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Traffic congestion is a growing concern in rapidly expanding cities,
particularly in contexts where conventional traffic monitoring systems
provide limited spatial and temporal coverage. This challenge is
especially visible in many cities of the Global South, where the scarcity
of fine-grained data restricts detailed analysis of urban mobility at the
road-segment level. This study examines the prediction of link-level
traffic density in Abidjan using trajectory data collected from an app-
based mobility platform during September 2023, comprising more than
11,000 observations aggregated over approximately 814 road segments,

and supervised machine learning methods.Road segments are described
through a combination of geometric, regulatory, and trajectory-based
features, and several regression models are evaluated within a common
experimental framework.The results indicate that reliable traffic density
estimates can be obtained even in the absence of dense sensing infrastru
cture. Random Forest provides consistently accurate and stable predicti
ons across heterogeneous traffic conditions. The analysis also suggests
that regulatory characteristics, such as speed limits and road hierarchy,
exert a stronger influence on traffic density than detailed geometric
descriptors.These findings highlight the practical relevance of trajector

y-based supervised learning as a flexible and affordable solution for
traffic analysis and mobility planning in data constrained urban environ
ments.

"© 2026 by the Author(s). Published by IJAR under CC BY 4.0. Unrestricted use allowed
with credit to the author.”

Introduction:-

Traffic congestion has become a structural challenge in large metropolitan areas, particularly in cities undergoing
rapid urban growth and increasing motorization [1]. Beyond longer travel times and higher fuel consumption,
congestion has been widely shown to undermine economic productivity and degrade environmental sustainability in
urban systems [2]. These effects are especially acute in cities of the Global South, where transport infrastructure
development and traffic monitoring capacitiesoften remain limited relative torising mobility demand [3].In sub-
Saharan African cities, traffic dynamics reflect a combination of strong demographic pressure, spatial expansion,
and a highly heterogeneous transport supply [4]. In Abidjan, formal public transport services operate alongside
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informal modes, private vehicles, and app-based mobility platforms, resulting in pronounced spatial and temporal
variations in congestion across the road network [1]. Although recent investments in major road infrastructure have
improved connectivity on selected corridors, congestion remains a persistent daily constraint, largely due to the lack
of continuous and fine-grained information on traffic conditions at the level of individual road segments [2,3].

Conventional traffic monitoring systems are primarily based on fixed sensing infrastructure, such as loop detectors,
cameras, and dedicated counting stations [5]. While these technologies provide accurate measurements where they
are deployed, their high installation and maintenance costs often limit spatial coverage, particularly in rapidly
expanding urban environments [6]. As a consequence, large portions of road networks in cities like Abidjan remain
insufficiently observed, restricting comprehensive congestion assessment and evidence-based traffic management

[3].

In recent years, the rapid diffusion of digital mobility platforms has created new opportunities for traffic
observation. Ride-hailing services continuously generate high-resolution trajectory data that capture vehicle
movements across extensive parts of the urban network [7]. When properly anonymized and aggregated, these
trajectory data have been shown to provide a reliable proxy for traffic conditions, enabling link-level analysis of
congestion dynamics in complex and heterogeneous urban settings [8].The growing availability of trajectory-based
data has coincided with significant advances in supervised machine learning for traffic analysis. Previous studies
have demonstrated that nonlinear and ensemble-based models outperform classical linear approaches when
modeling complex relationships between traffic density, road characteristics, and temporal demand variations [9]. In
particular, machine learning techniques such as tree-based ensembles, kernel-based models, and Artificial Neural
Network (ANN) are well suited to capturing the nonstationary and heterogeneous nature of urban traffic dynamics
[10].

Building on these developments, this study investigates link-level traffic density prediction in Abidjan using
trajectory data derived from an e-hailing platform. The objective is to evaluate the ability of supervised learning
models to estimate traffic density at the scale of individual road segments in a data-constrained urban environment.
Five regression approaches are examined: a Dummy Regressor used as a baseline, Linear Regression enhanced with
Polynomial Ridge Regularization, Random Forest, Support Vector Regression (SVR), and Artificial Neural
Network. All models are assessed within a unified experimental framework to ensure a consistent comparison of
predictive performance and robustness.The remainder of this paper is organized as follows. Section 2 presents the
urban mobility context of Abidjan and motivates the use of trajectory-based data. Section 3 reviews related work on
traffic density estimation, trajectory-based traffic analysis, and supervised machine learning approaches. Section 4
describes the methodological framework, and the experimental protocol, including descriptive statistics, correlation
analysis, and hyperparameter tuning. Section 5 reports the experimental results, with particular emphasis on error
analysis and predicted—actual relationships. Section 6 discusses the implications and limitations of the findings.
Finally, Section 7 concludes the paper and outlines perspectives for future research.

