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In this study, a new feature definition for classifying multi-channel EEG 
waveforms is introduced. New definition relies upon using the second-order 
statistics, e.g. autocorrelation, as a random process that represents temporal 
behavior of EEG signals. A spatially invariant representation of multi-
channel time-series associated to EEG waveform components with class 
labels is obtained based on respective statistics. As an application of 
proposed feature vector description, a simple multivariate Gaussian classifier 
is designed to identify normal and epileptic EEG waveforms. Experiments 
with a publicly available dataset indicate that the proposed method with 
randomly selected lag vectors of random length within chosen ranges yields 
high classification success in statistical terms. 
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Introduction   
 
Feature extraction for electroencephalogram (EEG) signals has drawn considerable attention and emphasis as a 
research topic in developing research tools such as brain-computer interface (BCI) or human-computer interaction 
(HCI) systems to identify sources of major neurophysiological events, [1]. Due to excessively large number of 
cortical neurons involved in generating electrical signals as source against relatively small number of electrodes to 
collect and record in short duration, temporal samplings usually are of limited capability in recognition of involved 
processes, [2]. Moreover, sources of most cortical activities in EEG signals are to a great extent obscured due to 
relatively higher-amplitude artifacts. With such disguised sources and temporal behavior, EEG signals are 
considered to be of non-stationary nature. Various feature definitions and extraction methods have been proposed to 
represent and recognize supposedly distinct components involved: Joint time-frequency techniques and wavelet 
transforms (WT) have been known in obtaining relevant spectral contents in a number of representative frequency 
bands for modeling spatio-temporal characteristics, [3]. For example, statistical attributions of WT coefficients are a 
means of spatial representation and, hence, recognition for EEG waveforms. Autoregressive (AR) linear predictive 
coefficients (LPC), [4], and its variants, e.g. cepstral coefficients, [5], for non-stationary signals have also been 
widely adopted in EEG waveform classification. Above parametric methods mostly suggest a time-varying linear 
relationship between electrophysiological excitatory cerebral current sources and the observed scalp potential with 
optimally suppressed artifact and noise components. They perform with relatively short-time window segments in 
which statistically invariant cues need to be extracted with temporally sparse, almost noise-like components. For 
example, as a problematic issue, visually evoked-response potential (ERP) components, which are usually around 
10µV low-frequency theta- and alpha-rhythmic beats, are generally observable within a time window of about 10s, 
[6]. In the case of epileptic seizures, recurring alpha- and delta-rhythmic beats may transiently occur accompanied 
with interictal electrical discharge (IED), which makes it more involved to extract invariant features within 
observation time interval, [7]. In most cases, these phenomena become more complicated when involved with other 
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abnormalities or inferences caused by varying brain regions, [8]. On the other hand, nonparametric methods, such as 
amplitude distribution, spike interval distribution, correlation analysis etc., offer versatility and flexibility for 
developing a spatial representation of individual EEG waveforms, [9]. 

In this study, a new and simple nonparametric feature definition for modeling multi-channel EEG waveform 
components is presented. The method implicitly exploits the notion of predictive, autoregressive model for non-
stationary signals and it is based on estimated second-order statistics for a process of random time lags. Proposed 
definition is extended to describe a random vector, which is then utilized with a simple multivariate Gaussian 
classifier in identifying normal and epileptic-seizure components involved in EEG waveforms from a publicly 
available dataset. Results demonstrate that the new feature vector definition formed with random lags yields 
spatially invariant statistics that can be exploited for successful classification of event sources, i.e. components 
involved in an EEG waveform. 

New Feature Description and Gaussian Multivariate Classifier 
 
Given a discrete-time signal vector x = [x1  x2 … xN] within an N-sample time slot, the sample value 𝑥! at time stamp 
n, can be predicted or modelled as output of an autoregressive filter driven by past samples as 

𝑥! = −  𝑎!𝑥!!!
!

!!!
= 𝑥! + 𝜀! (1) 

where p and 𝜀! are the prediction order and error, respectively. The prediction error 𝜀! is assumed to be a (normally 
distributed) white-noise random process. The model parameters in vector 𝒂 = [𝑎!  𝑎!   …   𝑎!] are called linear 
predictive coefficients (LPCs). They can be estimated based on least-squares by minimizing the prediction error 
power 𝐸! = 𝜀!!

