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Introduction:- 
Recently, population models have received increasing attention by scientists due to their importance in ecology. 

Indeed, there are different approaches to study population models, e.g. ordinary differential equations, difference 

equations, partial differential equations and fractional order differential equations. Fractional – order differential 

equations (FOD) are used since they are naturally related to systems with memory which exists in most biological 

systems [2, 4]. Many phenomena in population dynamics can be described successfully by the models using 

fractional order differential equations.  

 

The fractional derivatives have several definitions. One of the most common definitions is the Caputo definition of 

fractional derivatives, which is often used in real applications. ( ) ( ), 0l lD f t J f t    , where
lf  represents 

the l -order derivative of ( )f t , [ ]l   is the value of  rounded up to the nearest integer and
qJ  is the q -order 

Riemann-Liouville integral operator

( 1)

0

( ) ( )
( ) , 0

( )

t q
q t h d

J h t q
q

  
 

 , where (.) is Euler’s Gamma 

Function. The operator D
is called the  -order Caputo differential operator. 

 

In this paper, we study the dynamical behaviors of fractional-order LotkaVolterra predator prey system. It is shown 

that the discretized fractional-order system produces a much richer set of patterns than those observed in the systems 

counterpart. 

 

Fractional Order Prey – Predator Model and its Discretization:- 

The Lotka Volterra equations, also known as the predator prey equations, are a pair of first-order, nonlinear, 

differential equations frequently used to describe the dynamics in which two species interact, one as a predator and 

the other as prey. The populations change through time according to the following pair of equations: 
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' ; 'x ax bxy y cy dxy      

where x is the number of prey (for example rabbits), y is the number of some predators (for example foxes) and 

, , ,a b c d are positive real parameters describing the interaction of two species: a - Growth rate of prey, b - attack 

rate, c - Predator mortality rate, d - Growth rate of predator.  

 

A more general model of predator prey interactions is the following system of differential equations, 
2 2' ; 'x ax bxy ex y cy dxy fy        

Here the term ex reflects the internal competition of the prey x for their limited external resources and the term fy

reflects the competition among the predators for the limited number of prey. We shall consider the fractional order 

Lotka Volterra predator prey system which is given as follows 
2

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

D x t ax t bx t y t ex t

D y t cy t dx t y t fy t





  

   
                    (1) 

where 0t  and  is the fractional order satisfying (0,1] . 

Now, applying the discretization process for a fractional-order system described in [3, 8], we obtain the discrete 

fractional order predator prey system as follows:  

1 1( ( )); ( ( ))
( ) ( )

n n n n n n n n n n

s s
x x x a by ex y y y c dx fy

 

   
         

 
   (2) 

 

Fixed Points:- 

The fixed points of (1) are the points of intersections at which ( ) 0D x t  and ( ) 0D y t  . We arrive at the 

following proposition. For the model system (1), there always exist trivial fixed point 0 (0,0)E  , the semi-trivial 

fixed points 1 2,0 , 0,
a c

E E
e f

  
    
   

and an interior point 
* *

3 ( , ) ,
af bc ce ad

E x y
ef bd ef bd

  
   

  
.  

 

Trivial and Semi-trivial fixed points and Stability Analysis;- 

The Jacobian matrix of the linearized system of model (1) is  
* * *

* *

* * *

2
( , )

2

a by ex bx
J x y

dy c dx fy

   
  

   
. 

Theorem 1. The trivial fixed point 0E is locally asymptotically stable if 1, 1a c  otherwise unstable. 

Proof: The Jacobian matrix at 0E is given by  

0

0
( )

0

a
J E

c

 
  

 
 

Hence the eigenvalues of 0( )J E are 1 a  and 2 c   . Thus 0E is stable when 1, 1a c  . Otherwise 0E is 

unstable trivial fixed point. 

Theorem 2. The semi-trivial fixed point   is locally asymptotically stable if 
( 1) ( 1)e c e c

a
d d

 
  , otherwise 

unstable. 

Proof: The Jacobian matrix at 1E is given by  
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1( )

0

ab
a

e
J E

ad ce

e

 
 

  
 

  

. 

The eigen values of the matrix 1( )J E are 1 a   and 
2

ad ce

e



 . Hence 1E is locally asymptotically stable 

when 
( 1) ( 1)e c e c

a
d d

 
  and unstable when 

( 1)e c
a

d


 and 

( 1)e c
a

d


 . 

Theorem 3. The semi-trivial fixed point 2E is locally asymptotically stable if 
( 1) ( 1)f a f a

c
b b

 
  , otherwise 

unstable. 

Proof: The Jacobian matrix at 2E is given by  

2

0

( )

af bc

f
J E

dc
c

f

 
 
 
 
 
 

. 

The eigenvalues of the matrix 2( )J E are 1

af bc

f



 and 2 c  . Hence 2E is locally asymptotically stable 

when 
( 1) ( 1)f a f a

c
b b

 
  and unstable when 

( 1)f a
c

b


 and 

( 1)f a
c

b


 . 

 

Interior fixed point and its Stability 

Here we investigate the linear stability of (1) at the interior fixed point 3E . Therefore, the corresponding Jacobian 

matrix at the interior fixed point 3E can be easily expressed in the form 

3( )
A B

J E
C D

 
  
 

. 

where 
bce aef

A
ef bd





, 

( )b af bc
B

ef bd





,

( )d ce ad
C

ef bd





and 

cef adf
D

ef bd





.  

