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Oral and maxillofacial cysts are cavities that can pose significant risks 

if not detected and treated promptly. Many of these cysts are asymptom

atic, often going unnoticed until complications arise. The introduction 

of artificial intelligence (AI) presents a promising opportunity for early 

detection and management of these cysts. To explore current studies on 

the use of artificial intelligence in diagnosing oral and maxillofacial 

cysts. To examine the existing literature in this field, assess the 

accuracy, effectiveness, and limitations of AI models, and identify 

challenges in implementing AI in clinical practice. This literature 

review followed a systematic approach, identifying 223 studies from 

PUBMED and SCOPUS databases between 1975 and 2024. After 

applying inclusion and exclusion criteria, 26 retrospective cohort 

studies were included in the final analysis. A risk of bias assessment 

was conducted using the ROBINS I tool. The investigation revealed 

that AI models consistently demonstrate high accuracy in detecting oral 

cysts in both radiographs and digital histopathology. The ROBINS I 

tool indicated a moderate risk of bias in most of the included studies. 

Notable limitations include limited datasets, variable data quality, and a 

lack of explainability in AI models results. AI models have shown 

considerable effectiveness and speed in detecting both simple and 

complex cysts. However, to fully leverage AI's potential in clinical 

settings, further rigorous studies are needed to evaluate its risks, 

benefits, and feasibility, ensuring compliance with governmental health 

regulations on AI. 

 
"© 2025 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed 

with credit to the author." 

……………………………………………………………………………………………………....

Introduction:- 
Maxillofacial cysts can be defined as pathologic cavities lined by epithelium and generally containing fluid or semi-

solid material. One exceptional subgroup, known as pseudocysts, lacks an epithelial lining and possesses various 

diagnostic considerations
i
. The lesions possess great heterogeneity in origin, biologic behavior, and clinical 

presentation, and therefore they are one of the significant challenges in diagnosis and also treatment. 

Epidemiological data of a United Kingdom-based retrospective study, spanning over 55,000 specimens, showed that 

odontogenic cysts accounted for approximately 12.8% of the cases, with a higher occurrence in males and in the age 
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group of 30 to 60 years
ii
. The most prevalent types are radicular cysts, dentigerous cysts, and odontogenic 

keratocysts (OKCs). Diagnosis is paramount to effective clinical management and is typically founded upon a 

combination of patient history, clinical inspection, radiographic imaging, and histopathological examination
iii

. 

Maxillofacial cyst classification has changed considerably over time. Initial efforts by Bland-Sutton in 1888 laid the 

foundation for systematic classification, building on which World Health Organization (WHO) classifications, 

starting in 1971, 1992, 2005, and more recently in 2017
viii

, took place. The present WHO system reclassified 

odontogenic cysts and grouped jaw lesions based on contemporary understanding of their pathogenesis. 

Odontogenic cysts are grouped into inflammatory and developmental types. Inflammatory cysts typically arise from 

pulpal infections, whereas developmental cysts form during odontogenesis
iii

.   

 

Radicular cysts, the most common inflammatory type, are formed due to necrotic pulp tissue that irritates epithelial 

cell rests
iv,v

 . Root canal treatment or extraction with following curettage is commonly performed clinically. 

Residual cysts may persist when radicular cysts are incompletely removed
3
, while paradental cysts, commonly 

associated with third molars, share the same histological features as radicular cysts
iv

. Among developmental cysts, 

dentigerous cysts are most frequent, most commonly associated with unerupted mandibular third molars. The lesions 

are radiographically unilocular but may become multilocular and displace neighboring structures. Management 

involves enucleation and histopathological analysis to eliminate the possibility of neoplastic transformation
iv,vi,vii

. 

Odontogenic keratocysts (OKCs) are highly aggressive with a strong tendency for recurrence. Having been 

previously reclassified as tumors due to mutations in the PTCH gene, they were reclassified as cysts in the 2017 

WHO update
viii,ix

. OKCs predominantly appear in Caucasian males aged 20-40 years and are most commonly found 

in the posterior mandible
x
. Histologically, they are characterized by a thin epithelial lining, palisaded basal cells, and 

a keratin-filled lumen, some of the reasons why they have a strong tendency to recur
xi

. OKCs are also associated 

with Gorlin-Goetz syndrome, a genetic condition with multiple cysts, basal cell carcinomas, and skeletal 

defects
xii,xiii

. 

 

Nonodontogenic cysts, which arise from non–tooth-forming epithelium, include nasopalatine duct cysts and 

neonatal palatal cysts
xiv

. Nasopalatine duct cysts are typically heart-shaped radiolucencies in the anterior maxilla and 

are histologically confirmed by the existence of epithelial-lined fibrous tissue. They are generally curative with 

surgical removal and have minimal chance of recurrence. Neonatal palatal cysts, Epstein pearls, and Bohn nodules 

are small, asymptomatic, and resolve spontaneously. These are histologically keratin-filled epithelial cysts
xv

.Despite 

histopathology as the gold standard for diagnosis, there are also several challenges. Radiographic overlap is 

common; OKCs and ameloblastomas may be indistinguishable, for instance, while nasopalatine duct cysts may be 

mistaken for periapical pathology
xvi,xvii

. Dentigerous cysts may also present as OKCs on imaging examinations
xviii

. 

Histopathological ambiguity also worsens the diagnosis, with features such as mucous cells and keratinisation 

occasionally overlapping among lesions, necessitating additional staining techniques for successful 

differentiation
xix,xx

. Further, inaccurate diagnoses by less experienced practitioners underscore the need for 

technological assistance tools, including artificial intelligence, to assist in enhancing diagnostic precision and 

preventing misclassification 
xvii,xxi

. 