!!!
!subject to 𝜕𝐸! 𝜕𝑎! = 0, where 𝑗 = 1, … , 𝑝, which yields Yule-Walker equations, [5]. The 

solution to Yule-Walker equations is usually obtained with recursive methods, e.g. Levinson-Durbin algorithm, in 
terms of estimated autocorrelation vector 𝒓 =  𝑟 0   𝑟 1 …   𝑟 𝑝  where  𝑟( 𝑚 − 𝑠 ) = !

!
𝑥!!!𝑥!!!!

!!! , 0 ≤ m, s 
≤ p. It is noticed that the vector 𝒓 is fully informative about 𝒂, that is, it suffices to have 𝒓 to uniquely determine the 
modelling vector 𝒂. Furthermore, from the solution of Yule-Walker equations, it is known that the farthest 
autocorrelation term  𝑟 𝑝  is a random quantity expressible in terms of smaller-lag autocorrelation terms, i.e. 
 𝑟 0 , … ,  𝑟 𝑝 − 1  once 𝒂 has been known. Thereby, we can suggest a feature to represent an L-channel EEG 
waveform as  

𝑣 𝑝 =
1
𝜎!!!

!!!
𝑟! 𝑝 − 𝜎!!

!

!!!
 (2) 

where 𝜎!! and  𝑟! 𝑝  are the variance and the p-lag autocorrelation of the EEG waveform in time slot for the l-th 
channel. Equation (2) implies a norm of vector whose contributions/coordinates are due to merely p-lag correlation 
terms against the variance for the signal considered. Recently, in [10], it has been demonstrated that above feature 
definition can be successfully exploited in estimating human emotion states involved in EEG waveforms with a 
simple regression classifier. 

In order to visualize the spatial characteristics of new feature definition for classification task of a multi-channel 
EEG waveform, we consider a conditional likelihood multivariate Gaussian probability density function (pdf)  

𝑓 𝐯 𝐩(!),𝐶! =
1

2𝜋
!
! ∆!

!
!
𝑒!

!
! 𝐯!𝛍𝐯 !∆!!! 𝐯!𝛍𝐯  (3) 

In (3), the random feature vector 𝐯 = [𝑣(𝑝!,!), … , 𝑣(𝑝!,!)] is formed by using a k-tuple, nonempty distinct sub-
vector 𝐩 ! = [𝑝!,!,… , 𝑝!,!], i.e. 𝑝!,! ≠ 𝑝!,!for 𝑖 ≠ 𝑗, where each 𝑝!,! has been chosen from a random lag vector 
𝐩 = [𝑝!,… , 𝑝!] and each member 𝑣(𝑝!,!) of v can be extracted as defined in (2). The class label 𝐶! refers to either 
normal or epileptic seizure components in EEG waveform. Model parameter 𝛍! and ∆!  refer to the mean vector 
and the determinant of the covariance matrix ∆! of training feature vectors, respectively. These two model 
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parameters, i.e. 𝛍! and ∆!, both can be estimated with the procedure given in [11]-[12]. The density in (3) trained as 
a classifier, can be tested and assessed in terms of Bayesian a posteriori probability term 𝑃 𝐶! 𝐯 for a test vector v. 
In case the number of EEG waveforms used in training for every subset of p for each class is equal, the class label 
for test vector v corresponding to an EEG waveform becomes  

𝑃 𝐶! 𝐯 ∝ 𝑓 𝐯 𝐶! = 𝛼 𝑘 𝑓 𝐯 𝐩 ! ,𝐶!
∀!!!

 (4) 

In (4), the parameter 𝛼 𝑘 = 𝑃 𝐩 ! |𝐶! =
!
!

!!!!
 is the a priori probability associated to random selection of non-

empty k-member partition 𝐩(!) such that 𝛼 𝑘 = 1∀! . 