Urban Mobility Context in Abidjan:-

Abidjan is the economic capital of Cote d’Ivoire and one of the major metropolitan areas in West Africa. Over
recent decades, the city has experienced sustained population growth and rapid spatial expansion, which have been
accompanied by a steady increase in daily travel demand. This evolution has progressively intensified pressure on
the urban road network. These trends are documented in recent empirical studies focusing on traffic data collection
and network characterization in Abidjan, which describe the growing challenges associated with monitoring and
managing mobility in a rapidly expanding urban environment [3,11].Urban mobility in Abidjan exhibits a high
degree of modal diversity. Formal public transport systems coexist with a wide range of informal services, including
shared minibuses and taxis, alongside private vehicles and, more recently, app-based ride-hailing platforms. This
heterogeneous transport supply is reflected in traffic patterns that vary substantially across space and time,
depending on land-use configuration, peak-hour demand, and network structure. Previous analyses of mobility
transformations in Abidjan report that such diversity increases the complexity of traffic observation and modeling
tasks, particularly at the level of individual road segments [11].

Traffic monitoring in Abidjan is characterized by a limited deployment of fixed sensing infrastructure. Conventional
monitoring technologies such as loop detectors, cameras, and permanent counting stations are typically installed on
selected parts of the network, leading to partial spatial coverage and discontinuous temporal information. Similar
situations have been reported in many cities of the Global South. Empirical studies on traffic state estimation and
monitoring indicate that these constraints limit comprehensive congestion assessment and restrict the operational use
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of data-driven traffic management strategies in large urban networks [12].In parallel with these limitations, the
growing adoption of digital mobility platforms has generated new sources of traffic-related data. Ride-hailing
services produce large volumes of high-resolution trajectory data that record vehicle movements across substantial
portions of the urban network. Several recent studies show that trajectory-based data can provide a reliable proxy for
traffic conditions, enabling the analysis of speed variations and congestion patterns at the link level, particularly in
contexts where fixed sensors are sparse or unevenly distributed [13,14].Taken together, these empirical
characteristics—rapid urban growth, heterogeneous mobility patterns, limited fixed sensing infrastructure, and
increasing availability of trajectory data—make Abidjan a relevant case study for investigating alternative
approaches to traffic density estimation. From an analytical perspective, data-constrained urban environments such
as Abidjan offer a suitable setting for exploring trajectory-based methods combined with supervised machine
learning, with the aim of supporting more comprehensive, scalable, and cost-effective link-level traffic analysis.

Related Work:-

Traffic density and congestion estimation constitute a long-standing research topic within intelligent transportation
systems. Early studies primarily relied on data collected from fixed sensing infrastructure, including loop detectors,
cameras, and permanent counting stations, to estimate traffic states and congestion levels. Such infrastructure has
supported numerous operational traffic models and control strategies, particularly in cities equipped with dense
monitoring networks [12]. At the same time, several studies point out that the deployment and maintenance of fixed
sensors remain costly and often result in uneven spatial coverage, especially in rapidly expanding urban
environments. As a consequence, these systems may fail to capture fine-grained congestion patterns at the level of
individual road segments, limiting their effectiveness for detailed traffic analysis [15—17]. These limitations are
further accentuated in complex urban networks characterized by heterogeneous demand and highly variable traffic
conditions [18].

