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In this paper a novel technique implementing Bernstein polynomials is 
introduced for the numerical solution of a classof Urysohn integral 

equations. These polynomials are utilized toreduce the solution of the 

given problem to the solution of a system of non-linear algebraic 

equations. The remaining set of nonlinear equations is solved 

numerically by using the approach to yield truncated Bernstein series 

coefficients of the solution function. Several illustrative examples with 

numerical simulations are provided to support the theoretical claims. 
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Introduction:- 
The topics of integral equations have been an increasing interest in the past years, because these kinds of equations 

appear in various fields of applied science and engineering. So, getting solutions with a high level of accuracy for 
the integral equations is a very important task. Considering that many real-world mathematical problems, especially 

in the area of applied mathematics are too complicated to be solved in exact terms, the using of numerical methods 

has been swiftly developed recently. There are many numerical methods for approximating solutions of the linear 

and non-linear Fredholm integralequations in one and two-dimensionalspaces. In the literature cited below, among 

the numerous works that have been suggested, some famous approaches are listed as well. Eskandarughlu et al. in 

[1], presenteda numerical method based on using spline piece-wise functions and Picard’s method for solving the 

Urysohn -type integral equations. The Adomian decomposition method (ADM) for obtaining approximate series 

solution of Urysohn integral equations was presented in [2]. The numerical approximation solution of the Urysohn 

integralequationwithtwomethodshasbeenworkedout in [3].  

 

The numerical approximation of this kind of equation has been studied by means of the sinc approximation with the 
double exponential transformations in [4]. This numerical method combined the sinc Nystrom method with the 

Newton iterative process that involves solving a nonlinear system of equations. Saberi-Nadjafi and Heidari in [4], 

offered a combination of the Newton-Kantorovich method and quadrature methods for solving nonlinear integral 

equations. The method solved the nonlinear integral equations of the Urysohn form in a systematic procedure. Also 

in [5, 6], two iterative schemes based on the homotopy analysis method have been used to the numerical solution of 

differential equations [7, 8, 9]. On the other hand, the artificial neural networks (ANNs) approach is one of the more 

applicable methods that have been used for approximating solutions of different kinds of integral equations. For 

further informationon ANNs in this respectsee [10, 11]. The ANNs is applied to solve both ordinary and partial 

differential equations with initial and boundary value problems [12]. In many problems in science and engineering, 

we have some unknown functions which are too complicated to be determined. The Bernstein polynomials method 

is one of the earliest analytic-numeric algorithms for approximating the unknown in different kinds of mathematical 
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problems. This is an extremely useful way of expressing a complicated function in terms of simple polynomials. The 

only requirement is that the given function should be smooth. In other words, at a point of interest it must be 

possible to differentiate the function as often as we please.  

 

Bernstein Polynomials:- 

The general form of the Bernstein polynomials [13-16] of nth degree over the interval[𝑎, 𝑏] is defined by 

𝐵𝑖 ,𝑛 (𝑥) =  
𝑛

𝑖
 

(𝑥 − 𝑎)𝑖(𝑏 − 𝑥)𝑛−𝑖

(𝑏 − 𝑎)𝑛
  , 𝑎 ≤ 𝑥 ≤ 𝑏,   𝑖 = 0,1,2,… ,𝑛             (1) 

Note that each of these 𝑛 + 1 polynomials having degree 𝑛 satisfies the following properties:  
 

1. 𝐵𝑖 ,𝑛  𝑥 = 0      𝑖𝑓𝑖 < 0    𝑜𝑟𝑖 > 𝑛 

2.  𝐵𝑖 ,𝑛  𝑥 = 1𝑛
𝑖=0  

3. 𝐵𝑖 ,𝑛  𝑎 = 𝐵𝑖 ,𝑛  𝑏 = 0,         1 ≤ 𝑖 ≤ 𝑛 − 1 

 

Using MATHEMATICA code, the first 11 Bernstein polynomials of degree ten over the interval [𝑎, 𝑏], are given 

below:   

 

𝐵0,10 𝑥 = (𝑏 − 𝑥)10 /(𝑏 − 𝑎)10𝐵6,10 𝑥 = 210 𝑏 − 𝑥 4(𝑥 − 𝑎)6/(𝑏 − 𝑎)10 

𝐵1,10 𝑥 = 10 𝑏 − 𝑥 9(𝑥 − 𝑎)/(𝑏 − 𝑎)10𝐵7,10 𝑥 = 120 𝑏 − 𝑥 3(𝑥 − 𝑎)7/(𝑏 − 𝑎)10  

𝐵2,10 𝑥 = 45 𝑏 − 𝑥 8(𝑥 − 𝑎)2/(𝑏 − 𝑎)10𝐵8,10 𝑥 = 45 𝑏 − 𝑥 2(𝑥 − 𝑎)8/(𝑏 − 𝑎)10  

 