 

Artificial Intelligence (AI) refers to the capacity of computers and machines to perform operations that traditionally 

require human intelligence, such as reasoning, learning, decision-making, and pattern recognition
xxii

. The theoretical 

foundation of AI dates back to Alan Turing's seminal work in 1950 and was formally put forward by John McCarthy 

in 1956
xxiii

. AI is now a multidisciplinary field of research with applications in medicine, engineering, and social 

sciences. At the heart of AI is the usage of algorithms—computational methods enabling machines to accept inputs 

and generate outputs. Some of the most innovative AI developments are Machine Learning (ML) and Deep Learning 

(DL), which enable systems to learn from data and improve with experience.Machine Learning encompasses 

supervised learning (learning from labeled examples), unsupervised learning (identifying patterns in unlabeled 

examples), and reinforcement learning (optimization via trial-and-error). Deep Learning, an ML branch, involves 

artificial neural networks with multiple layers based on the anatomy of the human brain. DL models are particularly 

good at image classification and recognition tasks and, therefore, are highly appropriate for analyzing radiographs 

and histological slides in the clinical setting
xxiv

. The second key component is Natural Language Processing (NLP) 

which enables machines to understand and process human language with applications in clinical documentation, 

chatbots, and automated diagnostic reporting. AI systems range from Artificial Narrow Intelligence (ANI) which are 

task-specific to the theoretical constructs of Artificial General Intelligence (AGI) and Artificial Superintelligence 

(ASI) which attempt to equalize or exceed human intellectual capabilities. 
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AI in healthcare is a developing decision support system that has the potential to deliver faster diagnosis, reduced 

human error, and personalized treatment planning. Its use in maxillofacial cyst diagnosis, in particular, holds great 

promise because of the diagnostic dilemma and overlapping features of these lesions. AI models were employed 

with panoramic radiographs, cone-beam computed tomography (CBCT), and magnetic resonance imaging (MRI) for 

enhancing the detection and classification of lesions. Algorithms such as YOLOv2 (You Only Look Once) have 

proven effective in the detection of cystic lesions such as dentigerous cysts, OKCs, and ameloblastomas by detecting 

shape, size, and anatomical location features
xxv

. Similarly, DetectNet, a CNN-based framework, uses bounding 

boxes to delineate lesion borders and predict classification
xxvi

. These models have demonstrated high sensitivity and 

specificity, with performance better than that of general practitioners and even some specialists, with real-time 

feedback that is compatible with both clinical workflow and tele-dentistry platforms. 

 
AI also helps minimize inter-observer variability, a well-known problem in radiographic interpretation, especially 

between less experienced clinicians. In histopathology, AI helps ease the diagnostic bottleneck by automating image 

classification. Deep learning models such as VGG16, pre-trained on ImageNet, have been fine-tuned to analyze 

histological oral lesion slides with high accuracy
xxvii

. These systems are able to pick up subtle histopathological 

differences between cystic lesions that are similar in appearance, such as distinguishing keratin-filled OKCs from 

dentigerous cysts or identifying proliferative epithelial features of neoplastic transformation. Rather than replacing 

pathologists, AI software is an adjunct that brings areas of suspicion to the attention of the pathologist, triages slides 

for review, and assists in decision-making in equivocal cases. 

 
Clinical deployment of AI integration has several advantages. Lesion detection, even at asymptomatic stages, can be 

facilitated by automated screening. AI algorithms can also assist treatment planning by measuring lesional volume 

and determining proximity to vital anatomical structures to inform surgery. AI can function as a triage system in 

resource-scarce settings, guiding referrals and coordinating specialist intervention. Moreover, AI-driven platforms 

are didactic and can be incorporated into training modules to enhance pattern recognition in novice clinicians. 

Looking ahead, the future of AI in maxillofacial pathology lies in building larger annotated datasets and multi-center 

research that enhances model accuracy and generalizability. Future models may integrate radiographic, histologic, 

and genomic data to provide multidimensional diagnostic possibilities.Despite the potential benefits of artificial 

intelligence (AI) in medicine, AI in oral and maxillofacial pathology must transcend several limitations. One of the 

key challenges is the absence of big annotated datasets required to build robust diagnostic models. In oral pathology, 

such datasets continue to be limited, hindering AI algorithm development and generalizability
xxviii

. Privacy and 

ethical concerns are additional significant challenges. AI software must satisfy stringent data protection regulations, 

particularly when dealing with sensitive patient information. In the United Kingdom, regulators such as the 

Medicines and Healthcare products Regulatory Agency (MHRA) and the NHS AI Lab ensure that AI applications 

are consistent with ethical and legal requirements
xxix,xxx

. Another essential concern is the risk of overdependence on 

AI systems. While AI can enhance diagnostic accuracy and speed, it cannot replace clinical judgment. Instead, it 

must be constructed as a supportive tool that complements the intelligence of medical practitioners
xxviii

. 

 
Based on these findings, it is apt and essential to undertake an exhaustive literature review of AI application in oral 

and maxillofacial cyst diagnosis. To date, no review has systematically worked towards the utilization of both 

machine learning (ML) and deep learning (DL) approaches in the detection of such lesions in radiographic and 

histopathological modalities. The current review seeks to fill a significant knowledge gap in the literature by 

summarizing available knowledge, evaluating technological progress, and establishing directions for future studies. 

The purpose of this literature review is to discuss the current state and recent advances in the application of AI—

more precisely ML and DL—for diagnosing oral and maxillofacial cysts. The main goals are to review current 

studies that apply AI-driven methods and tools in this field, and to evaluate the accuracy, efficacy, and limitations of 

these algorithms in identifying different cystic lesions. A secondary objective is to identify persisting gaps and 

implementation challenges in AI integration, and to provide recommendations that can guide future research and 

clinical practice. 