Experiments with a Real EEG Dataset with Epileptic Seizures 
 
Above classifier with new feature vector definition was used on a task of detecting epileptic seizures in real-world 
EEG waveforms. The waveforms were randomly picked from CHB-MIT Scalp EEG Database, which is publicly 
available at http://www.physionet.org/pn6/chbmit/. Each dataset covers EEG recordings of 23 cases for each of 22 
pediatric subjects of varying-age 5 males and 17 females. Subjects were tracked and monitored for up to several 
days upon withdrawal of anti-seizure medication for observing seizures. The international 10-20 system of EEG 
electrode positions and nomenclature were used in M=23-channel recordings. Each subject recording of almost an 
hour length is sampled 256 times per second and then digitised and stored into an ‘.edf’ type file in 16-bit resolution. 
In this study, each digitised waveform to be processed was down-sampled to 8 samples per second for reducing 
possible noisy artifacts. That is, preprocessing waveforms was carried out with N=256 samples or equivalently 32-
second long time slots. The previously described vector p was set to be composed of time lags from 0 to 7.5 seconds 
(60 samples), with increment of 1.5 seconds (12 samples), i.e. d=6 and k=2, …, 6. For each k-tuple vector 𝐩(!), 10 
experiments were conducted, that yields identical 𝛼 𝑘 . In each experiment, the classifier in (3) was trained (tested) 
with randomly picked 25 (100) EEG waveforms for each class label.  

It is desirable to demonstrate the usefulness and robustness of the classifier with new feature definition given in 
against variations in design or operating parameters such as sampling frequency, window length in samples and the 
number of lags in seconds with chosen classifier. Fig. (1) illustrates behaviour of average a posteriori probability 
terms given in (4) in sidebar out of 100 experiments with 50 EEG waveform components randomly chosen from 
dataset for normal and epileptic seizure for each triplet of above parameters, respectively. 

 

 
 

(a)       (b) 

Fig. 1. Variation of classification success for (a) normal and (b) epileptic seizure EEG waveform components versus 
preprocessing and classifier parameters. 

From the above figure, it is seen that the proposed feature vector definition yields highly successful 
classification scores for both components, which is higher than 85% for wide range of parameter variations. For 
normal EEG waveform components, high classification success of 90% or higher is achieved for autocorrelation 
length 2 and 3 while similar success is attained for increased number of lags, almost regardless window length and 
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the sampling frequency. Therefore, it can be inferred that proposed feature description allows highly successful 
classification performance, which solely depends on randomly chosen number of time lags of individual waveform 
autocorrelation terms. The success of the classifier with proposed feature definition in discriminating the normal and 
epileptic seizure components is depicted as histogram in density profile, f (sid), as shown in Fig. 2. The argument 
‘sid’ in density profiles stands for the relative frequency in percent, i.e. 𝑃 𝐶! 𝐯 ∈ 𝐶! , of successfully 
classified/identified test waveform in each experiment.  

 

 
Fig. 2. The density profile histograms in testing multivariate Gaussian classifier with new feature definition for class 

labels of EEG waveform components where ‘sid’ refers to successful classification. 

Besides the presented histograms above, Table I summarises the major statistical quantities for classification 
success in testing, which also includes 90% confidence interval as a measure of success. The confidence interval 
was computed as the range in which the nearest 90% a posterior probability values reside with respect to the mean. 

 
 

EEG waveform 
component 

90% confidence 
interval, % 

Avg. success in 
classification, % 

Std. deviation of success 
in classification, % 

Normal 82.4-90.5 86.5 2.2 
Epileptic 80.5-94.3 90.4 4.7 

 
Table I. Some important characteristics and statistical measures of successful classification of EEG component 

waveforms based on new feature definition with a simple multivariate Gaussian classifier. 
 
It is seen that normal (epileptic) EEG waveforms were identified such that 90% of successful recognition in a 

posteriori probability resides within a range of almost 8.1% (13.8%) around the average of 86.5% (90.4%). This 
outcome indicates that randomly selected lags at randomly selected tuples with the second-order statistics can be 
directly utilised as a feature in successful identification of EEG waveform components involving epileptic seizures. 
Despite considerable variation range in classifier parameters, it is seen that successful recognition of EEG 
waveforms is possible around 85% with a narrow range. It is also seen that as the number of autocorrelation lags 
vary the EEG waveforms will exhibit saliency in classifier performance for each waveform components and this 
observation can be further employed.  

Conclusions 
 
A new feature definition for multi-channel EEG waveforms, which is based on estimated second-order statistics, e.g. 
autocorrelation, of individual channel waveforms as a random process, is presented. With use of new feature 
definition, a vector description with randomly chosen length and time lags is provided for modeling normal and 
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epileptic EEG waveforms. A simple multivariate Gaussian classifier is designed for identifying these waveform 
components based on the proposed feature vector.  Experiments with a real-world publicly available dataset reveal 
that the new feature and associated vector descriptions with chosen classifier allow successful.  
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