In response to these constraints, a growing body of literature has explored vehicle trajectory data as an alternative or
complementary source of traffic information. The widespread availability of GPS-enabled devices, probe vehicles,
and digital mobility platforms has substantially increased access to trajectory data for large-scale traffic analysis.
Empirical studies show that trajectory-derived indicators, such as speed profiles and travel time distributions, can
provide meaningful representations of congestion dynamics and support link-level traffic state inference in urban
road networks [19,20]. More recent contributions further demonstrate that traffic density and congestion levels can
be inferred from GPS-based trajectories even in contexts where direct measurements are unavailable or unreliable
[13,18]. In particular, ride-hailing trajectory data have attracted growing attention due to their high temporal
resolution and extensive spatial coverage, making them especially suitable for traffic analysis in cities with sparse or
unevenly distributed sensing infrastructure [14]. Additional empirical investigations confirm that trajectory-based
approaches are capable of capturing spatial heterogeneity and localized congestion patterns across large urban
networks [21,22].

Beyond data source considerations, recent research has increasingly focused on modeling frameworks that explicitly
account for the structure of road networks. Graph-based spatiotemporal models, including attention-driven temporal
graph convolutional architectures, have been widely adopted to capture spatial dependencies and temporal dynamics
in traffic forecasting tasks [23]. Subsequent developments emphasize the importance of jointly modeling local and
global spatial interactions, with local-global spatiotemporal graph convolutional formulations proposed to better
represent traffic flow dynamics across urban networks [24]. Complementary to these advances, several studies
highlight the benefits of data fusion strategies, in which heterogeneous information sources are combined with
machine learning models to improve robustness and generalization, particularly under sparse or noisy sensing
conditions [25].

Alongside these methodological developments, supervised machine learning techniques have become central to
traffic prediction and congestion analysis. Linear regression models are commonly employed as baseline approaches
due to their simplicity and interpretability, often serving as reference points for more complex models [26].
However, numerous empirical studies report that linear models struggle to capture the nonlinear relationships
inherent in traffic dynamics, especially under variable demand and complex network interactions [6,7]. Kernel-
based methods such as Support Vector Regression have been shown to better represent nonlinear patterns, while
ensemble approaches, including Random Forest, provide increased robustness to noise and heterogeneous feature
distributions [27-29]. Artificial Neural Network have also been extensively applied to traffic forecasting tasks, with
several studies demonstrating their ability to model complex temporal and spatial dependencies when sufficient data
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and appropriate regularization strategies are available [30].Recent survey studies underline the rapid expansion of
deep learning and hybrid learning paradigms in traffic prediction, while emphasizing the critical role of data
characteristics and evaluation protocols in determining comparative performance outcomes [31,32]. Comparative
analyses consistently indicate that no single learning paradigm systematically outperforms others across all traffic
prediction scenarios. Instead, model effectiveness is strongly dependent on data availability, feature design, and
experimental settings, underscoring the importance of systematic and controlled model comparison within a unified
evaluation framework [8,33]. Despite these advances, relatively few studies provide comprehensive comparisons of
multiple supervised learning models for link-level traffic density estimation using real-world trajectory data in sub-
Saharan African cities. Existing work in African urban contexts tends to focus on broader mobility challenges and
data scarcity, with limited quantitative assessment of fine-grained traffic density models [3,11].

Against this background, the present study contributes to the literature by addressing these gaps through a systematic
evaluation of multiple supervised regression models for link-level traffic density prediction in Abidjan, using
trajectory data derived exclusively from an e-hailing platform. By comparing a baseline model with linear,
ensemble-based, kernel-based, and Artificial Neural Networkapproaches within a consistent experimental
framework, the study provides empirical insights into the relative suitability and robustness of different modeling
strategies in a data-constrained urban environment. The proposed approach emphasizes practicality and scalability,
offering a data-driven framework that can support traffic analysis and decision-making in cities where conventional
monitoring infrastructure remains limited.

Methodology:-

This study relies on a supervised machine learning framework to estimate traffic density at the level of individual
road segments in Abidjan.

The methodological pipeline integrates trajectory-based data processing, feature construction, model training, and
performance evaluation, with a focus on robustness and reproducibility under realistic urban mobility conditions. An
overview of the workflow is provided in Figure 1.
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Figure 1: - Overview of the machine learning pipeline used

