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A new Learning Vector Quantization classifier is proposed. The algorithm 
relies on a new training scheme for labeled sample vectors in feature space. 
Since weight or prototype vectors are conditioned to a well-known sliding-
mode approach with use of a cost function to be minimized in terms of 
weight updates, new algorithm is called Optimized Generalized Learning 
Vector Quantization (OGLVQ). Consequently, weights are then associated to 
the proximity measure employed by conventional Generalized Learning 
Vector Quantization. New algorithm and some well-known predecessors are 
designed and tested for comparison with synthetic and publicly available 
datasets. From the experimental results, it is observed that the new classifier 
achieves faster training and is more successful and robust in generalizing 
labeled test samples picked from datasets studied than the counterparts it is 
compared to. 
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Introduction 
 
An improved classifier algorithm should be able to successfully learn differing realizations of ensemble statistics 
given a dataset and exhibit robustness against noise or other undetermined conditions involved for stable and low-
complexity learning/training. It is the general approach for learning process to reward against punisment for correct 
and incorrect classifications, respectively, for attaining a minimum misclassification even if data is not much 
available or prone to false alarm, [1]-[2]. Learning Vector Quantization (LVQ) and its variant algorithms have been 
known almost the most successful classifiers to achieve above objectives, [3]-[4]. They commonly employ Hebbian-
based learning in training and nearest-neighborhood to relate the winner prototype or weight vector attributed to by a 
respective class label in feature space. However, learning with LVQ algorithms has a potential instability and bias 
problems in representing proximity measure between sample and weight vectors. Especially when a loser class has 
been incorrectly assigned during training, a non-adaptive proximity measure may lead to degraded generalization 
performance. Besides these problems, initialization of weight vectors has been a tackling issue for success of LVQ 
algorithm considered.  

Hence, it is desirable to develop an adaptive training scheme that attains stable and consistent learning when 
dealing with varying statistical realizations of a given dataset. Most remedial attempts toward this objective have 
focused on devising an adaptive metric for representing dissimilarities in training: Generalized Learning Vector 
Quantization (GLVQ) algorithms implement training based on optimization of a decision-making cost function with 
use of gradient descent, [5], which in small dimensions allows classification performance almost independent of data 
representation. However, in higher domensions, weight dynamics will be prone to unstability and proximity metric 
between weight and sample vectors, which will loose its descriptive meaning, [6]-[7]. As a solution to above issues, 
may be to employ a kernel-based scaling for similarity of individual samples to prototype vectors, which is termed 
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Generalized Relevance Learning Vector Quantization (GRLVQ), [7]-[8], with a similar training phase description as 
GLVQ. Despite the fact that major (G/GR)LVQ schemes maintain descriptive nature in representing similarity 
between weight/prototype and data in learning. There has been no study up to now, which reveals appropriate 
stability constraints/conditions for expressing dynamics of weight vectors and their update with convergence and 
robustness to parametric changes given an arbitrary initial assignment. 

This study proposes a new GLVQ classifier based on a new training algorithm associated to a sliding-mode 
converging rule for weight dynamics. Since new rule guarantees optimization of weight-update related cost function 
in overall, new classifier is called Optimally Generalized Learning Vector Quantization (OGVLQ). Proposed rule, 
then, is combined with the proximity measure exploited by previous (G/GR)LVQ schemes. New and some major 
(G)LVQ classifiers are designed and compared for synthetic and publicly available datasets in terms of statistical 
performance measures. Simulation results reveal that the new LVQ is faster in training and assigns correct classes 
more successfully with improved robustness against variation in learning parameter and randomness in initialization 
of weight vectors than the predecessors it is compared. 

An Overview For (G/GR)LVQ Classification 
 
Common operation of an LVQ classifier, which is depicted in Fig. 1, is to associate class labels which are known a 
priori to input samples to be classified. For a sample L-dimensional input column vector 𝐱 = 𝑥!… 𝑥! ! and given K 

classes with labels 𝐶!!!,..,!, where the weight vector of the j-th class label 𝐶! is 𝐰! = 𝑤!! …𝑤!!
!

, the respective 
output class label which corresponds to the closest weight vector as the winner is assigned. 

 
Fig. 1. Generalized operation of LVQ classifiers 

 

In training phase of original LVQ, [9], with 𝑁!"#$% samples per epoch, for the k-th input sample vector 
𝐱! = 𝐱 𝑘 , 𝑘 = 1…  𝑁!"#$%, only the weight vector of the winning class label, 𝐰!

∗ = 𝐰∗(𝑘), is adjusted by 

𝐰!!!
∗ = 𝐰!