 

Methods:- 
A systematic approach was employed to ensure methodological rigour and accountability in selection, analysis, and 

identification of included studies within this review. The process adhered to standards of literature synthesis, from 

which there were well-defined eligibility criteria and systematic data extraction protocols.Included studies were 

randomized controlled trials and cohort studies that investigated the application of artificial intelligence (AI) i.e. 
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machine learning (ML) or deep learning (DL) in the detection or diagnosis of oral and maxillofacial cysts. To be 

included, studies had to have used AI-based methods in a diagnostic role and been English-language publications 

from January 1975 through to 15 June 2024. Studies were excluded if they were review articles, case reports, letters, 

editorials, conference abstracts, book chapters, or other non-research-based formats. Participants for eligible studies 

were patients who presented with oral cysts or cyst-like lesions found through radiographic evaluation or 

histopathological diagnosis. Interventions of interest were AI-driven diagnostic algorithms applied on radiographic 

(for example, panoramic radiographs, CBCT) or histopathological samples. Reference groups consisted of reference 

standards like previously established confirmed diagnosis or expert clinician opinion. Primary outcomes of interest 

measured included diagnostic accuracy metrics like sensitivity, specificity, precision, and F1-score. 

 

Systematic search approach was conducted in two leading databases: PubMed and Scopus. Scopus search query was 

('artificial intelligence' OR 'machine learning' OR 'deep learning') AND ('diagnosis' OR 'diagnostic imaging' OR 

'detection') AND ('oral cysts' OR 'jaw cysts' OR 'odontogenic cysts'). The search query for PubMed was: (('artificial 

intelligence' OR 'machine learning' OR 'deep learning' OR 'neural networks') AND ('maxillofacial cysts' OR 'jaw 

lesion' OR 'oral cysts' OR 'odontogenic cysts')) AND ('diagnosis' OR 'detection'). The search was narrowed to 

studies published within the specified timeframe and language needs.Independent study selection was performed by 

two reviewers. Titles and abstracts were screened for potentially eligible studies, and full texts were retrieved in 

studies with inclusion criteria or where it was not possible to determine from the abstract alone. As no randomized 

controlled trials were identified, the final decision included retrospective cohort studies. Data were independently 

withdrawn in a pre-standardized form with the intent to record main study characteristics.  

 

Extracted variables included author(s), year of publication, study design, type of applied AI, cyst classification, 

imaging modality, methods of validation, and diagnostic results reported.Methodological quality and potential bias 

within each study that was included were assessed using the Risk Of Bias In Non-randomized Studies - of 

Interventions (ROBINS-I) tool
xxxi

. The instrument evaluates seven domains: confounding, participant selection, 

intervention classification, deviations from allocated interventions, missing data, outcome measurement, and 

reporting selection. Each domain was assigned a low, moderate, or critical risk of bias score. Tabulation of 

judgments regarding risk in all the included studies is shown in Appendix 2A. This systematic evaluation yielded 

methodologically sound data on which the review results were derived, allowing for critical evaluation of the 

validity and reliability of AI instruments for diagnosing oral cysts. 

 

223 articles were initially identified through a systematic search of two leading databases—PubMed and Scopus. 

Following the preselected inclusion and exclusion criteria, full-text screening, and the removal of duplicate data, the 

final list comprised 26 articles. All included studies were retrospective observational studies that investigated the 

application of artificial intelligence (AI) in diagnosing or detecting oral and maxillofacial cysts.The Scopus search 

yielded 136 articles. These were filtered out at first by selecting English-language research articles and excluding 

non-research article types such as conference abstracts, book chapters, mini reviews, case reports, and editorials. 

This left the pool narrowed to 111 articles. Further filtering based on subject categories of interest to medicine and 

dentistry left the selection at 70 articles.  

 

This was followed by a critical assessment of titles and abstracts, and subsequent inclusion of 12 articles found to be 

eligible for the study.PubMed search generated 87 articles. With identical inclusion criteria—English-language 

research articles—and non-research articles excluded, the number of research articles eligible was reduced to 68. 

Relevance of articles to the study's purpose was assessed through title and abstract review, and 25 articles were 

selected accordingly. After cross-matching and duplicate elimination between the two databases, 26 unique articles 

remained for final analysis. Collectively, these studies provide a core data set from which the value of AI-based 

approaches to the diagnostic practice of oral and maxillofacial cysts can be evaluated. 
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The selection process for the studies is summarized in Figure 1. 

Literature Review:-  
The reviewed studies altogether demonstrate the growing application of artificial intelligence (AI) to diagnose jaw 

cysts and related lesions through panoramic radiographs (OPG). The five studies employed similar retrospective 

study designs and various machine learning (ML) or deep learning (DL) models with varying validation techniques 

from hold-out testing to cross-validation.Berne et al.
xxxii

 developed a DL model with YOLOv3 to differentiate 

radicular cysts (RC) and periapical granulomas (GC). Using a 10-fold cross-validation approach to OPG images, the 

study had 80 RC cases, 72 GC cases, 197 normal images, and some other radiolucent controls. The model was good 

for RC detection with 1.00 sensitivity, 0.95 specificity, and an AUC of 0.97. In the case of GC, sensitivity was 

slightly lower at 0.77 but specificity remained flawless at 1.00 with an AUC of 0.88. These results validate the 

accuracy of the model in distinguishing between granulomatous and inflammatory lesions.Building upon this, Yu et 

al.
xxxiii

 employed a Unet-based deep learning model to distinguish odontogenic cysts and tumors, i.e., periapical 

cysts (PC), dentigerous cysts (DC), odontogenic keratocysts (OKC), and ameloblastomas (AB). The collection of 

samples comprised 87 lesion cases and 200 normal samples. Using a hold-out validation test, the model was 90.66% 

accurate, 85.23% precise, 84.27% sensitive, 93.50% specific, and 84.74% F1 score. These metrics represent how 

robust the model is in distinguishing pathological from normal images, particularly in mixed-lesion datasets. 