Dataset and Study Area:-

The empirical analysis is based on trajectory data collected from an e-hailing platform operating in Abidjan, Cote
d’Ivoire. The dataset consists of anonymized vehicle trajectories describing completed trips within the metropolitan
area. Each record contains spatiotemporal information that allows trajectories to be associated with individual road
segments and aggregated at the link level. In total, the dataset comprises more than 11,000 individual trip records
collected during September 2023, aggregated over 814 distinct road segments across the Abidjan metropolitan area.
Trajectories were filtered to retain only completed trips with valid timestamps. Traffic density was estimated at the
link level by aggregating trajectory-derived indicators over predefined temporal intervals, using the number of
observed vehicle passages per segment as a proxy for density. This aggregation procedure ensures consistency
between spatial units and supports reproducibility of the target variable construction.During preprocessing, only
trips with consistent timestamps, valid GPS traces, and origins and destinations located within the study area were
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retained. Cancelled trips, incomplete trajectories, and corrupted records were systematically removed. All data were
handled in aggregated and anonymized form to ensure compliance with privacy and ethical requirements. Although
the present analysis focuses on Abidjan, the overall methodological framework is designed to remain applicable to
other urban environments facing similar data constraints.

Feature Construction and Descriptive Statistics:

A set of explanatory variables was constructed to characterize traffic conditions at the road-segment level. These
variables reflect complementary aspects of the urban network, including geometric properties of links, regulatory
attributes such as posted speed limits, and trajectory-derived indicators capturing vehicle movement patterns.The
selection of geometric variables was guided by their ability to represent structural characteristics of road segments
that directly influence traffic accumulation and flow capacity, such as segment length, curvature, connectivity, and
local network complexity. Regulatory attributes were included to account for differences in road hierarchy and
operational constraints, while trajectory-derived indicators provide empirical information on observed vehicle
behavior.

The target variable corresponds to traffic density estimated for each segment over predefined time intervals.This
aggregation-based density estimation was adopted to ensure consistency across road segments and to produce a
comparable link-level target variable compatible with the spatial resolution imposed by the available trajectory data.
By estimating density at the segment level rather than at individual trajectory points, the approach aims to capture
persistent traffic conditions while reducing the impact of short-term fluctuations and measurement noise.Descriptive
statistics were computed to summarize the distributions of the explanatory variables and the target variable. Table 1
reports key summary measures, including indicators of central tendency, dispersion, and range. The results reveal
pronounced heterogeneity across road segments. Several geometry-related variables exhibit strongly skewed
distributions, with median values substantially lower than means, indicating the presence of a limited number of
large or structurally complex segments alongside a majority of shorter and simpler links.

Table 1: - Summary of descriptive statistics for key variables

Variable Mean |Variance |Standard Deviation | Median | Mode | Range | Min | Max
BBox Area (m?) 6085 330856000 | 18189,40 303,28 |0 141191 |0 141191
BBox Height (m) 71,26 |8202,66 90,57 35,9 10,56 (4872 0,33 | 487,54
BBox Width (m) 43,6 | 4869,94 69,78 16,96 0 466,39 |0 466,39
Mean Bearing (°) 164,04 | 13478,6 116,1 179,72 |0 357,61 |0 357,61
Chord (m) 93,05 [11388,2 106,72 50,79 10,57 | 564,79 |2,35|567,13
End Bearing (°) 164,07 | 13437,5 115,92 179,72 |0 359,82 |0 359,82
Length (m) 93,64 |11734,2 108,32 51,06 10,57 | 587,54 |2,35|589,89
Vertices 3,27 5,94 2,44 2 2 14 2 16
Seg. Max (m) 53,3 1884,03 43,41 36,51 10,57 | 179,32 |2,35 | 181,66
Seg. Mean (m) 44,62 |1360,6 36,89 29,82 10,57 [ 174,01 |2,35|176,36
Seg. SD (m) 5,58 119,16 10,92 0 0 4522 |0 45,22
Sinuosity 1 0 0,01 1 1 0,05 1 1,05
Start Bearing (°) 164,34 | 13609,4 116,66 180 0 359,37 |0 359,37
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Straightness 1 0 0,01 1 1 0,04 0,96 |1
Max Turn (°) 4,08 5,78 2,4 4,08 4,08 (1496 |0 14,96
Mean Turn (°) 2,83 3,24 1,8 2,83 2,83 (13,12 |0 13,12
Turn p90 (°) 3,7 4,53 2,13 3,7 3,7 14,22 |0 14,22
Vertex Density (m™) [ 0,04 |0 0,05 0,03 0,03 0,42 0,01 0,43
Length 93,33 |11653,9 107,95 50,7 21,2 5852 |24 |587,6
Segments 2,27 5,94 2,44 1 1 14 1 15
Speed Limit 66,11 |624,79 25 60 50 70 50 | 120

Regulatory attributes also display considerable variability across the network, reflecting differences in road function
and hierarchy. Taken together, these descriptive patterns underline the structural diversity of Abidjan’s road network
and motivate the use of flexible regression models capable of capturing nonlinear relationships.

