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Because wireless sensor networks are exposed to various attacks, 
security protocols are essential. Among the representative attacks and 

countermeasures, there are a false report injection attacks and a 

dynamic en-route filtering scheme. Dynamic en-route filtering scheme 

effectively defends using message authentication code, but there is 

room for improvement in terms of energy. So, we use a key re-

distribution algorithm of dynamic en-route filtering to improve energy 

efficiency. In this paper, we propose a discrete event modeling and 

simulation of modified dynamic en-route filtering. More accurate 

measurement is possible through the same system designed as the 

actual wireless sensor network. The experimental results demonstrate 

the validity of our scheme, showing an energy efficiency of up to 
42.45% and a filtering capacity of up to 18.71% compared to the 

existing scheme. 
Copy Right, IJAR, 2016,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Wireless sensor networks (WSNs) have been used in various applications that require real-time monitoring [1-3]. 

WSNs consist of numerous small sensor nodes for detecting an event, as well as a base station (BS) that is used to 
collect detected event data and send it to a user. Typically, large-scale WSNs are comprised of thousands of sensor 

nodes. Additionally, several cluster heads (CHs) in a sensor field are divided into cluster units [4]. A CH receives 

data about an event from member nodes belonging to its own cluster. The event data are then converted into a report 

and forwarded to the next node.The sensor node of a low-cost product has resource constraints, such as limited 

processing power, memory capacity, and energy, and it also communicates wirelessly in an open environment [5]. 

Therefore, the node is easily exposed to various attacks, such as environmental damage, as well as physical capture 

or false report injection attacks and selective forwarding attacks from malicious attackers. Hence, security research 

that considers the limited resources of these nodes is needed and has been investigated recently [6-8]. 

 

In a WSN, an attacker can attempt to cause false alarms at the BS by injecting false event data and depleting the 

limited energy resources of the nodes by forcing them to forward false reports. Therefore, it is very important to 
detect a false report injection attack as early as possible. To detect such attacks, a dynamic en-route filtering (DEF) 

scheme was proposed by Yu and Guan [9]. This scheme can detect a false report in the transfer process using the 

authentication key and secret keys. In DEF, however, when a network is exposed to a continuous attack from 

adversaries, unnecessary energy loss occurs. DEF has no suitable measures to address this problem because this 

method does not consider the current attack situation. 
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In this paper, we use the key re-distribution algorithm of the dynamic en-route filtering scheme[10].For the 

experiment, we apply the discrete event modeling and simulation. A proposed model represents a simplified version 

of WSN and its structure. The model is built considering the conditions of experimentation of the WSN system, 

including the work conditions of the modified DEF system.Experimental results show that compared to the existing 

scheme, our scheme achieves energy savings of up to 42.45% and improves the detection performance by up to 

18.71%. 
 

The rest of this paper is organized as follows. We introduce related work in Section 2 and then present the problem 

statement of the existing scheme in Section 3. In Section 4, the proposed scheme is provided and the performance 

evaluation is discussed in Section 5. Finally, we summarize our conclusions and future work in Section 6. 

 

Related Works:- 

False report injection attack:- 

A false report injection attack injects a false report into the network to deceive the BS and deplete the limited energy 

resources of the network [11]. Figure 1 shows an overview of a false report injection attack occurring through nodes 

that are compromised in a WSN. In the example, the attacker obtains control by seizing several nodes in the field 

and then creates and injects a false report (as opposed to real event data) using the compromised nodes. The false 

report is delivered to the BS, without being detected by the intermediate nodes, along the normal routing path. The 
BS that receives the false report confirms the content of the report and generates false alarms. This disrupts the 

appropriate measures that are used to respond to legitimate report content and results in financial- and energy-related 

losses. In addition, the normal nodes on the forwarding path suffer unnecessary energy losses when they deliver an 

attacker’s malicious false reports. Because such attacks occur constantly, the lifetime of the entire network is 

shortened. In addition to false report injection attacks, there are also sinkhole attacks and selective forwarding 

attacks. The damage range of a sinkhole attack is regional and the damage range of a selective attack affects some of 

the nodes on a single path. However, the damage range of a false report injection attack is much larger and covers all 

nodes on the path and the BS. Thus, this attack is more serious in WSNs, which have limited energy. 