 

In another approach, Kumar et al.
xxxiv

 examined ML techniques—specifically support vector machines (SVM)—for 

dental cyst, tumor, and abscess identification. The study utilized 172 lesion images and hold-out validation. The 

three feature extraction methods were compared: GLCM, wavelet analysis, and GLRLM. GLCM had the highest 

accuracy of 98%, while GLRLM yielded 95% and wavelet analysis yielded 91%. AUC values testified to the 

superior diagnostic capability of GLCM, highlighting the importance of texture-based features in radiographic 

classification.Feher et al.
xxxv

 broadened the scope by simulating clinical reasoning using RetinaNet, a ML model that 

was trained on 855 OPG images and validated with 384. The model was able to differentiate between odontogenic 

and non-odontogenic cysts. For odontogenic cysts, sensitivity was 0.84 and specificity was 0.59, while for non-

odontogenic cysts, sensitivity dropped to 0.56 but specificity rose to 0.84. Compared to a human control group, the 
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AI model had higher sensitivity for both groups, although specificity varied. The research illustrates the potential of 

AI in assisting diagnostic reasoning, especially in uncertain cases.Also supporting these findings, Watanabe et 

al.
xxxvi

 conducted a preliminary study using DetectNet for maxillary cyst-like lesion and benign tumor detection. The 

patient dataset was 412 cases with 323 RC, 37 DC, 23 OKC, 3 AB, 2 odontogenic myxomas, and 1 adenomatoid 

odontogenic tumor. The model was validated in two steps. In the first step, recall was 74.6%, precision 89.8%, and 

F1 score 81.5%. In the second step, recall was 77.1%, precision 90.0%, and F1 score 83.1%. These results indicate 

consistent performance on datasets and validate the applicability of DL for multi-class lesion detection.Liu et al.
xxxvii

 

explored the use of machine learning (ML) algorithms to discriminate between ameloblastomas and odontogenic 

keratocysts (OKCs) on panoramic radiographs. Knowing that these lesions have overlapping diagnoses, the authors 

demonstrated that ML could learn to identify radiographic features successfully in an attempt to assist clinicians to 

accurately classify them. By utilizing model training on annotated datasets, promising diagnostic accuracy was 

achieved, which showed that AI can assist clinicians in differentiating between lesionally similar radiographic-

appearing lesions. 

 

Following this radiographic foundation, Cai et al.
xxi

 progressed to digital pathology by developing AI models to 

differentially diagnose and predict the prognosis of sporadic OKCs on haematoxylin and eosin-stained slides. The 

approach merged image-based deep learning with prognostic modeling to not just diagnose lesions but also to 

forecast recurrence risk. This dual-purpose utility renders AI an effective tool in both diagnostic as well as treatment 

planning procedures, especially for aggressive behavior lesions like OKCs.In their corresponding effort to 

counteract diagnostic uncertainty, Lee et al.
xxxviii

 resolved a common conundrum by deep learning neural networks to 

separate Stafne's bone cavity—a benign anatomical variation—from pathological radiolucent mandibular lesions. In 

their proof on heterogeneous panoramic radiographs, the authors demonstrated DL models can significantly 

differentiate between normal anatomy and disease, precluding false positives and unwarranted procedures.Scaling 

AI application in histopathology, Rao et al.
xxvii

 developed a DL-driven microscopic diagnostic system for OKCs and 

non-keratocysts on the basis of histological slides. Trained on haematoxylin and eosin-stained incisional biopsies, 

the model was extremely accurate in classifying cyst types. The study highlighted the potential of AI to streamline 

histopathological processes, highlight uncertain cases, and support pathologists in high-volume diagnostic settings. 

Similarly, Yang et al.
xxv

 employed deep learning in automating detection of jaw cysts and tumors from panoramic 

radiographs. Their model performed well for a variety of lesions, i.e., dentigerous cysts, OKCs, and ameloblastomas. 

Employing convolution neural networks, the model was able to delineate the borders of lesions and make 

suggestions for classifications and offer real-time aid in radiographic interpretation. 

 

Adding additional importance to anatomical precision, Rašić et al.
xxxix

 focused on segmentation tasks by deep neural 

networks to locate and define radiolucent lesions in the lower jaw. From panoramic radiographs, their model was 

very accurate in detecting lesion margins, which is crucial in surgical planning and follow-up. This study highlights 

the prospect of AI in enhancing image-based diagnosis by precise anatomical localization.For the early detection of 

disease, Endres et al.
xl

 developed a DL algorithm specific for the identification of periapical disease from dental 

radiographs. The model, which was trained to identify subtle radiolucencies of pathologic structures, was very 

accurate for diagnosis. All these results validate the use of AI in everyday dental practice, particularly for the early 

detection of apical lesions, which, otherwise, remain undiagnosed.Following the differential diagnosis thread, Li et 

al.
xli

 used a deep learning network to differentiate ameloblastomas from OKCs on panoramic radiographs. Tested 

against expert scores and learned on a big data set, the model proved that AI could match or exceed human ability at 

recognizing such clinically significant lesions.Kwon et al.
xlii

 extended this by developing a DL model of YOLOv3 to 

classify odontogenic cysts and ameloblastomas of 1,282 panoramic radiographs automatically. In the database, there 

were 302 RC, 350 DC, 300 OKC, 230 AB, and 100 normal jaw views. Without augmentation, sensitivity of the 

model was 78.2%, specificity was 93.9%, and total accuracy was 91.3%, with an AUC of 0.86. Performance was 

greatly improved with augmentation, yielding sensitivity of 88.9%, specificity of 97.2%, accuracy of 95.6%, and 

AUC of 0.94—highlighting the way that training advances are advantageous to model precision.Complementing 

this, Bispo et al.
xliii

 sought to differentiate between OKCs and ameloblastomas using MDCT images and a Google 

Inception v3 convolutional neural network. The dataset consisted of 350 images of 18 OKC and 22 ameloblastoma 

cases. By using five-fold cross-validation, the model established stable accuracy in iterations of 90.16% to 92.48%, 

showcasing the reliability of DL in CT-based lesion classification. 