Correlation Analysis:

To explore relationships among explanatory variables and assess potential redundancy, a correlation matrix was
computed using Pearson correlation coefficients. The resulting heatmap is presented in Figure 2. The analysis
highlights distinct correlation structures associated with different feature groups.Regulatory attributes form a
coherent cluster, while geometric descriptors related to segment size and extent are strongly correlated with one
another. In contrast, indicators of local structural complexity and orientation display weaker associations with size-
related variables. Importantly, correlations between regulatory and geometric feature groups remain moderate,
suggesting limited redundancy across these dimensions.Overall, the correlation patterns indicate that the selected
features provide complementary information rather than duplicating the same signal. On this basis, all constructed
variables were retained for the supervised learning experiments.
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Supervised Learning Models:

Rather than relying on a single predictive approach, this study compares several regression models with distinct
assumptions and levels of flexibility, selected to cover the main families of supervised learning approaches
commonly applied in traffic prediction. These range from simple baseline and linear models to ensemble-based,
kernel-based, and neural methods, thereby ensuring a balanced and methodologically sound comparison [34, 35].

To capture nonlinear relationships while maintaining model stability, Linear Regression with Polynomial Ridge
regularization was retained. Polynomial feature expansion allows interaction effects to be modeled, while L2
regularization helps control estimation variance in the presence of correlated predictors [26].An ensemble-based
approach is represented by the Random Forest Regressor, which aggregates multiple decision trees trained on
randomized subsets of the data. This method is well suited to heterogeneous feature spaces and complex nonlinear
dependencies [29].Support Vector Regression (SVR) was also considered, as it uses kernel-based transformations to
approximate nonlinear relationships through margin-based optimization, often yielding strong generalization
performance on structured datasets [36, 37].Finally, an Artificial Neural Network (ANN) was employed to learn
nonlinear interactions across multiple explanatory variables. The network relies on layered representations
optimized through gradient-based learning and is capable of capturing complex feature interactions [30].A Dummy
Regressor serves as a baseline, providing a reference level of performance against which more advanced models can
be evaluated [38].

Hyperparameter Tuning and Experimental Protocol:

To ensure a fair comparison across models, hyperparameter tuning was conducted using a randomized search
strategy. This approach enables efficient exploration of the hyperparameter space while limiting computational cost.
The Dummy Regressor was excluded from this tuning procedure and evaluated using baseline strategies.

Model performance was assessed through a K-fold cross-validation scheme in order to obtain stable estimates of
predictive accuracy and generalization. Evaluation relied on standard regression metrics, including the coefficient of
determination (R?) and error-based measures such as Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE). The optimized hyperparameter configurations retained for each model are summarized in Table 2.

Table 2: - Summary of Machine Learning Models and their Optimized Hyperparameter Settings

Model Best Hyperparameters

Dummy Regressor {'strategy': 'mean'}

{'poly__degree": 2, 'poly _include bias': False, 'poly _interaction only": False,

Polynomial+Ridge 'ridge__alpha" 0.1, 'ridge__fit _intercept": True}

Random Forest {'max_depth': None, 'min_samples_split": 2, 'n_estimators': 200}

Support Vector Regression | {'C" 10, 'gamma': 'scale’, 'kernel'": 'rbf'}

Artificial Neural Network {'activation": 'relu', 'alpha': 0.01, 'hidden_layer sizes" (50, 30)}

All remaining model parameters were kept at their default values as defined in the scikit-learn implementation.

Experimental Results and Analysis: -

This section reports the experimental results obtained from the supervised learning models used to estimate link-
level traffic density in Abidjan. The analysis builds exclusively on results already produced in the complete study
and focuses on global performance, error behavior, and calibration quality. No explainable Al techniques are
considered at this stage, and the discussion is deliberately limited to empirical observations.

