *Sciences of the Total Environment* 599-600 : <http://dx.doi.org/10.1016/j.scitotenv.2017.04.232> 721-731.

20. US Environmental Protection Agency. (2004). Risk Assessment Guidance for Superfund, Vol. 1, Human Health Evaluation Manual. Part E (supplemental guidance for dermal risk assessment), EPA/540/R/99/005. Office of Superfund Remediation and Technology Innovation, Washington, DC, USA.

21. Zhang, Y., Chu, C., Li, T., Xu, S., Liu, L., Ju, M. (2017). A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. *Sciences of the Total Environment* 599-600: <http://dx.doi.org/10.1016/j.scitotenv.2017.04.232>

22. United States Environmental Protection Agency (USEPA). (2004). Risk Assessment Guidance for Superfund, Vol.1, Human Health Evaluation Manual : Part E (supplemental guidance for dermal risk assessment). Office of Superfund Remediation and Technology Innovation, Washington, DC, USA. Report EPA/540/R/99/005.

23. United States Environmental Protection Agency (USEPA). (2013). Regional screening level (RSL) summary Table, Disponible après de , Accessed November 2013.

24. OEHHA. (2019). California Office of Environmental Health Hazard Assessment (OEHHA). Technical Support Document for Cancer Potency Factors 2009, Appendix A: Hot Spots Unit Risk and Cancer Potency Values. Updated May 2019.

25. Coulibaly, M., Kouassi, N. L. B., N'goran, K.P.D. A., Diabate, D., Trokourey A. (2022). Distribution, Ecological and Health Risks of Arsenic in Sediment from the Mixing Zone of the theComoe River and the Ebrie Lagoon, Côte d'Ivoire, West Africa. *Am. J. Appl. Chem* 10, 89-96.<https://doi.org/10.11648/j.ajac.20221004.13>.

26. Togbe A. M.O, Kouame K. V, Yao K. M, Ouattara A. A, Tidou A. S and Atse B. C. (2019): Assessment of arsenic, lead, and cadmium contamination in the waters of Ebrie Lagoon (Zones IV and V), Ivory Coast: spatio-temporal variations and health risks. *ISSN 1997-342X (Online), ISSN 1991-8631 (Print)*. *Int. J. Biol. Chem. Sci.* 13(2): 1162-1179p.

27. Luo, X. S., Xue, Y., Wang, Y. L., Cang, L., Xu, B., Ding, J. (2015). Source identification and apportionment of heavy metals in urban soil profiles. *Chemosphere* 127: 152–157. <http://dx.doi.org/10.1016/j.chemosphere.2015.01.048>.

28. Yeo, M. (2023).Assessment of the concentration of studied trace metal elements (TMEs) (Fe, Cu, Zn, Cr, Hg, Pb, and Cd) in water and sediments of the Bandama River in the departments of Sinematiali and Niakara (Côte d'Ivoire). Master's thesis, Peleforo Gon Coulibaly University (UPGC), Department of Geosciences, 69 p.

29. Lü, J., Jiao, W. B., Qiu, H. Y., Chen, B., Huang, X. X., Kang, B. (2018). Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You'xi County southeast China. *Geoderma* 310: <http://dx.doi.org/10.1016/j.geoderma.2017.09.016>. 9.

30. Ouattara, A. A., Yao, K. M., Soro, M. P., Diaco, T., Trokourey, A. (2018). Arsenic and Trace Metals in Three West African rivers: Concentrations Partitioning, and Distribution in Particle-Size Fractions. *Archives of Environmental Contamination and Toxicology* 75: 449-463. <https://doi.org/10.1007/s00244-018-0543-9>.

31. Lanphear B. P. (2017). Low-level toxicity of chemicals : No acceptable levels ?, *PLoS Biology*, 15 (12) e2003066, Faculte de Sante Sciences, Simon Fraser Universite, Burnaby, Canada, pp 1 - 8, <https://doi.org/10.1371/journal.pbio.2003066>.

32. Lü, J., Jiao, W. B., Qiu, H. Y., Chen, B., Huang, X. X., Kang, B. (2018). Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You'xi County southeast China. *Geoderma* 310: <http://dx.doi.org/10.1016/j.geoderma.2017.09.016>. 99-106

33. Bamuwamye, M., Ogwok, P., Tumuhairwe, V. (2015). Cancer and non-cancer risks associated with heavy metals exposure from street foods: evaluation of roasted meats in an urban setting, *J. Environ. Pollut. Hum. Health* 3 (2) 24–30, <https://doi.org/10.12691/jephh-3-2-1>.

34. Kim, H. S., Kim, Y. J., Seo, Y. R. (2015). An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. *Journal of Cancer Prevention* 20: 232 – 240. <http://dx.doi.org/10.15430/JCP.2015.20.4.232>.

35. Song, H., Hu, K., An, Y., Chen, C., & Li, G. (2018). Spatial distribution and source apportionment of the heavy metals in the agricultural soil in a regional scale. *Journal Soils Sediments*, 18, pp 852–862. <https://doi.org/10.1007/s11368-017-1795-0>.

36. Mo, L., Zhou, Y., Gopalakrishnana, G., & Li, X. (2020). Spatial distribution and risk assessment of toxic metals in agricultural soils from endemic nasopharyngeal carcinoma region in South China. *Open Geosciences*, 12(1), pp 568–579. <https://doi.org/10.1515/geo-2020-0110>.

37. Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., Li, D., Holm, P. E., Ou, Q., & Hu, W. (2021). Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. *Science of the Total Environment*, 767, pp 144-879. <https://doi.org/10.1016/j.scitotenv.2020.144879>.

38. Zhao, R., Guan, Q., Luo, H., Lin, J., Yang, L., Wang, F., Pan, N., & Yang, Y. (2019). Fuzzy synthetic evaluation and health risk assessment quantification of heavy metals in Zhangye agricultural soil from the perspective of sources. *Science of the Total Environment*, 697, pp 1341-26. <https://doi.org/10.1016/j.scitotenv.2019.134126>.

39. Ehab, A. I. and El-Metwally, M. S. (2022). Pollution and health risk assessment of trace metal in vegetable field soils in the Eastern Nile Delta, Egypt. *Environ Monit Assess* (2022) 194: 540 <https://doi.org/10.1007/s10661-022-10199-1>.