



Journal Homepage: - [www.journalijar.com](http://www.journalijar.com)

## INTERNATIONAL JOURNAL OF ADVANCED RESEARCH (IJAR)

Article DOI: 10.21474/IJAR01/22558  
DOI URL: <http://dx.doi.org/10.21474/IJAR01/22558>



### RESEARCH ARTICLE

## HEAVY METAL POLLUTION IN DRINKING WATER: SOURCES, HEALTH RISKS, MONITORING, AND MITIGATION

Suresh P<sup>1</sup>, Lakshmanarao G<sup>2</sup>, Beebi SK<sup>1</sup> and Janaki NL<sup>1</sup>

1. Dept. of Chemistry, SRR and CVR Govt. Degree College(A),Vijayawada.
2. Dept. of Chemistry, Dr.V.S.Krishna Govt. Degree College(A),Visakhapatnam.

### Manuscript Info

#### Manuscript History

Received: 04 November 2025  
Final Accepted: 06 December 2025  
Published: January 2026

#### Key words:-

Heavy metals, Drinking water, Analytical methods, Health problems, Effective management

### Abstract

Heavy metal contamination in drinking water is a critical global environmental and public health concern due to the toxic, persistent, and non-biodegradable nature of metals such as arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), chromium (Cr), and nickel (Ni). This paper reviews the sources, occurrence, toxicological impacts, monitoring techniques, regulatory frameworks, and mitigation strategies associated with heavy metals in drinking water. Data from multiple geographical regions reveal that anthropogenic activities such as mining, industrial effluents, agricultural runoff, and inadequate wastewater treatment are major contributors to elevated heavy metal levels. Chronic exposure can lead to severe health outcomes including neurological disorders, carcinogenesis, kidney damage, and developmental issues. The paper examines analytical methods like atomic absorption spectrometry (AAS) and inductively coupled plasma mass spectrometry (ICP-MS) used for monitoring, discusses international water quality guidelines, and evaluates remediation technologies including adsorption, membrane filtration, and phytoremediation. Effective management requires integrated policies, regular monitoring programs, community engagement, and investment in treatment technologies. Recommendations emphasize harmonized standards and innovation in low-cost treatment options.

"© 2026 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed with credit to the author."

### Introduction:-

Water is essential for life; however, the contamination of drinking water with toxic heavy metals poses a significant threat to human health and ecosystems. Heavy metals are natural components of the Earth's crust, but anthropogenic inputs have increased their concentrations in water beyond safe limits (Smedley & Kinniburgh, 2002; WHO, 2017). Unlike organic pollutants, heavy metals do not degrade and can accumulate in tissues, leading to bioaccumulation and biomagnification (Duruibe et al., 2007). This paper provides a comprehensive review of heavy metal pollution in drinking water, focusing on sources, impacts, monitoring, regulatory frameworks, and mitigation.

**Corresponding Author:-** Suresh P

**Address:-** Dept. of Chemistry, SRR and CVR Govt. Degree College(A),Vijayawada.

### **Sources and Pathways of Heavy Metal Contamination:-**

#### **Natural Sources:-**

Heavy metals reach water bodies through natural geochemical processes such as weathering of rocks and volcanic activity. In certain regions, natural arsenic and fluoride contamination in groundwater is significant (Gupta et al., 2019).

#### **Anthropogenic Sources:-**

##### **Human activities intensify the mobilization of heavy metals:**

- **Industrial discharge:** Electroplating, battery manufacturing, and tannery effluents contribute Pb, Cd, Cr, and Ni (Rahman et al., 2018).
- **Mining:** Acid mine drainage releases metals including Hg and As into surface and groundwater (Kumar et al., 2022).
- **Agriculture:** Use of metal-containing pesticides and fertilizers leads to runoff that infiltrates water sources (Ali et al., 2019).
- **Corroding infrastructure:** Old pipes can leach Pb and Cu into drinking water (EPA, 2022).

### **Health Impacts of Heavy Metals:**

Heavy metals affect multiple organ systems, often with irreversible outcomes:

#### **Arsenic:**

Chronic arsenic exposure is linked to skin lesions, cancers, and cardiovascular diseases (Argos et al., 2015; WHO, 2017).

#### **Lead:**

Pb exposure is particularly dangerous for children, causing cognitive deficits and developmental delays (Liu et al., 2019; Fewtrell et al., 2017).

#### **Cadmium and Mercury:**

Cd accumulates in kidneys, causing renal dysfunction, whereas Hg affects the nervous system, particularly in fetuses (He et al., 2020; Satter et al., 2021).

#### **Chromium and Nickel:**

Cr(VI) compounds are carcinogenic, and Ni exposure can provoke dermatitis and respiratory issues (Apostolopoulou et al., 2020).

### **Monitoring and Analytical Methods:**

Accurate detection and quantification of heavy metals are critical for risk assessment:

#### **Atomic Absorption Spectrometry (AAS):**

AAS is widely used due to its precision and reliability for metals like Pb and Cd (Kazi et al., 2016).