Global Model Performance:

The first level of analysis compares the overall predictive performance of the models using standard regression
metrics. Cross-validated values of R?, RMSE, MAE, MSE, and MAPE are summarized in Table 3, providing a
consistent basis for comparison across models.As expected, the Dummy Regressor performs poorly across all
metrics, yielding a coefficient of determination close to zero and very large errors, with an RMSE exceeding 13. It
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therefore serves only as a baseline reference. In contrast, Polynomial Ridge Regression represents a clear
improvement, reaching an R? of about 0.96 and reducing the RMSE to roughly 2.7. This gain suggests that the
inclusion of nonlinear terms captures a significant part of the structure underlying traffic density variation across

road segments.

Table 3: - Cross-validation performance of the regression models for traffic density prediction

Models R2 RMSE MAE MSE MAPE
Dummy Regressor -0.000045 13.116091 10.470514 172.031836 9.184379
Polynomial + Ridge 0.961704 2.700657 2.023422 7.293547 1.842884
Random Forest 0.990780 1.472332 1.058527 2.167762 0.969000
Support Vector Regression | 0.907712 4.273489 3.179472 18.262707 2.965131
Artificial Neural Network 0.953348 3.396052 2.569213 11.533171 2.312873

Among the remaining models, Random Forest stands out as the best-performing approach. It achieves the highest
explanatory power, with an R? close to 0.99, while maintaining low prediction errors (RMSE = 1.47 and MAE =
1.06). Support Vector Regression and the Artificial Neural Network also outperform the linear baseline, with
coefficients of determination above 0.90, but they are associated with larger residual errors and greater variability
across cross-validation folds. These differences in predictive behavior are further illustrated in Figure 3, which
highlights the progressive improvement obtained when moving from simpler to more flexible learning models.
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Figure 3: - Comparative Barplot of Model Performance by Metric Using Cross-Validation

Random Forest emerges as the most effective model across the evaluated performance metrics. Nevertheless, these
results are best interpreted within the context of the adopted experimental framework. K-fold cross-validation
provides evidence of performance stability across data splits, while the reported outcomes remain specific to the
dataset characteristics and feature set used in this analysis.Taken together, the global metrics reveal a clear hierarchy
among the evaluated approaches, with ensemble-based methods providing the most accurate and reliable estimates
of traffic density at the link level.
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Error Analysis and Diagnostic Plots:

While aggregate metrics provide a first indication of model performance, residual analysis offers deeper insight into

stability and robustness. The distributions of prediction errors obtained under cross-validation are shown in Figure 4.
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Figure 4: - Residual distributions (Predictions — Actual) for all regression models under cross-validation

The Dummy Regressor produces wide and unstructured residual distributions, confirming its inability to capture
meaningful variation in traffic density. Polynomial Ridge Regression yields residuals that remain centered around
zero but exhibit heavier tails, suggesting reduced accuracy for extreme density values.Random Forest displays the
most balanced residual behavior. Its error distribution is narrow, approximately symmetric, and closely centered on
zero, indicating both low variance and limited systematic bias across different traffic regimes. Support Vector
Regression and the Artificial Neural Network also generate centered residuals, although with broader dispersion,
reflecting higher sensitivity to local fluctuations and model configuration.Overall, the diagnostic plots confirm that
ensemble-based models not only achieve higher accuracy but also provide more stable and consistent error behavior,
a desirable property for link-level traffic density estimation in heterogeneous urban networks.

Predicted—Actual Relationship Analysis:

Model calibration was further examined by comparing predicted and observed traffic density values. Scatter plots of
predicted versus actual densities are presented in Figure 5, with the identity line included as a reference.
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Figure 5: -Predicted vs. Actual traffic density plots for the regression models under cross-validation

Polynomial Ridge Regression shows a reasonable alignment with the diagonal but tends to smooth high-density
observations, resulting in mild underestimation at the upper end of the range. Random Forest exhibits the strongest
agreement with observed values, with predictions tightly clustered around the identity line across both low- and
high-density conditions.Support Vector Regression and the Artificial Neural Network capture the overall trend but
display greater dispersion around the diagonal, indicating increased variability in predictions. As expected, the
Dummy Regressor shows no meaningful alignment with observed densities. These visual patterns are consistent with
the numerical results and residual diagnostics. Together, they indicate that Random Forest provides the most
accurate and well-calibrated representation of link-level traffic density among the models considered.