 

 
Figure 1:- False report injection attack in a WSN 

 

Dynamic en-route filtering (DEF):- 

DEF defends against false report injection attacks in cluster-based WSNs. The WSN divides the distributed nodes 
into clusters and each cluster elects a cluster head (CH) as a representative node. The member nodes of the cluster 

send event information to the cluster head. In this scheme, each node is preloaded with an authentication key and 

secret keys at the BS and then each node is distributed to the field. Next, each CH collects the authentication keys 

from their member nodes and aggregates them into a message. This message is passed on to the next node along the 

routing path. The forwarding node that received the message also loads the authentication key into its memory from 

the message. This authentication key is used to determine whether or not the event report is false. DEF has three 

operation phases, as shown in Figure 2. 
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Figure 2:- Three-step operation of DEF 

 

The key pre-distribution phase is executed only once at the BS when the sensor node is initially deployed to the field. 

Each node loads the different seed keys, creates an authentication key using the common hash function from the 

seed key, and then configures the hash chain. At this time, if the node has sufficient memory, the node generates all 

of the authentication keys. Otherwise, the authentication key is generated whenever it is needed. In addition, a node 

has l+1 secret keys. The l keys are called the y-keys and are randomly chosen from a y-key pool of size v. The last 

key is called the z-key and is randomly chosen from a z-key pool of size w. The z-key is distinguishable from other 
nodes. 

 
Figure 3:- Key dissemination phase of DEF 

 

Figure 3 shows the key dissemination phases. This phase has a four-step procedure. First, each node in the cluster 

encrypts the current authentication key using one of the secret keys. The authentication key message structure of the 

node is shown in Equation (1). 

 

 
 

In (1), 𝑗𝑖  is the index of the current authentication key and  𝑗𝑖  = 1 denotes the first dissemination. Additionally, 

𝑖𝑑 𝑦1
𝑣𝑖  is the index of 𝑦1

𝑣𝑖  in the y-key pool and  ∗ 
𝑦1
𝑣𝑖  is encrypted using the key 𝑦1

𝑣𝑖 . Then, the CH collects the 

  𝐴𝑢𝑡ℎ 𝑣𝑖 = {𝑣𝑖 ,   𝑗𝑖 ,  𝑖𝑑 𝑦1
𝑣𝑖 ,   𝑖𝑑 𝑦1

𝑣𝑖 ,   𝑘𝑗 𝑖

𝑣𝑖 
𝑦1
𝑣𝑖

 , 

       … , 𝑖𝑑 𝑦𝑙
𝑣𝑖 ,   𝑖𝑑 𝑦𝑙

𝑣𝑖 ,   𝑘𝑗 𝑖

𝑣𝑖 
𝑦
𝑙

𝑣𝑖
 ,          (1) 

    𝑖𝑑 𝑧𝑣𝑖 ,   𝑖𝑑 𝑧𝑣𝑖 ,   𝑘𝑗 𝑖

𝑣𝑖 
𝑧𝑣𝑖

     } 



ISSN: 2320-5407                                                                                Int. J. Adv. Res. 4(11), 2040-2050 

2043 

 

authentication message from all nodes in the cluster that they belong to and aggregates them into message K(n), 

shown in Equation (2). In (2), 𝑣1 ,… , 𝑣𝑛  are the nodes in the cluster. 

 

 
 

Next, the CH selects q (q>1) forwarding nodes from neighbor nodes and forwards them to K(n). The reason for 

selecting q is so that K(n) can be delivered to another node without necessitating key re-dissemination of K(n) if the 

next node is compromised. When a forwarding node receives K(n), the node performs the following steps. 

 

1) It checks whether K(n) has at least t distinct z-key indexes. If not, K(n) is determined to be false and is dropped. 

2) It checks the secret key indexes of K(n). If it has the same key index, it decrypts the message and stores the 

authentication key in its own memory. 

3) It drops K(n) if K(n) has already been forwarded by ℎ𝑚𝑎𝑥 . Each node repeats the above operation until K(n) 

has been forwarded by ℎ𝑚𝑎𝑥  or until K(n) has reached the BS. 

 

 
Figure 4:- Report forwarding phase of DEF 

 

Figure4 shows the report forwarding phase. In this phase, the sensor node detects an event, generates a message 

authentication code (MAC) [12] for the event information using a new authentication key, and forwards the MAC to 

its CH. In the CH, the number of sensor nodes that participate in generating a report (t) is pre-determined before 

deployment and the CH forwards the report to q neighbor nodes. When the next node sends an ok message to 

indicate that the report has been received correctly, the CH exposes the authentication key of the sensor nodes and 

verifies the report. It then informs the next hop node of the verified result. This operation is repeated until the report 

arrives at the BS or until the report is determined to be false. 

 

Discrete event system specification (DEVS):- 

The DEVS formalism[13] introduced by Zeigler provides a means of specifying a mathematical object that is 

referred to as a system. Basically, a system has a time base, inputs, states, and outputs, as well as functions that 

determine subsequent states and outputs given current states and inputs. DEVS derives an accurate result through a 

realistic test using the time value. DEVS has the following characteristics. 