The eigenvalues of the matrix 3( )J E are 

2

1,2

( ) ( ) 4

2

A D A B BC


   
 . Hence 3E is locally 

asymptotically stable when 1 
 
and unstable when 1  , where 

2( ) ( ) 4

2

A D A B BC


   
 . 

 

Dynamical behaviors of the Discretized Fractional Order Model:- 

Let us investigate the dynamics of the discretized fractional – order LotkaVolterra predator prey model (2). The 

dynamical behaviors of model (2) is determined by five parameters , , , , , ,a b c d e f s and  .  

Here we discuss the stability of fixed points of (2). The Jacobian matrix for (2) evaluated at any fixed point 
* *( , )x y is given by  
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* * *

* *

* * *

1 ( 2 )
( ) ( )

( , )

1 ( 2 )
( ) ( )

s s
a by ex bx

J x y
s s

dy c dx fy

 

 

   

   

 
    

 
 
 

    
  

. 

The characteristic equation of the Jacobian matrix can be written as  
2 0Tr Det                   (3) 

whereTr is the trace and Det is the determinant of the Jacobian matrix 
* *( , )J x y and they are given as  

* *2 ( ( 2 ) (2 ) ( ))
( )

s
Tr x d e y f b a c



 
      


 

   
2

* * * * *2 *2 * *1 ( 2 ) (2 ) ( ) ( 2 ) ( 2 ) 2( 2 )
( ) ( )

s s
Det x d e y f b a c x ad ce y bc af dex bfy efx y ac

 

   

 
               

  

 

In order to study stability analysis of the fixed points of the model (2), we give the following theorems that can be 

easily proved by using the relation between roots and coefficients of the characteristic equation (3). 

 

Theorem 1.If 
2 ( )

0 s
c


 

  then the fixed point 0E is a saddle, If 
2 ( )

s
c


 

 then 0E is a source and if 

2 ( )
s

c


 
 , then 0E is non-hyperbolic. 

Proof: The Jacobian matrix J at 0E is given by  

0

1 0
( )

( )

0 1
( )

s
a

J E
s

c





 

 

 
 


 
 

 
 

. 

Hence the eigenvalues are 1 1
( )

s
a




 

 


and 2 1
( )

s
c




 

 


. Since 0a  , then 1 1  . Thus the fixed 

point 0E is a saddle point if 
2 ( )

0 s
c


 

  , source if 
2 ( )

s
c


 

 and non-hyperbolic if 

2 ( )
s

c


 
 . 

Theorem 2. If 
2 ( )

0 s
a


 

  , then the fixed point 1E is a saddle point. If 
2 ( )

s
a


 

 , then 1E is 

source and if 
2 ( )

s
a


 

 , then 1E is non-hyperbolic. 

Proof: The Jacobian matrix J at 1E is given by  
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1

1
( ) ( )

( )

0 1
( )

s s ab
a

e
J E

s ad ce

e

 



   

 

  
    

    
  

  
   

. 

Hence, the eigenvalues are 1 1
( )

s
a




 

 


and 2 1
( )

s ad ce

e




 

 
   

  
. Since , 0c d  then 2 1  . 

Thus the fixed point 1E is a saddle point if 
2 ( )

0 s
a


 

  , source if 
2 ( )

s
a


 

 and non-hyperbolic if 

2 ( )
s

a


 
 . 

Theorem 3. If 1 1  and 2 1  , then the fixed point 2E is a source point. If 1 1  and 2 1  , then 2E is 

non-hyperbolic. 

Proof: The Jacobian matrix J at 2E is given by  

2

1 0
( )

( )

1
( ) ( )

s af bc

f
J E

s cd s
c

f



 

 

   

 
 


 
 

 
  

. 

Hence, the eigenvalues are 1 1
( )

s af bc

f




 


 


and 2 1

( )

s
c




 

 


. Since , 0a c  , thus the fixed 

point 2E is a source point if 1 1  and 2 1  , non-hyperbolic if 1 1  and 2 1  .  

Theorem 4. The positive fixed point 3E of the system (2) is locally asymptotically stable if 0  ,where 

( )

s
 

 



such that 

2( ) ( ) 4

2

A D A B BC


   
 . 

Proof: The Jacobian matrix evaluated at the fixed point 3E has the form 

3

1
( ) ( )

( )

1
( ) ( )

s s
A B

J E
s s

C D

 

 

   

   

 
  

 
 
 

 
  

. 

The trace and determinant of the Jacobian matrix 3( )J E is given by  

3

2

( ( )) 2 ( )
( )

1 ( ) ( )
( ) ( )

s
Tr J E A D

s s
Det A D AD BC



 

 

   

  


 
     

  

 

Hence, the eigenvalues are 1,2 1
( )

s
 

 
 


. Thus 3E is locally asymptotically stable when 0  . 
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The next result is obtained from theorem (4) immediately. 

Lemma 1. The positive fixed point 
3E of the system (2) is unstable if 0  , where 

( )

s
 

 



such that 

2( ) ( ) 4

2

A D A B BC


   
 holds. 
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