Global Feature Importance:

To complement the performance analysis with a global view of variable influence, feature importance was examined
using the Random Forest model. The relative importance of the most influential predictors is shown in Figure 6.
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Regulatory and contextual variables dominate the ranking. Speed Limit emerges as the most influential feature,
followed by indicators related to road category and spatial context. Geometric descriptors contribute more
moderately, while fine-grained orientation and segmentation variables appear at the lower end of the ranking.This
global importance analysis confirms that traffic density patterns in Abidjan are driven primarily by regulatory
context and network hierarchy, with geometric characteristics providing secondary refinement. The analysis remains
strictly global and does not rely on local explainability techniques.

Speed Limit
Toponym

Road Category
Bounding Box Width

BBox Height

Bounding Box Area
Day

Vertex Density

variables

Geometry Length
Mean Segment Length
Max Segment Length
Chord 4

Length 4

Start Bearing

End Bearing

0.0 0.1 0.2 0.3 04 0.5
Importance

Figure 6: -Top 15 most important features according to the Random Forest model

Discussion:-

This study shows that supervised machine learning can provide a reliable and effective framework for estimating
link-level traffic density in Abidjan in situations where conventional traffic sensing infrastructure remains sparse or
unevenly deployed. By combining trajectory data from an e-hailing platform with geometric and regulatory
descriptors, the proposed approach captures structural congestion patterns that are difficult to observe through
traditional monitoring systems alone.

Why Some Models Perform Better Than Others:

The results indicate that Random Forest tends to outperform linear, kernel-based, and Artificial Neural Network
approaches in the considered setting. This advantage can largely be attributed to the ability of tree-based ensemble
methods to model complex and nonlinear interactions between heterogeneous predictors, including road geometry,
regulatory constraints, and spatial context. Such interactions are particularly relevant at the link level, where traffic
density is strongly shaped by structural characteristics of the road network rather than by purely temporal dynamics.
Similar observations have been reported in recent comparative studies on traffic flow and congestion prediction, in
which ensemble-based methods consistently demonstrate strong robustness in heterogeneous urban environments
[4,5,28].Polynomial regression achieves reasonable performance but remains limited in its capacity to capture
higher-order interactions across diverse road segments. Kernel-based methods and Artificial Neural Networks also
provide acceptable levels of accuracy; however, their performance appears more sensitive to feature scaling,
hyperparameter configuration, and data distribution. This sensitivity may reduce their stability in operational
contexts where calibration data are limited or unevenly distributed [39,40].
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Consistency with the Existing Literature:

The observed dominance of ensemble-based models is well aligned with recent findings in the traffic prediction
literature. Several reviews of machine learning applications in intelligent transportation systems emphasize that tree-
based ensembles offer a favorable balance between predictive accuracy, robustness to noise, and computational
efficiency, particularly in contexts characterized by uneven data quality and coverage [6,30,41]. Empirical studies
conducted in African and North African cities report similar trends, highlighting the suitability of these models for
congestion estimation using trajectory-based data [4,5].In addition, the strong influence of regulatory variables, such
as speed limits and road hierarchy, is consistent with prior work showing that contextual and functional attributes
often play a more decisive role than fine-grained geometric descriptors when explaining congestion patterns at the
scale of urban road networks [9,42]. This finding reinforces the importance of integrating regulatory information
when modeling traffic density in rapidly urbanizing cities.

Relevance for Data-Constrained Cities:

From an applied perspective, these results underline the practical value of trajectory-driven learning frameworks for
cities with limited fixed sensing infrastructure. In Abidjan, as in many cities of the Global South, the uneven
deployment of traffic sensors restricts the ability to monitor congestion comprehensively across the network.
Trajectory data generated by e-hailing services therefore represent a valuable alternative source of high-resolution
information that can support network-wide traffic analysis at relatively low cost [13,14].By focusing on supervised
learning models rather than complex spatiotemporal architectures, the proposed approach remains computationally
tractable and adaptable to other urban contexts facing similar data constraints. This makes it particularly relevant for
transport authorities seeking scalable tools to support congestion diagnosis and mobility planning in environments
where data availability remains heterogeneous [15,43].While the empirical results reported in this study are
grounded in the specific urban context of Abidjan, the proposed methodological framework is not inherently city-
specific. The combination of trajectory-derived data, link-level feature construction, and supervised learning models
can be applied to other urban environments facing similar constraints in terms of limited fixed sensing infrastructure
and heterogeneous traffic conditions. In such contexts, local calibration of features and aggregation schemes would
be required to reflect network characteristics and mobility patterns, while preserving the overall modeling approach.