 

By employing a multimodal approach, Committeri et al.
xliv

 blended ML models—logistic regression (LR) and 

Fourier transform (FT)—with inflammatory biomarkers and CBCT imaging to classify dentigerous cysts, OKCs, 

and unicystic ameloblastomas. For 103 patients, biomarkers alone yielded less than 50% accuracy. But when 
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integrated with imaging, LR was at 95% accuracy with an AUC of 0.96, and FT was at 94.3% accuracy with an 

AUC of 0.95, reinforcing the benefit of data fusion towards enhanced diagnostic performance.Yilmaz et al.
xlv

 also 

validated ML's variability by comparing various models like SVM, Naive Bayes, decision tree, random forest, and 

neural networks for diagnosing periapical cysts and OKCs from 50 CBCT images. The performance of SVM model 

was superior in three validation methods: ten-fold cross-validation yielded accuracy and F1 score of 100%; split-

sample validation yielded accuracy and F1 score of 96%; and leave-one-out cross-validation yielded 94% accuracy 

and an F1 score of 93.88%, which testified to the strength of SVM for lesion detection based on CBCT.In a 

comparative study, Lee et al.
xlvi

 employed Google Inception v3 for AI-based diagnosis of periapical cysts, DCs, and 

OKCs from OPGs and CBCT scans. The database comprised 2,126 images, 1,140 OPGs, and 986 CBCTs. The 

model performed higher accuracy on CBCT with an AUC of 0.914, sensitivity of 96.1%, and specificity of 77.1%. 

For OPG, the AUC was 0.87, sensitivity was 88.2%, and specificity was 77.0%, indicating that CBCT offers 

superior diagnostic precision for AI models. 

 

For the case of anterior maxillary lesions, Kise et al.
xvii

 developed a DL system using DetectNet and Inception v3 to 

discriminate nasopalatine duct cysts (NDC) from radicular cysts (RC) with 300 panoramic radiographs. The data set 

included 100 NDC, 100 RC, and 100 normal ones. The DL system achieved a total accuracy of 0.88, higher than 

dental residents with 0.77. For NDC, the model achieved recall of 0.83, precision of 0.92, and F1 score of 0.87. For 

RC, recall was 0.85, precision 0.94, and F1 score 0.89. Normal images achieved recall of 0.95, precision of 0.79, 

and F1 score of 0.86, commenting on the good performance of the model by categories.Lee et al.
xlvii

 conducted a 

comparative study of five DL models, namely EfficientDet-D3, Faster R-CNN, YOLO v5, RetinaNet, and SSD, to 

identify and classify nasopalatine duct cysts and periapical cysts from 1,269 panoramic radiographs. The data set 

comprised 603 RC, 606 NDC, and 60 normal images. EfficientDet-D3 outperformed all the other models, with mean 

average precision (mAP) of 93.8%, accuracy of 94.4%, sensitivity of 94.4%, specificity of 97.2%, and predictive 

values greater than 94%. The results reassert EfficientDet-D3's superiority in undertaking complex radiographic 

differentiation tasks.Ariji et al.
xxvi

 suggested the use of a deep learning model with DetectNet for the automatic 

detection and classification of radiolucent lesions in the mandible. The collection had 210 panoramic radiographs 

and comprised 68 radicular cysts (RC), 66 dentigerous cysts (DC), 33 odontogenic keratocysts (OKC), 31 

ameloblastomas (AB), and 12 simple bone cysts (SBC). Two independent test sets were used to test and validate the 

model. In both, sensitivity was always 0.88, while the false positive rate was remarkably low—0.00 per image in the 

first test and 0.04 in the second—demonstrating the accuracy and reliability of the model for multi-class lesion 

detection. 

 

Taking AI to histopathology, Mohanty et al.
xlviii

 developed an automation pipeline for the discrimination of sporadic 

OKCs and non-keratocysts from WSI. The study utilized 113 slides, 48 OKCs, 20 DCs, and 37 RCs. With P-C-

ReliefF algorithm and hold-out validation, the model had an AUC of 0.97 and overall accuracy of 97.4%, managing 

over 128,000 parameters. Such results reflect the scalability of AI in high-resolution slide interpretation and its 

capability to assist digital pathology workflows.Frydenlund et al.
xlix

 utilized machine learning algorithms—support 

vector machines (SVM) and Bayesian logistic regression (BLR)—for the identification of four developmental 

odontogenic cysts based on micrographic digital images. The dataset involved 73 slides: 20 DCs, 20 OKCs, 20 

lateral periodontal cysts (LPCs), and 13 glandular odontogenic cysts (GOCs). BLR outperformed SVM in all three 

experiments. In the first experiment, it was 95.4% compared to 92.3% for SVM. In cross-validation, BLR was 90% 

and SVM was 87.9%. Without DCs, SVM gave 100% accuracy and BLR 96.78%, indicating the models' 

adaptability and robustness with various lesion types.Tajima et al.
l
 overcome the issue of limited training data by 

developing a deep learning model based on YOLOv3 for the detection of cyst-like radiolucent lesions on panoramic 

radiographs. 7,160 images were employed to train the model, 100 for validating it, and 100 for testing it. Even with 

the small test set, the model worked incredibly well: 98.3% accuracy, 94.4% sensitivity, 99.7% specificity, 99.0% 

precision, and F-score of 0.966. All these prove the strength of high-quality AI models even in conditions where 

there is limited data. 

 

These radiographic studies have been supplemented by Setzer et al.
li
, who designed a DL model based on the Unet 

architecture to detect periapical lesions in CBCT images. Using a training set of 20 CBCT images and five-fold 

cross-validation, the model achieved 0.93 accuracy, 0.88 specificity, positive predictive value of 0.87, and negative 

predictive value of 0.93. These results establish the excellence of the model for the detection of fine apical pathoses 

in three-dimensional imaging.Ekert et al.
lii

 conducted a high-throughput analysis of 2,001 panoramic radiographs for 

apical lesion detection using deep learning. Model validation was conducted with 10-time repeated group shuffling 

with 0.85 (±0.04) AUC. Sensitivity was moderate at 0.65 (±0.12), but specificity was up to 0.87 (±0.04). The 
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positive predictive value was 0.49 (±0.10), but the negative predictive value was extremely high at 0.93 (±0.03), 

indicating good performance in excluding disease and enabling early detection. 