𝐾 𝑛 =   𝐴𝑢𝑡ℎ 𝑣1 , … , 𝐴𝑢𝑡ℎ 𝑣𝑛                (2) 
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1) Easy reusability of the model 

2) Contains information on the each port and function for the external and internal event. 

3) Contains information on the time and state values of the model for the next event 

4) Time values are used to control the function timing 

 

DEVS is largely composed of an atomic model and a coupled model, which combines atomic models. The atomic 
model employs irreducible model definitions that specify the behavior for any modeled entity. The structure of the 

atomic model is defined by Equation (3). 

 

𝑀 =  𝑋, 𝑆, 𝑌, 𝛿𝑖𝑛𝑡 , 𝛿𝑒𝑥𝑡 , 𝜆, 𝑡𝑎                            (3) 

 

Here, X is the set of external input event types, S is the sequential state set, Y is the set of external event types 

generated as the output, 𝛿𝑖𝑛𝑡 (𝛿𝑒𝑥𝑡 ) is the internal (external) transition function that dictates the state transitions 

caused by internal (external input) events, λ is the output function that generates external events at the output, and ta 

is the time-advance function.  
The coupled model is an aggregation/composition of two or more atomic models connected by explicit couplings. 

The structure of the coupled model is defined by Equation (4). 

 

𝐷𝑁 =   𝐷,  𝑀𝑖 ,  𝐼𝑖 ,  𝑍𝑖,𝑗  , 𝑠𝑒𝑙𝑒𝑐𝑡                              (4) 

 

Here, D is a set of component names for each I in D; 𝑀𝑖 is a component basic model;{𝐼𝑖} is the set of influences of 

Ifor each j, 𝑍𝑖,𝑗  is a function, specifically the i-to-j output translation; and select is a function used as the tie-breaking 

selector. Detailed descriptions about DEVS simulator, experimental frame and of both atomic and coupled models 

can be found in [13, 14]. 

 

Problem Statement:- 

This section provides background information about DEF and introduces improvements. DEF is an effective scheme 

for defending against false report injection attacks in a dynamic environment; however, it has several problems in 

terms of its energy efficiency. 
 

• DEF quickly detects a false report by using keys that are distributed randomly. However, when a DEF-based 

network is exposed to continuous attacks, unnecessary energy consumption results from forwarding a report 

detailing a non-existent event; this occurs until the false report is detected. 

• In DEF, the key-dissemination phase that redistributes the entire key may be performed arbitrarily in order to 

reduce the energy loss that is caused by continuous attacks, but it is very important to determine when this 

phase should be executed because it consumes a lot of energy. Also, even if the conditions for the entire key 

distribution phase execution are met (topology change) and the phase is executed, energy loss can still occur. 

This is caused by the fact that the defence scheme does not grasp or consider the attack situation. 

 

To address these problems, we propose the following improvements. 
 

• In order to understand that there is a constant attack on the current network, the forwarding node counts the 

number of detected false reports corresponding to each source CH. If the count value exceeds the threshold 

value, the forwarding node requests key re-distribution for the BS. After key re-distribution, if a false report is 

generated using the same false key, the amount of unnecessary energy consumption is minimized by detecting 

this at the next hop node. 

• Because an entire key re-distribution process consumes a lot of energy, it is executed locally based on the 

network state. Also, the BS specifies several suspected nodes as potential compromised nodes, allowing the BS 

to be free from continuous attacks by eliminating suspected nodes along the routing path. 

 

In this paper, we propose an energy-efficient key re-distribution scheme that considers the state of the network for 

early detection of false reports when exposed to constant attacks. Through this scheme, we expect to minimize 
unnecessary energy consumption that is associated with the existing scheme. 
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Proposed Scheme:- 

Overview:- 

 
Figure 5:- Operation phases of the proposed scheme 

 

In DEF, there is no change in the secret key that is loaded in the key pre-distribution phase. Using this property, the 
proposed scheme modified the report forwarding phase of DEF and added the key re-distribution phase. Figure 5 

shows the operation procedure of this proposed scheme. When the false report count value is less than the threshold, 

Fig. 5(a) operates in the same manner as DEF at the report forwarding phase. In the report forwarding phase, Fig. 

5(b) shows that if the report is detected to be false, then the forwarding node identifies a source CH and increases 

the false report count value. After this point, the behavior is the same as the existing DEF. In Fig. 5(c), the key re-

distribution request message is sent to the BS when the count value is more than the threshold value of the report 

forwarding phase. 