∗ ± 𝜉 𝐱! −𝐰!
∗  (1) 

until a pre-specified convergence condition is met, e.g. 𝐰! 𝑘 = 𝐰! 𝑘 − 1  for j = 1, …, K. The sign ‘±’ is taken 
‘+’ if 𝐱! has been correctly classified otherwise ‘-’. The winning output vector 𝐰∗ is determined as the closest 
weight vector, i.e. 𝐰∗ = argmin𝐰! 𝑑(𝐱! ,𝐰

!) where 𝑑(𝐱! ,𝐰!) is the squared Euclidean distance between 𝐱! and 
𝐰!. Other variants of original LVQ, e.g. LVQ2.1 and LVQ3, adjust weight vectors of some other classes, e.g. closest 
loser prototype of having the same class label as the sample, [10].  

On the other hand, training of (G/GR)LVQ classifiers involves optimizing a cost function which relates correctly 
classified samples to particular class weight vectors while maximizing correct decision as a supervisory operation. 
Such a cost function is given by 

𝐸 =
1
2

𝑓 𝜇!
∀!

 (2) 
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where the classifier function is 𝑓 𝑢 = !
!!!!!

 for the proximity measure 𝜇! = 𝜇 𝐱! = !!
!!!!

!

!!
!!!!

!. Dissimilarity 

measures 𝑑!! = 𝑑 𝐱! ,𝐰!
∗ = 𝐰! = 𝐱! −𝐰! ! and 𝑑!! = 𝑑 𝐱! ,𝐰!

∗ = 𝐰! = 𝐱! −𝐰! ! are the squared 
distances of 𝐱! to the closest prototype 𝐰! with the same class label as 𝐱! and the best matching prototype 𝐰! with 
a class label different from that of 𝐱!, respectively. The weight update is then implemented as  

𝐰!!!
∗ ⟵ 𝐰!

∗ ± 𝜉(𝜇!) 𝐱! −𝐰!
∗

Δ𝐰!
∗

 (3) 

It is seen that (G/GR)LVQ algorithms adopt varying 𝜉 𝜇! = !"
!!!

!!
±

!!
!!!!

! ! to project spatial localization of weights 

with respect to sample 𝐱!for improved accuracy, [11]. 

New GLVQ Classifier Description 
 
If initial assignment for weights is made with improper choice and/or training samples have not been pruned while 
classes are overlapped, weights and their respective updates may lead to unstable non-convergent operation, [12]. 
Therefore, it is mandatory to devise an algorithm or rule toward a stable training, which involves a weight update 
dynamics against these issues. For such an objective, we consider minimizing the following cost function  

𝐽 =
1
2

Δ𝐰!
∗ !

!
 (4) 

The constraint in (4) is met with decreased gradient of J by maintaining Δ𝐰!
∗ ! < Δ𝐰!!!

∗ !. We consider 
Δ𝐰!

∗ ! = Δ𝐰!!!
∗ ! ± 𝛼! 𝐰!

∗ ! − 𝐰!!!
∗ !  with a decision-dependent parameter 𝛼! < 1 where Δ𝐰!!!

∗ =
𝐰!
∗ −𝐰!!!

∗  and Δ𝐰!
∗ = 𝐰!!!

∗ −𝐰!
∗. The sign ‘±’ is taken ‘-’ if 𝐰!

∗ and 𝐰!!!
∗  both refer to the same class label 

otherwise ‘+’. Thus, it is possible to relate 𝐰!
∗  (𝐰!!!

∗ ) and Δ𝐰!
∗  (Δ𝐰!!!

∗ ) for stable dynamics. We consider the 
sliding-mode convergence rule 

Δ𝐰!
∗ !𝐰!

∗ ≤ −𝜂 𝐰!
∗ ! (5) 

similar to the approach in [13] where 𝜂 > 0. By using 𝐰!!!
∗ = 𝐰!

∗ − Δ𝐰!!!
∗  (5) can be rewritten as 

Δ𝐰!
∗ !𝐰!

∗ ⋚ ∓𝜂
Δ𝐰!

∗ !− Δ𝐰!!!
∗ !

𝛼!
± Δ𝐰!!!

∗ !𝐰!!!
∗  (6) 

where the operator sequence ‘≤,−,+’ ( '>,+,- ) is considered if 𝐰!
∗and 𝐰!!!

∗ refer to the same (different) class 
label(s). Equating the right-hand side of (6) to 0 as a boundary for convergence and combining the resulting 
expression with that of (5) corresponding to (k-1)-th term will yield  

Δ𝐰!
∗ ! = Δ𝐰!!!