 

Results:- 
Demographics and Population:- 

As seen in Figure 2. 26 retrospective studies on the use of AI in diagnosing oral and maxillofacial cysts were 

conducted across 16 countries. China and South Korea led the research efforts with five studies each. India followed 

with three studies. Japan and Germany both contributed with two studies each. Other countries, including Croatia, 

Belgium, Austria, the Netherlands, Brazil, Italy, Turkey, Canada, and the USA, each had one published study.  

 

 
 

Figure 2. location of the conducted studies 

 

 
Figure 3. Years of published studies 

We began our search from 1975. However, in 2014, we have only found a single study from that year. There was a 

gap until 2017, which yielded another study. In 2019, two studies were found. A noticeable increase in research 
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occurred between 2020 and 2024, with five studies published in both 2020 and 2021. In 2022, we identified three 

studies. The highest number of articles, six, were found in 2024. Explained on  Figure 3.  

 

 
 

Figure 4. Number of reported cysts in included studies 

 

In our research, the most frequently reported type of cyst was OKC, with 16 studies. Radicular cysts followed with 

12 studies, and dentigerous cysts were reported in nine studies. Nasopalatine duct cysts and Stafne bone cysts each 

had two studies. Lateral periodontal cysts and glandular odontogenic cysts were the subjects of only one study each. 

Figure 4 illustrates this breakdown.  

 

Table 1. Accuracy rate of Deep Learning and Machine Learning models. 

Deep Learning 

Models 

Author(s) Accuracy  Machine 

Learning 

Models 

Author(s) Accuracy 

YOLO 

(v2,v3,v5,v8) 

Kown et al
xliii

, 

Yang et al.
 xxv

, 

Lee et al.,
xxxviii

 

Rasic et 

al.
xxxix

, 

Berne et 

al.
xxxii

,  

V2= 66% 

v3=91.3% 

98.3% 

v5= NA 

v8= NA 

SVM Frydenlund A 

et al.
xlix

, Cai et 

al.
xxi

, Yilmaz 

et al
xlv

 Kumar 

et al.
xxxiv

, 

87.9% 

NA 

98% 

98% 

VGG (16,19)  Li et al.
xli

, Liu 

et al.
xxxvii

, Rao 

et al.
 xxvii

, 

80.72% 

85.5% , 93% 

BLR Frydenlund A 

et al.
 xlix

, 

90.0 ± 

0.92% 

Google 

Inception3 

Bispo et al.
xliii

, 

Lee et al.
xlvi

, 

Cai et al.
xxi

, 

Kise et al.
xvii

, 

90%- 92% 

NA 

NA 

Naïve Bayse Yilmaz et al.
 

xlv
, 

98% 

ResNet-50 Li m et al.
xli

,  

Lee et al.
xlvii

, 

82.50%, 

78.31% 

Decision tree Yilmaz et al.
 

xlv
, 

89% 

DetectNet Kise et al.
xvii

, 

Ariji et al.
 xxvi

, 

Watanabe et 

88% 

NA 

NA 

Random 

forest 

Yilmaz et al.
 

xlv
, 

92% 
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al
xxxvi

 

DenseNet  Lee et al.,  

Rao et al.
 xxvii

, 

93%, 99.25% Neural 

Network 

Yilmaz et 

al.
xlv

, 

92% 

EfficientNet  Li et al.
 xli

, 87.50% MLP Cai et al.
xxi

, NA 

Faster R-CNN Lee et al., NA Extra Trees Cai et al.
xxi

, NA 

RetinaNet Lee et al., NA XGBoost Cai et al.
 xxi,

 NA 

SSD Lee et al.
 xlvii

, NA Linear 

Regression 

Committeri U 

et al.
xliv

, 

95% 

EfficientDet-D3 Lee et al., 94.4% Fine Tree Committeri U 

et al.
 xliv

, 

94.3% 

Unet Setzer et al.
li
, 

Yu et al.
xxxiii

, 

93%,90.6% 

 

  

P-C-ReliefF Mohanty et 

al.
xlviii

, 

97.4%  

 

Outcomes:- 

The primary outcomes of this review involved examining the existing literature on AI-based techniques and 

technologies utilised in the diagnosis of oral and maxillofacial cysts and assessing their accuracy and limitations. 

 

Deep Learning (DL) Models:- 

The most widely used DL model in this review was YOLO, with five published studies using various versions of the 

model. Yang et al.
 xxv

 reported that their YOLOv2 model achieved an accuracy of 66%, while Kwon et al.
xlii

 

demonstrated an improved accuracy of 91.3% with YOLOv3. Lee et al.
 xlvii

, Berne et al.
 xxxii

 and Rasic et al.
 xxxix

 used 

YOLOv5 and YOLOv8 models, respectively, and found promising results in terms of precision, although specific 

accuracy values were not provided.The second most frequently used model was Google InceptionV3. Four studies 

utilised this model. Bispo et al.
xliii

 reported accuracy values ranging from 90% to 92% across five iterations. Kise et 

al.
xvii

 achieved an accuracy of 88% with InceptionV3. However, the studies by Lee et al.
 xlvi

 and Cai et al.
xxi

 did not 

report accuracy, focusing instead on area under the curve (AUC) and sensitivity metrics.VGG16 and VGG19 models 

were used in three retrospective studies. Liu et al.
xxxvii

 reported an accuracy of 80.72%, Rao et al.
 xxvii

  achieved 93% 

accuracy, and Li et al.
 xli

 reported an accuracy of 85.50% with their VGG16/19 models. DetectNet was featured in 

three studies. Kise et al.
xvii

 reported an accuracy of 88%, while Ariji et al.
 xxvi

 and Watanabe et al.
 xxxvi

 did not 

provide accuracy metrics but reported high scores in sensitivity and precision, respectively. Lee et al.
 xlvii

 reported 

high mean average precision for models like Faster R-CNN, YOLOv5, RetinaNet and SSD but did not provide 

accuracy values. However, the EfficientDet-D3 model scored a notable 94.4% accuracy.The highest accuracy was 

reported for DenseNet, with Lee et al.
 xxxviii

 achieving an accuracy of 99.25% and Rao et al.
 xxvii

 reporting 93%. Unet 

models were used by Setzer et al.
 li

 and Yu et al.
 xxxiii

, who reported accuracies of 93% and 90%, respectively. Lastly, 

Mohanty et al.
 xlviii

 reported a high accuracy of 97.4% with their P-C-ReliefF model. 

