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In this study, a new two-parameters lifetime distribution called the Odd 

Chen Gamma distribution is proposed .The probability density function

cumulative distribution function, reliability function, and some statistic

al important properties of this distribution were derived.Bayesian 

analysis was carried out using two types of prior distributions for the 

unknown parameter: informative and  non-informative prior.The 

estimator of the shape parameter was derived under both the Squared 

Error Loss and Weighted Loss functions.A simulation experiment was 

carried out to assess the efficiency of the Bayesian estimators by 

examining their mean squared error under different configurations of 

parameter values and varying sample sizes. 
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Introduction:- 
The Odd Chen–Gamma (OC-Gamma) distribution is a newly proposed lifetime model that combines the flexibility 

of the classical Gamma distribution with the shape-enhancing capability of the Odd Chen transformation. This 

transformation allows the model to capture various hazard rate behaviors, making it suitable for reliability and 

survival analysis [1],[2],[3]. Despite its desirable properties and recent interest in Odd Chen-generated families, the 

Bayesian estimation of the OC-Gamma model has not yet been explored in the literature. This represents a 

significant gap, especially when compared to other related models like the Chen, Exponentiated Generalized Chen, 

and Odd Generalized Exponential Chen distributions, which have been widely analyzed under Bayesian frameworks 

[4],[5],[6]. Bayesian estimation methods have gained popularity in reliability studies due to their flexibility in 

incorporating prior knowledge and handling complex models. These methods have been successfully applied in 

contexts such as record values, stress-strength models, and system reliability under various lifetime distributions 

[7],[8],[9]. The Odd Chen transformation itself has given rise to several generalized distribution families including 

the Odd Chen–Exponential, Odd Chen–Fre´chet, and Odd Burr types which have been effectively utilized in fields 

such as environmental studies, engineering reliability, and industrial modeling [10],[11],[12],[13]. In this work, 

estimate the shape parameter α of the OC-Gamma distribution using Bayesian method, assuming a fixed scale 

parameter β=2. Our goals are to derive the some important functions for new distribution and some statistical 

properties, implement Bayesian estimation via appropriate loss functions, and evaluate the performance of the 

proposed estimators through simulation analysis[13],[14],[16].  
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The Odd Chen–Gamma Distribution:-  

probability density function (PDF):-  

The probability density function p.d.f of the OC–Gamma distribution with shape parameter α>0 and scale parameter 

β>0 is defined on x > 0 as: 
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where: 

 
1

Γ α 
γ(α,

x

β
)  is the lower incomplete gamma CDF, i.e., the CDF of a Gamma distribution. 

 
xα−1e

−
x
β

βα Γ(α)
    is the standard Gamma p.d.f.  

 

Cumulative Distribution Function (CDF):- 

The cumulative distribution function CDF of the OC–Gamma distribution is given:-  

F x; α, β = 1 − e
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Reliability Function:-  

The reliability function R(x) gives the probability that a random variable X exceeds a certain value x: 

R x; α, β = e
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where F(x) is the cumulative distribution function. 

 

Hazard Function:-  

For any random variable X which follows the Odd Chen–Gamma distribution, its hazard function is given as: 

h x; α, β =
αβ[
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Some statistical:-  

Properties of the Odd Chen-Gamma Distribution:-  

Quantile Function For the OC–Gamma distribution, the quantile function (inverse CDF) returns the value x 

such that: 

F x; α, β = u,       0 < u < 1. 
In other words, 

Q u = F−1 u ⇒ F Q u ; α, β = u 

From our derivation, the closed form quantile function is 

x = Q u = βγ−1

 

 α, Γ α 
 ln(1 −

1
α

ln(1 − u))

1 +  ln(1 −
1
α

ln(1 − u)) 

 ,        0 < u < 1.                          … (5) 
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Moment Generating Function (MGF):- 

Let 𝐗 be a random variable that follows the OC–Gamma distribution, then, the moment generating function 

MGF of 𝐗 as: 

Mx t = E etx  =  etx  f x; α, β  dx
∞

0
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   te j+1 tβ
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dt … (6) 

 

Raw Moments:- 

Let 𝑿 denote a random variable that follows the OC–Gamma distribution. Then, the 𝒓𝒕𝒉 order moment about 

the origin, denoted by 𝝁′
𝒓
is given by: 
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Central Moments:-  

Let X denote a random variable that follows the Odd Chen–Gamma distribution. Then, the moments about 

the mean (i.e., the central moments), and the r^th order moment about the origin, denoted by μ_r  and 

〖μ^'〗_r respectively, are given by: 
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The mean and variance as:  
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Skewness and Kurtosis:-  

The coefficient of skewness for the OC–Gamma distribution is given by: 
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Coefficient of Variation:- 

The coefficient of variation for the OC–Gamma distribution is given by: 
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where 𝜎 is standard deviation and 𝜇 is mean of the distribution 

 

Bayesian Parameter Estimation:-  

Consider a random x_1,x_2,…,x_ndrawn independently from the Odd Chen-Gamma distribution with 

probability density function f(x|α,β)), where α is a shape parameter and β is a scale parameter. In this 

Bayesian analysis, the scale parameter β is assumed to be known equal  2, while the shape parameter α is to 

be estimated based on the observed data. The posterior distribution of α is given by[17]: 

𝑝 𝛼|𝑥 =  
𝐿  𝑥|𝛼  𝑞(𝛼)
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Where: 

 •  𝐿  𝑥|𝛼 =  𝑓(𝑥𝑗 |𝛼)𝑛
𝑗 =1 is the likelihood function. 