 

Assumptions:- 

This paper has the following assumptions. Since the key pre-distribution phase is operated before dissemination in 

the field, the BS knows the key information for all of the nodes. Since the BS has all of the keys (through the global 
pool key), when a false report is delivered to the BS the BS knows that the false report exists. The BS also knows 

the node energy along the re-distribution request message path. There is no change in the network topology. The 

forwarding node has space to store the number of false reports that is detected. When the node stores the 

authentication key from K(n) in its memory, it also stores the decrypted secret key. The structure of the key re-

distribution request message sent to the BS from the forwarding node is defined as follows: 

 

𝐹𝑁 → 𝐵𝑆 ∶  𝑆 𝐷 𝐶𝐻𝐼𝐷 ∥ 𝐾𝐼𝑆 ∥ 𝑀𝐴𝐶 
 

Here, FN is the forwarding node, S is the source, and D is the destination. 𝐶𝐻𝐼𝐷is the identity of the source CH that 

generated the false report. 𝐾𝐼𝑆 is the index of the secret key that corresponds to the authentication key used for 
detecting a false report. The notation || indicates consecutive concatenation. 

 

Detailed procedure:- 

This section describes the operation of the proposed scheme in detail. Figure 6 shows the entire execution process of 

the proposed scheme. Compromised nodes in the cluster and CH generate a false report and then send it to neighbor 

nodes (Fig. 6[a]). The next forwarding node, 𝑢𝑖 , which received the report, verifies the report. It cannot detect the 

false report and sends the report to the next neighbor nodes (Fig. 6[b]). 𝑢𝑖+𝑘of the forwarding node on the path 

detects the false report and drops it. At this time, 𝑢𝑖+𝑘  knows the source CH through the received report and stores 
the false report detection count value that corresponds to the source CH (Fig. 6[c]). If the attack occurs continuously 

and the count value exceeds the threshold of a certain CH, the forwarding node encrypts the message of the key re-

distribution request and sends it to the BS. Because the BS that received the message knows all of the keys, it 

decrypts this message and stores the 𝐶𝐻𝐼𝐷and 𝐾𝐼𝑆. The BS selects a node with the same secret key as the 𝐾𝐼𝑆 and 

checks the source cluster in the 𝐶𝐻𝐼𝐷 value. The reason for this is that a compromised node also has the same secret 

key that is used to load the authentication key that is used for detection. The BS executes the key re-distribution 

scheme by collecting the authentication keys of suspected nodes (Fig. 6[d]). The aggregated authentication key 

message is encrypted and transmitted to the next hop-forwarding node, 𝑢𝑖 , of the source CH. This is because there 

are authentication keys that are stolen from the attacker among the collected authentication keys. The 𝑢𝑗 that received 

the message decrypts the message and stores the authentication keys in its memory. If attackers try to inject a false 

report using the same stolen key again, the false report is detected quickly at the next node, 𝑢𝑗 . 
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Figure 6:- Detailed execution phases of the proposed scheme 

 

System modeling:- 

An experimental frame module is a coupled model that, when coupled to a model, generates input external events, 

monitors its running, and processes its output. To experiment with the model WSN, we couple it with the 
experimental frame component EF to form the digraph model EF-WSN. The EF-WSN is described below. 

 

 
Figure 7:- System structure of the proposed scheme 

 

Figure 7 shows the system structure of the proposed scheme. The system structure is the same as the actual 
environment of the WSN. 

 

 
Figure 8:- State diagram of the MB model 
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Figure 8 shows the state diagram of the MB model. The MB model has three states. The passive state is the wait 

state. When a message arrives at the in port, it changes from the passive state to the sensing state, which detects the 

event by an external transition function. The sensing state changes to a forwarding state by an internal transition 

function. The output function generates an output value (MACs) and sends it to the CH. Finally, it returns to the 

passive state by an internal transition function. 

 

 
Figure 9:- State diagram of the CH model 

 

Figure 9 shows the state diagram of the CH model. The CH model has six states. When a message arrives at the 

mac_in port, it changes to an aggregating state by an external transition function and changes to a generating state 
by an internal transition function. Then, it changes to the forwarding state by an internal transition function. When 

the CH receives the MAC from the MB, the process generates the report type and sends it to the next forwarding 

node. When a message arrives at the report_in port, it changes to a verifying state by an external transition. At this 

time, if the count value of the forwarding node exceeds the threshold value, it changes to a request state; otherwise, 

it changes to a forwarding state by an internal transition function. This is the process that requests execution of the 

proposed method. When a message arrives at the request_in port, it changes to a forwarding state. This is the process 

that forwards the request message to the BS. 