 

Machine Learning (ML) Models:- 

Of the 26 studies reviewed, only five utilised ML models. Frydenlund et al.
 xlix

 employed an SVM and reported an 

accuracy of 87.9%. Additionally, the same study used bagging with logistic regression, achieving an accuracy of 

90.0 ± 0.92%. Yilmaz et al.
 xlv

 evaluated multiple ML models and reported accuracy scores of 98% for SVM, 98% 

for Naïve Bayes, 89% for decision tree, 92% for random forest and 92% for neural networks. Committeri et al.
 xliv

 

reported 95% accuracy using a linear regression model and 94.3% accuracy using a fine tree model. Cai et al. 
xxi

 

utilised four ML models: SVM, extra trees, XGBoost and MLP. Although the authors did not report specific 

accuracy numbers, these models achieved high values in the AUC metric. Finally, Kumar et al.
 xxxiv

 reported an 

accuracy of 98% using an SVM model. 

 

Digital Pathology:- 

Interestingly, out of all 26 studies, only four applied AI models for digital pathology. Frydenlund et al.
xlix

 pioneered 

the AI ML application for detecting odontogenic development cysts using H & E micrographic imaging with an 

accuracy between 87.9% and 92%. The other three studies – Rao et al.
 xxvii

, Mohanty et al.
 xlviii

 and Cai et al. 
xxi

– 

utilised DL models to detect and diagnose OKC lesions using whole-slide imaging. The accuracy results for Rao et 

al.
 xxvii

 and Mohanty et al.
 xlviii

 were 91% and 97.4%, respectively. Cai et al. 
xxi

 went further and measured the 
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diagnosis and prognosis of OKCs using AUC, with the diagnosis being 0.935 and the prognosis 0.840, indicating 

high performance in distinguishing between other cysts. 

 

Odontogenic Cysts:- 

The majority of the reviewed studies
 
 focused on reporting odontogenic cysts using OPG, and AI models reported 

high performance results with an average accuracy higher than 85% 
xxv,xxvi, xxxii, xxxiii, xxxiv,xxxv, xxxvi, xxxvii, xxxviii, xli, xliii,lii

. 

The reported studies using CBCT included Committeri et al.
 xliv

, Bispo et al.
 xliii

, Lee et al.
 xlvi

, Setzer et al.
 li

 and 

Yilmaz et al.
 xlv

 and had higher performance than those using OPG. 

 

Nonodontogenic Cysts:- 

We found only two studies reporting on nasopalatine duct cysts in comparison to periapical cysts
xvii, xlvii

. The results 

of both achieved high accuracy in relation to dentists, with an accuracy of 88% and precision of 99.8%. 

 

Validation Tests:- 

Among the 26 retrospective studies reviewed, 17 applied a hold-out validation test, five implemented a five-fold 

cross-validation, two used a 10-fold cross-validation, and only one utilised a leave-one-out validation test. Only one 

study compared the effectiveness of these validation methods on the accuracy of AI models. Yilmaz et al.
 xlv

 

reported that the highest accuracy was achieved with the 10-fold cross-validation at 100%, followed by the split-

sample (or hold-out test) at 96% and, lastly, leave-one-out cross-validation at 90%. 

 

Duration Performance:- 

Ariji et al.
 xxvi

 reported that their model, DetectNet, required 3 hours for training, 13 seconds for validation and 13 

seconds for each testing session. Yang et al.
 xxv

 calculated the average time to evaluate 181 images and revealed that 

oral surgeons and general dentists took an average of 33.8 minutes, while their model, YOLOv2, provided real-time 

detection capabilities. Liu et al.
 xxxvii

 achieved an average processing time of 0.15 seconds per image using their 

models. Similarly, Lee et al.
 xxxviii

 reported that their DenseNet model required only 0.06 seconds per sample during 

testing. 

 

Limitations of Artificial Intelligence (AI) Models:- 

Across the reviewed studies, several limitations of using AI were identified. Computational complexity is a 

significant challenge, as noted by Rao et al.
 xxvii

, with many models requiring advanced and faster hardware to 

function effectively. As highlighted by Cai et al.
xxi

, the reliance on single-centre samples, which means the 

collection of data from a single hospital or institute, limits the generalisability (the ability of the AI model to 

perform well on new and unseen data) of findings, thus emphasising the need for multicentre cohorts for more 

robust validation. Small sample sizes, as mentioned by Berne et al.
 xxxii

, often lead to concerns about overfitting and 

the reliability of a model’s generalisability. Additionally, the interpretability of DL models, another concern raised 

by Berne et al.
 xxxii

, remains an issue, making it difficult to understand and trust their decisions in clinical settings. 

Variability in data quality, such as image clarity, significantly impacts model performance, as seen in Mohanty et al.
 

xlviii
, thus necessitating consistent data standards. Finally, diverse validation methods reveal differences in accuracy, 

as reported by Yilmaz et al.
 xlv

, underscoring the need for standardised validation approaches to ensure consistent 

and reliable results. 

 

Application of Artificial Intelligence (AI) in Clinical Settings:- 

Watanabe et al.
 xxxvi

 emphasised the need for extensive and more training datasets to reduce error effects. In addition, 

improved network architecture may pave the way for clinical applications. Endres et al.
xl

 highlighted the regulatory 

constraints and questions regarding whether AI predictions influence clinicians’ responses and patients’ trust and 

whether these effects will evolve over time with confidence in AI. Studies, such as Cai et al.
xxi

, that employed 

retrospective designs may not provide the strongest evidence compared to prospective studies, potentially hindering 

the implementation of AI in clinical practice. Bispo et al.
 xliii

 stated that, even though their model demonstrated high 

diagnostic value, their practical application remains limited. This is primarily due to the time-consuming nature of 

the segmentation and training processes, coupled with the high computational costs involved, which pose substantial 

limitations to their widespread use. 