 • 𝑞 𝛼 is the prior distribution for the shape parameter 𝛼. 

By fixing 𝛽, we simplify the estimation and focus the Bayesian analysis on the behavior of 𝛼 alone. 

 

Likelihood Function:-  

The joint probability of the observed data, provided α, serves as the basis for the likelihood function: 
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The posterior distribution:- 

The posterior distribution under gamma prior[16]: 

The gamma prior is defined as: 

𝑞1 𝛼 =
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𝛼𝑎−1𝑒−𝑏𝛼     , 𝛼 > 0  , 𝑎, 𝑏 > 0                                               … (21) 

To find the posterior distribution under gamma prior we substitute the equation (20) and equation (21) we get: 
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Squared Error Loss Function (SELF) [14]: 

This loss function for this type defined as: 
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Then the Bayes  estimator as: 
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Weighted Loss Function (WLF)
[18]

: 

The weighted loss function defined as: 

𝐿 𝛼 , 𝛼 =
 𝛼 − 𝛼 2
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The posterior distribution under Hypothetical prior [15]:  

The Hypothetical prior used here is: 

 

𝑞2 𝛼 = 𝑘𝛼2       , 𝛼 > 0     ,     𝑘 > 0  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟… (25) 
 

To find the posterior distribution under this prior we substitute the equation (20) and equation (25) we get: 

𝑝2 𝛼 𝑥 =

𝑘 𝛼2+𝑛 2𝑛−𝛼𝑛  𝛤𝛼 −2𝑛  𝑥𝑗
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2  

3
𝑛
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 1−
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0

...(26)                                         
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Squared Error Loss Function (SELF): 

𝛼 𝑆2
=  𝛼
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…(27) 

 

Weighted Loss Function (WLF): 

𝛼 𝑊2
=

1
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…(28) 

 

Simulation procedure:-  

A simulation was conducted according to the Monte-Carlo method using MATLAB 2024b. first a random 

set,{u_i:i=1…n}, of numbers were generated form a U(0,1) distribution. The values u_i were then used to get 

the sample x_i,i=1…n by solving the equation:- 

𝐹 𝑥𝑖 , 𝛽, 𝛼 − 𝑢𝑖 = 0 

The sample was then used in the estimators to acquire the estimates for 𝛼 for each estimation method. 

This process was repeated 1000 times acquiring 1000 estimates 𝛼𝑗 , 𝑗 = 1 … 1000 for each estimator. 

Two types of priors were taken. Namely, gamma and non-informative. Each prior was taken with square error and 

weighted loss functions 

The mean squared error for the values were then calculated from the formula: 

𝑀𝑆𝐸 =
  𝛼𝑗 − 𝛼 

21000
𝑗=1

1000
 

The above value for each of the four estimators were then used to compare the performance between the two loss 

functions for each prior.The sample size was taken to be 𝑛 = 10,25,50,75,100 with 𝛽 = 2 and 𝛼 = 0.5,1,2 

 

Table 1: MSE Values for𝜶 = 𝟎. 𝟓 

n 
Gamma Prior  

𝑆1 𝑊1 Best 

10 0.001947041 0.001730928 𝑊1 

25 0.000985454 0.000924319 𝑊1 

50 0.000720959 0.000693413 𝑊1 

75 0.000637134 0.000619511 𝑊1 

100 0.000638562 0.000625065 𝑊1 

n 
Hypothetical prior  

𝑆2 𝑊2 Best 

10 0.002949031 0.002570022 𝑊2 

25 0.001206629 0.001129527 𝑊2 

50 0.000812324 0.000781397 𝑊2 

75 0.000693951 0.000674908 𝑊2 

100 0.000681437 0.000667152 𝑊2 
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Table 2: MSE Values for𝜶 = 𝟏 

 

 

Conclusions:-  
This research focused on estimating the shape parameter𝛼 of the Odd Chen–Gamma distribution using the Bayesian 

approach, with a fixed scale parameter 𝛽 =  2. Two prior distributions were considered: the informative Gamma 

prior and a non-informative prior. Bayesian estimators were compared under the Squared Error and Weighted Loss 

functions.A simulation study was carried out using nine experiments with different sample sizes 

(𝑛 =  10, 25, 50, 75, 100), each repeated 1000 times. The results showed that the Weighted Loss function 

performed better when 𝛼 was small (0.5 𝑎𝑛𝑑 1), while the Squared Error Loss was more accurate for𝛼 = 2in 

Hypothetical priorsalso improved estimation when prior knowledge was appropriate.These findings emphasize the 

importance of selecting the right loss function and prior distribution in Bayesian inference and suggest possible 

extensions to censored data or more advanced hierarchical models in future studies. 
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