 

 
Figure 10:- State diagram of the BS model 

 

Figure 10 shows the state diagram of the BS model. The BS model has four states. When a message arrives at the 
report_in port, it changes to a verifying state by an external transition function. This corresponds to report 

verification and generates an output value with the output function. When a message arrives at the request_in port, it 

changes to a checking state by an external transition function. In this process, the BS checks the suspected nodes by 

utilizing the message information of key re-distribution. It changes to an inform state by an internal transition 

function. This is the process that executes key re-distribution. 

 

Performance Evaluation:- 

Experimental environment:- 

The experimental environment is configured as follows: 1,000 nodes are randomly disseminated at sensor fields, 

which are 1,000 x 1,000 𝑚2 in size. Among these nodes, 900 nodes are normal nodes and 100 nodes are CHs. The 
BS is positioned in the bottom middle (x, y = 500, 1000) of the sensor field. Each node is randomly loaded with two 

y-keys and one z-key in each key pool of size w. The energy required to transmit one byte is 16.25μJ and the energy 

required to receive one byte is 12.5μJ. The energy required to verify an MAC is 75μJ and the energy required to 
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generate an MAC is 15μJ[15]. The size of a report is 36bytes and an MAC is one byte. Experiments with the 

proposed scheme are conducted using a proper threshold, (α), which is referenced when transmitting the message to 

the BS at a forwarding node. Through simulation, we select an appropriate threshold (α = 20).False report injection 

attacks occur depending on the FTR of the 10 clusters that are selected. Target nodes that can be compromised are 

normal nodes and CHs in the selected cluster. No packet loss occurs in the communication of the node and 1,000 
events are randomly run at the selected clusters. 

 

Experimental results:- 

 
Figure 11. Energy consumption versus the FTR 

 
Figure 11 shows the total energy consumption of the network according to the FTR. In both schemes, the number of 

false reports that were detected previously at the BS increased as a function of the FTR; therefore, the total energy 

consumption is reduced. The energy difference between the two schemes is due to the reduced number of hop counts 

of false reports, which is caused by the proposed key re-distribution phase. Thus, the unnecessary energy loss is 

reduced. As the FTR increases, we see that the difference in the energy consumption of both schemes increases. The 

reason for this is that the number of false reports that are detected at the early hop stage is much greater than the 

existing scheme. 

 
Figure 12:- Number of dropped false reports versus the FTR 
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Figure 12 shows the number of false reports that were detected. Both schemes have greater than 80% performance. 

The proposed scheme seems to show a slight improvement in the performance. The reason for this is as follows. 

When a false report is not detected at the intermediary forwarding node and reaches the BS, the BS counts the false 

report according to the source CH. If the count value exceeds the threshold, the BS executes key re-distribution in 

the next node of the source cluster (similar to a forwarding node). The detection power is improved because the false 

report that was forwarded until the BS is dropped at the next node of the source CH. 
 

 
Figure 13:- Average hop count of the false report versus the FTR 

 

Figure 13 shows the average hop count of the false report. The difference between the two schemes is due to the 

earlier detection of the hop compared to the DEF as well as to the detection of a false report that was not detected in 

the existing scheme at the next node of the source CH. The average hop count of a false report for DEF, however, is 

constant. This is the case because DEF randomly distributes the key and the proposed key re-distribution is executed. 

Therefore, the average hop counts of the proposed schemes differ.Table 1 shows these results quantitatively. 

 

Table 1:- Experimental results quantitatively 

FTR  

(%) 

Energy consumption (J) 

Efficiency  

(%) 

Detecting Performance (EA) 

Efficiency  

(%) 
Existing scheme Proposed scheme Existing scheme Proposed scheme 

10 20.20 19.89 1.51 96 99 3.03 

20 19.05 18.28 4.05 166 179 7.26 

30 17.90 16.43 8.18 249 285 12.63 

40 17.02 14.84 12.80 327 385 15.06 

50 15.73 12.94 17.74 412 490 15.92 

60 14.78 11.51 22.13 483 581 16.87 

70 14.02 10.21 27.14 560 682 17.89 

80 12.93 8.73 32.48 640 787 18.68 

90 11.51 7.20 37.42 719 883 18.57 

100 10.74 6.18 42.45 795 978 18.71 
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Conclusions:- 
Wireless sensor networks are exposed to impairments such as false report injection attacks. DEF can effectively 

defend against this attack. We designed a modified DEF based WSN model using a DEVS formalism and we 

simulated the key re-distribution algorithms of DEF. As shown in the experimental results, we achieved the saving 

an energy and increasing a detection performance. Through this model, we reflects the operation of the actual WSN, 

resulting in more accurate experimental values. 
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