𝐵3,10 𝑥 = 120 𝑏 − 𝑥 7(𝑥 − 𝑎)3/(𝑏 − 𝑎)10𝐵9,10 𝑥 = 10(𝑏 − 𝑥)(𝑥 − 𝑎)9/(𝑏 − 𝑎)10  

 

𝐵4,10 𝑥 = 210 𝑏 − 𝑥 6(𝑥 − 𝑎)4/(𝑏 − 𝑎)10𝐵10,10 𝑥 = (𝑥 − 𝑎)10 /(𝑏 − 𝑎)10 

 

𝐵5,10 𝑥 = 252 𝑏 − 𝑥 5(𝑥 − 𝑎)5/(𝑏 − 𝑎)10 

 

Now the first six polynomials over [0, 1] are shown in Fig. 1(a), and the remaining five polynomials are shown in 

Fig. 1(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Formulation of Integral Equation in Matrix Form:- 

In many applications a matrix formulation for the Bernstein polynomials is useful. These are straight forward to 

develop if only looking at a linear combination in terms of dot products. Given a polynomial written as a linear 

combination of the Bernstein basis function [17]: 

B t = C0B0,n t + C1B1,n t + ⋯+ CnBn,n t  
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It is easy to write this as a dot product of two vectors:- 

 B0,n t B1,n t …Bn,n t   

𝐶𝑜

𝐶1

⋮
𝐶𝑛

  

Which can be converted to the following form: 

B t =  1   t   t2 … tn  

b00 0 0
b01 b11 0
⋮

b0n

⋮
b1n

⋮
b2n

⋯ 0
⋯ 0
⋯
⋯

⋮
bnn

  

Where bnn  are the coefficients of the power basis that are used to determine the respective Bernstein polynomials. 

We note that the matrix in this case is lower triangular. In the quadratic case(i.e. n=2) 

 

The matrix Representation is:- 

𝐵 t =  1     t     t2  
1 0 0
−2 2 0
1 −2 1

  
C0

C1

C2

  

 

The cubic case = 𝟑 , the matrix Representation is:- 

B t =  1     t     t2t3  

1 0 0  0
−3 3 0   0
3
−1

6
3

3
−3

0
1

  

C0

C1

C2

C3

  

 

Solution of a class of Urysohn integral equations:- 

In this section, first we consider the Urysohn integral equation (UIE) of the second kind given by 

 

𝑥 𝑡 = 𝑓 𝑡 +  𝐾 𝑡, 𝑠,𝑥 𝑠  𝑑𝑠            (2)

1

0

 

Where 𝑥(𝑡) is the unknown functions to be determined, 𝑘(𝑡, 𝑠, 𝑥(𝑠)), the kernel is a continuous function, 𝑓(𝑡) being 

the known function. To determine an approximate solution of (2),𝑥(𝑡) is approximated in the Bernstein polynomial 

basis on [0 ,1] as:  

𝑥 𝑡 =  𝑎𝑖𝐵𝑖 ,𝑛  𝑡                                 (3)

𝑛

𝑖=0

 

Where  𝑎𝑖 , 𝑖 = 0, 1,… ,𝑛  are unknown constants to be determined using Newton-Raphsonmethod. Substituting (3) 

in (2), we obtain:  

 𝑎𝑖𝐵𝑖 ,𝑛  𝑡 =

𝑛

𝑖=0

𝑓 𝑡 +  𝐾  𝑡, 𝑠, 𝑎𝑖𝐵𝑖 ,𝑛  𝑡 

𝑛

𝑖=0

 𝑑𝑠            (4)

1

0

 

Now we put  𝑡 =  𝑡𝑗  ,  𝑗 =  0,1,… ,𝑛 in (4),𝑡𝑗 ’s being chosen as suitable distinct points in[0, 1], such that   𝑡0   = 0,

𝑡𝑛  = 1   , 𝑎𝑛𝑑𝑡𝑗 = 𝑡0  + 𝑗ℎ, whereℎ = (1 − 0)/𝑛. Putting𝑡 = 𝑡𝑗 , we obtain the nonlinear system:    

 

 𝑎𝑖𝐵𝑖,𝑛 𝑡𝑗  =

𝑛

𝑖=0

𝑓 𝑡𝑗  +  𝐾 𝑡𝑗 , 𝑠, 𝑎𝑖𝐵𝑖 ,𝑛 𝑡𝑗  

𝑛

𝑖=0

 𝑑𝑠            (5)

1

0

 

The nonlinear system (5) can be solved by standard methods for the unknown constant𝑎𝐼’s    . These  𝑎𝑖 , 𝑖 =
0, 1,… , 𝑛   are then used in (3) to obtain the unknown function 𝑥(𝑡) approximately. 
 

The following algorithm summarizes the steps for finding the approximate solution for the second kind of nonlinear 

Urysohn integral equation. 