∗ !(1 ∓ 𝛼!) (7) 

For convenience, it is appropriate to consider 𝛼! = 𝜇! for relating new learning algorithm with spatial saliency in 
decision making exploited by (G/GR)LVQ classifiers. Then, use of gradient for (7) leads to 

(Δ𝐰!
∗)! = (Δ𝐰!!!

∗ )! 1 ∓ 𝛼!𝐀!  (8) 

where 𝐀! =
Δ𝐰!!!

∗

!!
!!!!

! ! 𝑑!!
!!!

!

!𝐰!
! − 𝑑!!

!!!
!

!𝐰!
!  which is an L-by-L matrix and !!!

±

!𝐰!
± = 2(𝐱! −𝐰±)! with sign previously 

given for (G/GR)LVQ. The sign ‘-’ (+) in (8) refers to 𝐰!
∗ and 𝐰!!!

∗ be same (different) class label(s).  
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Experiments 
 
New classifier, and its previously cited original LVQ, LVQ2.1, and GLVQ counterparts were designed and 
compared on statistical basis in training complexity, and generalisation capability with two sets of 100 experiments 
for 𝜉 = 0.05 and 𝜉 = 0.1, respectively. At each experiment of the first set, 100 random vectors x=[x1 x2] were 
populated from each of 2D (bivariate) normal densities: C1: N([0 1.5], [1 0.5;0.5 1]), C2: N([1.5  0], [1  -0.5;-0.5  1]), 
C3: N(-1.5  0], [1  0.75;0.75 1]), C4: N([1.5  -1.5], [1  0.5;0.5  1]), and C5: N([0  -1.5], [1 -0.75;-0.75 1]) where the 
first vector in parentheses is the mean vector while the second vector/matrix is the covariance matrix with rows 
separated by semicolon. At each experiment, 20 (80) samples were set aside per class in forming a training (testing) 
set as union, i.e. Ntrain= 100 (Ntest= 400). As an illustrative example, scatters for a testing sample dataset and 
respective classification results for original and new LVQ classifiers, respectively, for 𝜉 = 0.05 are shown in Fig. 2. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Example scatter of (a) a testing dataset, and classification results with (b) original LVQ, and (c) 
proposed algorithms for 𝜉 = 0.05. 

In the second set of 100 experiments, Character Trajectories Dataset (http://archive.ics.uci.edu/ml/machine-
learning-databases/character-trajectories/) was used. The dataset consists of 3-dimensional 2858 labelled samples of 
pen tip segment trajectories for the 20 single pen-down characters, e.g. ‘a’, ‘e’, ‘w’. The feature vectors are 
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composed of respective coordinates x, y, and pen tip force. At each experiment, 15 (60) training (testing) random 
samples from each of randomly selected 5 characters were drawn in forming a training (testing) dataset as a union, 
i.e. 𝑁!"#$% = 75 𝑁!"#! = 300 . With these datasets, relevant statistical simulation results for the algorithms 
examined are summarized in Table I. In table, ‘-’ is used to separate the respective classification results for either 
dataset where the first group refers to those of combined normal densities while the latter quantities correspond to 
those for Character Trajectory dataset. 
 
 

 

 

 

 

 

 

Table I. Some statistical performance measures of new (OGLVQ) and some other LVQ algorithms for 2D 
normal densities and character trajectory dataset. 

From above table it is seen that the proposed GLVQ classifier (OGLVQ) has improved and more consistent 
statistical training and classification performance despite variation in learning parameter with arbitrarily initialized 
weight vectors than its predecessors studied for both datasets. Original LVQ algorithm has poor classification for the 
datasets since it yields Voronoi-like regions in feature space. On the other hand, GLVQ counterpart that is a major 
competitor as expected proves relatively successful classification performance. However, new GLVQ still 
outperforms it in both statistical terms of training and generalization. Moreover, classification success of the new 
algorithm exhibits robustness against learning rate parameter variations while other counterparts yield considerable 
dependency on the parameter. 

Conclusions 
 
A new Learning Vector Quantization classifier called Optimized Generalized Learning Vector Quantization 
(OGLVQ) is presented, which relies on a new training scheme. Dynamics of weight/prototype vectors is related to 
sliding-mode approach for assuring a respective cost function to be bounded and minimized in terms of weight 
updates with an adaptive manner. Resulting weights are then associated to the proximity metric employed by 
conventional Generalized Learning Vector Quantization for attaining optimum correct decision-making while 
maintaining a convergent training. New algorithm and some well-known predecessors are tested for comparison 
with synthetic and publicly available datasets. From the experimental results, it is seen that the new classifier proves 
faster training and is more successful and robust in generalizing unlabeled test samples picked from datasets studied 
than the counterparts it is compared.  
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