#### **Inductively Coupled Plasma Mass Spectrometry (ICP-MS):**

ICP-MS offers multi-element analysis with low detection limits, suitable for comprehensive monitoring (Kazi et al., 2016).

#### **Other Techniques:**

X-ray fluorescence(XRF) and electrochemical sensors are employed where rapid screening is necessary (Tchounwou et al., 2012).

### **Regulatory Frameworks and Water Quality Standards:**

International guidelines set maximum allowable limits to protect human health. The WHO recommends limits for As (10 µg/L), Pb (10 µg/L), and Cd (3 µg/L) among others (WHO, 2017). The U.S. EPA's National Primary Drinking Water Regulations similarly enforce maximum contaminant levels (EPA, 2022). However, enforcement challenges persist in low- and middle-income countries due to resource limitations (Sharma et al., 2019).

### **Mitigation and Treatment Technologies:**

#### **Point-of-Use Treatments:**

Household filters using activated carbon, ion exchange resins, and reverse osmosis can reduce metal concentrations (Singh et al., 2018).

**Phytoremediation:**

Certain plants accumulate heavy metals, offering cost-effective remediation for contaminated waters and soils (McLaughlin et al., 2017).

**Advanced Technologies:**

Nanomaterials and membrane filtration show promise but face scalability challenges (Rahman et al., 2018).

**Discussion:-**

The persistence of heavy metals in drinking water highlights the need for coordinated actions. Integrating community monitoring, stringent regulations, and investment in infrastructure can reduce exposure risks. There is a need to adopt low-cost and sustainable technologies, particularly in resource-constrained settings.

**Conclusion:-**

Heavy metal pollution of drinking water remains a significant environmental and health issue worldwide. Effective management requires robust monitoring, strengthened regulatory compliance, public awareness, and innovation in treatment technologies. Future research should focus on developing affordable, scalable solutions and understanding long-term health impacts at low exposure levels.

**References:-**

1. Ali, H., Khan, E., & Ilahi, I. (2019). Toxicity of heavy metals and their environmental implications. *Chemosphere*, 209, 18–28.
2. Apostolopoulou, E., et al. (2020). Ni and Cr contamination in urban water systems. *Water Research*, 185, 116232.
3. Argos, M., et al. (2015). Chronic arsenic exposure and health risks. *Environmental Health Perspectives*, 123, 1342–1350.
4. Duruibe, J.O., Ogwuegbu, M.O.C., & Egwurugwu, J.N. (2007). Heavy metal pollution and human biotoxic effects. *Int. J. Phys. Sci.*, 2, 112–118.
5. EPA (2022). National Primary Drinking Water Regulations. US Environmental Protection Agency.
6. Fewtrell, L., et al. (2017). Lead in drinking water and cognitive development. *Lancet Public Health*, 2, e141–e149.
7. Gupta, N., et al. (2019). Arsenic contamination in groundwater. *J. Environmental Management*, 246, 212–222.
8. He, Z., et al. (2020). Cadmium accumulation and toxicity. *Journal of Hazardous Materials*, 388, 122070.
9. Kazi, T.G., et al. (2016). Analytical methods for heavy metal detection. *TrAC Trends Anal. Chem.*, 79, 277–289.
10. Kumar, M., et al. (2022). Contaminant source tracking in urban aquifers. *Sci. Total Environ.*, 837, 155971.
11. Liu, J., et al. (2019). Lead exposure in children. *Environmental Health*, 18, 22.
12. McLaughlin, M.J., et al. (2017). Phytoremediation of heavy metals. *Environmental Sci. Technol.*, 51, 8497–8505.
13. Rahman, M.M., et al. (2018). Heavy metals in drinking water. *Chemosphere*, 211, 866–884.
14. Satter, M.A., et al. (2021). Mercury contamination in drinking water. *Environmental Pollution*, 268, 115673.
15. Sharma, C.S., et al. (2019). Assessment of heavy metals in rural India. *Environ. Monit. Assess.*, 191, 620.
16. Singh, R.P., et al. (2018). Point-of-use technologies. *J. Water Process Eng.*, 27, 234–245.
17. Smedley, P.L., & Kinniburgh, D.G. (2002). Source and distribution of arsenic. *Applied Geochemistry*, 17, 517–568.
18. Tchounwou, P.B., et al. (2012). Heavy metal toxicity and environment. *EXS*, 101, 133–164.
19. WHO (2017). Guidelines for Drinking-water Quality, 4th ed. World Health Organization.
20. Liu, C., et al. (2023). Risk assessment of heavy metals in groundwater. *Environmental Pollution*, 315, 120297.
21. EPA (2022). Lead and Copper Rule Revisions. US EPA.
22. Duruibe, J.O., et al. (2007). Heavy metal pollution effects. *Int. J. Phys. Sci.*, 2, 112–118.
23. Nriagu, J.O., & Pacyna, J.M. (1988). Worldwide contamination by trace metals. *Nature*, 333, 134–139.
24. Balali-Mood, M., et al. (2021). Cadmium toxicity: health effects and treatment. *J. Res. Med. Sci.*, 26, 13.
25. Fawell, J., et al. (2006). Fluoride in Drinking-Water. WHO.