 

 

 



ISSN: 2320-5407                                                                                  Int. J. Adv. Res. 5(1), 2156-2162 

2159 

 

 

 

 

 

 

 
 

 

 

 

 

 

Numerical Examples:- 
In this section, the method presented in this paper is used to find numerical solution of two illustrative examples. 

The solution of the equations obtained here. All calculations in the following tables are performed using Matlab.  

 

Example1. [4] Let us solve the Urysohn integral equation: 

 𝑐𝑜𝑠(𝜋𝑥)𝑠𝑖𝑛(𝜋𝑡)𝑦3(𝑡)𝑑𝑡 =  5(𝑦(𝑥) − 𝑠𝑖𝑛(𝜋𝑥)), 1 ≤ 𝑥 ≤ 1,

1

0

 

By the explained Bernstein series method. The exact solution corresponding to this equationis𝑦(𝑥)  =

 𝑠𝑖𝑛(𝜋𝑥) +  1/ 3(20 −  391)𝑐𝑜𝑠(𝜋𝑥). 
 

For n = 4, theoriginalintegral equation is reduced to a fundamental non-linear system. The iterative process yields 

the results which have been gathered in Table 1. Figure 2 shows the exact solution and the approximate solution.  

Table 1:-Numerical results for Example 1. 

si = 0.1i Exact solution Approximatesolution Error 

i = 0 0.0754266889049 0.0748255 6.01E-04 

i = 1 0.3807520383605 0.3810056 2.54E-04 

i = 2 0.6488067254460 0.6435965 5.21E-03 

i = 3 0.8533516897425 0.8498055 3.55E-03 

i = 4 0.9743646449962 0.9702287 4.14E-03 

i = 5 1 0.9702355 2.98E-02 

i = 6 0.9277483875941 0.9188357 8.91E-03 

i = 7 0.7646822990073 0.7632754 1.41E-03 

i = 8 0.5267637791389 0.5205584 6.21E-03 

i = 9 0.2372819503893 0.2314202 5.86E-03 

i = 10 -0.0754266889049 -0.0732011 2.23E-03 

 

Algorithm (BPNUIE): 

Step (1): 

Assume t0   = 0, tn  = 1   , and tj = t0  + jh, where h = (1 − 0)/n. 

Step (2): 

Putting t =  tj in (4) to obtain nonlinear System (5). 

Step (3): 

Solved the nonlinear system (5) to calculate the unknownai , i = 1,… , n. 

Step (4): 

Used 𝑎𝐼 in (3) to obtain the function x(t) approximately. 
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Fig. 2:- Comparison of the exact and approximate solutions for Example 1. 

 

Example2. [5] Consider the Urysohn integral equation:  

  𝑥 − 𝑡 𝑦2 𝑡 𝑑𝑡 = 𝑦 𝑡 − ln 4 𝑥 + 1  1 − 𝑥𝑙𝑛2 + 𝑥 2 + 2𝑥 +
5

4

1

0

 

With the exact solution 𝑦(𝑥)  =  𝑙𝑛(𝑥 + 1) and use the present method for finding its approximate solution. The 

iterative process yields the results which have been gathered in Table 2. Figure 3 shows the exact solution and the 

approximate solution.  

 
Table 2:-Numerical results for Example 2. 

si = 0.1i Exact solution Approximatesolution Error 

i = 0 0 0.0010088 1.01E-03 

i = 1 0.095310179804 0.0953524 4.22E-05 

i = 2 0.182321556793 0.1822203 1.01E-04 

i = 3 0.262364264467 0.2621755 1.89E-04 

i = 4 0.336472236621 0.3363668 1.05E-04 

i = 5 0.405465108108 0.4055742 1.09E-04 

i = 6 0.470003629245 0.4713763 1.37E-03 

i = 7 0.530628251062 0.5310079 3.80E-04 

i = 8 0.587786664902 0.5871986 5.88E-04 

i = 9 0.641853886172 0.6413895 4.64E-04 

i = 10 0.693147180559 0.6929504 1.97E-04 
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Fig. 3:- Comparison of the exact and approximate solutions for Example 2. 

 

It follows from the results of these examples that 𝑦𝑛 (𝑥) converge as 𝑛 → ∞ to the exact solution 𝑦(𝑥) of the integral 

equation. A successful choice of the ”zeroth” approximation can result in a rapid convergence of the procedure. 

 

Conclusion:- 
In this paper, we presented a useful numerical method that originated mainly from the Bernstein polynomials for 

solving Urysohn type integral equation. As we explained above, this method converts the present problem to a 

system of non-linear algebraic equations which may not be solvable easily.  Having determined the unknown 

Bernstein coefficients of the solution function, the series solution is produced for numerical purposes immediately. It 

is important to be noted that, the more terms must be evaluated to the higher accuracy level. The obtained numerical 

results from analyzed examples illustrated that in applications involving computations with polynomials, the 

Bernstein form offers an efficient algorithm for many basic functions. 
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