 

Risk of Bias in Included Studies:- 

We used Cochrane’s tool ROBINS-I to assess the risk of bias in each individual study (presented in Figure 3 and 

Figure 4), which are summarised in Table 1in the Appendix 
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Figure 5. Risk of bias graph: review authors' judgements about each risk of bias item presented 

as percentages across all included studies. 

 

Most of the included studies had moderate bias due to confounding factors and the selection of participants. Only 

one study, published by Frydenlund et al.
xlix

, had critical risk bias due to missing data. However, all studies had low 

risks of bias in the classification of interventions and deviations from intended interventions. 

 

Discussion:- 
Oral and maxillofacial cysts are epithelial-lined lesions that may cause infection, pain, or bone expansion, often 

affecting adjacent anatomical structures. However, most are asymptomatic and found incidentally on radiographs. 

Aside from periapical cysts, which are linked to dental caries, most cysts lack a well-defined etiology.Diagnosing 

these lesions is complex due to overlapping clinical and radiographic features. Accurate diagnosis typically requires 

clinical evaluation, imaging, and histopathological confirmation. The emergence of artificial intelligence (AI) offers 

a promising tool that may enhance diagnostic accuracy and reduce diagnostic time.Interest in AI has surged 

globally. Our review included studies from 1975 to 2024, though no AI-based diagnostic research on oral cysts was 

found before 2014. Notably, publications have increased recently, with six studies released in the first half of 2024 

alone. This trend may reflect growing awareness of AI and increased productivity during the COVID-19 pandemic. 

Most studies were from East Asia, particularly China and South Korea, suggesting regional leadership in dental AI 

research. 

 

All included studies used standard AI performance metrics: 

 Accuracy: Overall correctness of model predictions. 

 Sensitivity (Recall): Ability to correctly identify positive cases. 

 AUC: Model’s ability to distinguish between classes. 

 F1-score: Harmonic mean of precision and recall—especially useful for imbalanced datasets. 

 

No single AI model demonstrated flawless performance across all metrics. For example, Yang et al.
 xxv

 reported that 

YOLOv3 achieved a 0.7 precision using a relatively simple neural network architecture. More recently, Rasic et al.
 

xxxix
 introduced YOLOv8, which significantly improved performance using 401 layers and over 45 million 

parameters. 

Most studies applied AI to orthopantomogram (OPG) images, with only five using CBCT. Although both modalities 

yielded good results, Lee et al.
 xlvi

 found CBCT superior for detecting cysts, though OPG remains more accessible 

and involves lower radiation.Studies by Kise et al.
xvii

 and Lee et al.
 xlvii

 evaluated AI detection of nasopalatine duct 

cysts, comparing AI models with general practitioners and residents. Results were promising, but further research 

involving experienced oral surgeons is needed to validate AI’s clinical utility across expertise levels.A common 

limitation was reliance on single-centre datasets, which may reduce generalisability. Multi-centre studies, such as 

those by Feher et al.
 xxxv

 and Mohanty et al.
 xlviii

, provide stronger evidence and should be encouraged.Another key 

challenge is dataset size. To address this, many studies used techniques like transfer learning and fine-tuning, which 
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adapt pretrained models for specific tasks
xxi,xxv, xlvii

. These methods save time and reduce overfitting, making them 

valuable when data are limited.The so-called "black box" nature of AI remains a concern. Kise et al.
xvii

 noted the 

lack of transparency in how models reach decisions. To improve safety and explainability, regulatory bodies like the 

MHRA, FDA, and Health Canada have issued joint guidelines for best practices in machine learning
xxix

. 

 

We excluded two recent systematic reviews by Tobias et al.
liii

 and Shrivastava et al.
liv

, as they did not address 

histopathology or nonodontogenic cysts. Our review is more comprehensive, covering both radiographic and digital 

histological studies. However, both reviews reported high heterogeneity among studies, which aligns with our 

observations.Currently, performing a robust meta-analysis in this field is challenging due to wide variability in 

models, datasets, and evaluation metrics. As Cai et al.
xxi

 suggest, future prospective studies and, eventually, 

randomized controlled trials are needed to assess AI’s clinical value in diagnosing oral and maxillofacial cysts. 

Our review has several limitations. Only two databases were searched, which may have excluded relevant studies. 

Expanding the search scope would increase comprehensiveness. Additionally, the Risk of Bias assessment was 

conducted by a single reviewer, which may introduce subjectivity. Collaborative or blinded assessments could 

strengthen reliability. 

 

Conclusion:- 
This literature review examined 26 retrospective studies on the diagnosis of oral and maxillofacial cysts using 

artificial intelligence (AI). The findings indicate a growing awareness and potential for AI in diagnosing oral 

lesions. AI models demonstrated high accuracy in both machine learning and deep learning across radiographic and 

digital histopathological settings.However, several limitations were identified, including limited datasets, lack of 

explainability, variations in data quality, and the absence of standard validation tests. Oral and maxillofacial cysts 

pose significant health risks if not detected early. AI models have shown promising effectiveness and speed in 

detecting and diagnosing both simple and complex cysts. To enhance the reliability of AI in diagnosing oral and 

maxillofacial cysts, future research should focus on several key areas. Larger and more diverse datasets are needed 

to improve generalizability, while longitudinal and multi-centre prospective studies will provide comprehensive 

validation across different settings. Involvement of experienced clinicians as benchmarks, standardized validation 

protocols, and improved explainability are crucial for trust and accuracy. Additionally, randomized clinical trials 

should be conducted where applicable to assess the real-world impact of AI on clinical outcomes, aligning with 

governmental health guidelines. A systematic review with meta-analysis on YOLO models in oral cyst diagnosis 

could reduce heterogeneity and elevate study quality, given the multiple studies that have utilized YOLO models in 

this context.  Interdisciplinary collaboration will also ensure the development of clinically relevant AI tools.  
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