Limitations:-

Some limitations nevertheless deserve to be acknowledged. First, the analysis relies on trajectory data from a single
mobility platform, which may introduce spatial sampling bias toward high-demand corridors and central areas. As a
result, peripheral neighborhoods with lower e-hailing activity may be underrepresented, potentially affecting
prediction accuracy in these zones [44,12]. Second, the temporal scope of the dataset is limited, which restricts the
ability to capture long-term seasonal effects or atypical congestion patterns associated with special events or
disruptions. Finally, although the selected features capture key structural and regulatory drivers of traffic density,
other potentially relevant factors, such as land-use intensity or weather conditions, were not explicitly modeled and
may explain part of the residual variability observed in the predictions [16,45].Despite these limitations, the
consistency of the results with prior studies and the stability of the best-performing models suggest that the proposed
framework constitutes a robust and relevant foundation for link-level traffic density estimation in data-constrained
urban environments.

Conclusion:-

This paper investigated the problem of link-level traffic density prediction in Abidjan using trajectory data derived
from an e-hailing platform and supervised machine learning models. The study was motivated by the persistent lack
of fine-grained traffic monitoring infrastructure in many rapidly growing cities of the Global South, where
conventional sensing systems provide only partial and uneven coverage of urban road networks.By comparing a
baseline model with linear, ensemble-based, kernel-based, and Artificial Neural Network within a unified
experimental framework, the results demonstrate that supervised learning can effectively capture traffic density
patterns at the scale of individual road segments. Among the evaluated approaches, ensemble-based methods, and in
particular Random Forest, consistently provide the most accurate and stable predictions across global performance
metrics, residual diagnostics, and calibration analyses. These findings highlight the importance of modeling
nonlinear interactions between regulatory context, road hierarchy, and trajectory-derived indicators when addressing
heterogeneous urban traffic conditions.Beyond predictive accuracy, the analysis shows that regulatory and
contextual variables play a dominant role in shaping traffic density patterns in Abidjan, while detailed geometric
descriptors contribute more moderately once higher-level structural information is taken into account. This
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observation reinforces the relevance of incorporating regulatory and functional attributes in data-driven traffic
models, especially in urban environments characterized by mixed transport systems and uneven infrastructure
development.From an applied perspective, the proposed framework illustrates the practical value of trajectory-based
data for traffic analysis in data-constrained contexts. By relying on widely available mobility data and supervised
learning models that remain computationally tractable, the approach offers a scalable alternative to sensor-dependent
monitoring systems. It can support network-wide congestion assessment and provide quantitative insights that are
difficult to obtain through traditional data sources alone.

From an operational perspective, the proposed framework offers practical insights for transport authorities and urban
mobility planners operating in data-constrained environments. By leveraging trajectory data from existing digital
mobility services, the approach enables the estimation of link-level traffic density without relying on extensive fixed
sensing infrastructure. Such information can support congestion diagnosis, network performance assessment, and the
prioritization of targeted interventions, while remaining compatible with the data availability and resource
constraints commonly faced by cities in the Global South.Several limitations nonetheless remain. The reliance on a
single mobility data provider may introduce spatial and behavioral biases, and the indirect estimation of traffic
density from trajectories cannot fully replace ground-truth measurements. In addition, the analysis focuses on global
predictive behavior and does not explicitly address temporal dynamics or localized congestion phenomena.Despite
these constraints, the study provides a solid empirical foundation for the use of supervised learning and trajectory
data in link-level traffic density estimation in rapidly urbanizing cities. Future work may extend this framework by
integrating additional data sources, exploring temporal modeling strategies, or applying the approach to other urban
contexts facing similar monitoring challenges. Taken together, the results contribute to ongoing efforts to develop
data-driven, scalable, and context-aware tools for urban traffic analysis and mobility planning.
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