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In the world of software, the software need to be monitored every time so 

they will perform well. Many techniques have been proposed to execute this 

kind of monitoring but failed to provide a feasible solution. In this paper, 

solution of system monitoring is proposed with the help of Information 

Theoretical approach involving software metrics and their respective 

entropies. This paper also provides the fault detection and fault diagnosis 

techniques to locate the faults within the clusters of the software metrics. 

 

 

 

 

 

 

 
Copy Right, IJAR, 2015,. All rights reserved 

 

 

INTRODUCTION   
 

1.1 Overview  

              Software systems usually start small and simple, but in less period of time they becomes complex because 

of more number of features and requirements are added into the system. As more number of components added the 

interactions of system grows in non-linear fashion. In mid October 2001, IBM released declaration policies, which 

contained the observations that the main obstacle for further progress in the IT industry is dominating software 

complexity crisis. The observations also suggested that the difficulty of managing today‟s computing systems goes 

well beyond the administration of individual software environments. Computing System complexity appears to be 

approaching the limits of human capabilities. This system approach to characterizing the normal behavior of a 

system entails finding and modeling stable relationships between system metrics. Software faults are difficult to 

remove completely from the system, so it is unrealistic to expect a complex software system is fault free.  The major 

challenge for the system management is to detect and isolate the software faults effectively from complex software 

systems. A large amount of monitoring data can be collected from the system components for fault analysis. This 

data can be used for the purpose of monitoring and also for the fault detection and diagnosis. The system monitoring 

with fault detection and diagnosis consists of different phases to properly analyze collection of metrics in fault 

detection and diagnosis. he base for the consideration of this project is the need for genuine system monitoring 

which gives the fault detection and the fault diagnosis as a composite function. The system monitoring implemented 

in this project is not used collectively in previous techniques. Previous techniques gives the whole different 

approaches for the fault detection and the diagnosis, which require more synchronization between the two 

techniques used, because these two were not come under the common approach as in this project. This project will 

serve as a more useful function which is build on the basic properties of the project and undoubtedly  clear 

parameters such as software metrics. With the help of the software entropy values are being calculated very 

carefully so, it can be used for further tasks in system monitoring. The fault detection gives non-parameterized 
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technique of detection. Along with this the diagnosis gives the diagnosis observations based on the three different 

diagnosis algorithms. This project solves the problem of system monitoring, collectively with fault detection and the 

diagnosis in a single project, which is an uncommon feature of the system monitoring. It also provides parameters 

which have clear values i.e. software metrics and use of the software entropy gives the monitoring parameters to be 

observed. It fulfills the need of the monitoring of the software for the fault detection in the normal execution.  

                            

2. RELATED WORK 
2.1 Background 

 There is a considerable work in the field of the identifying the relationship between the metrics. In 

the well- behaved system the stable relationships between the metrics are exist [1], [2], [3]. When error occurs in the 

relationship between the metrics are distributed. Different, modeling techniques have been proposed to represent the 

relationship between the metrics in the system. These techniques are Simple Linear Regression [3], Simple Linear 

Regression with Transformed data (SLRT) [11], Locally Weighted Regression (LWR), Autoregressive regression 

with eXogenous Input (ARX); [13] Entropy based modeling,[14], Gaussian Mixture models [1]. These systems have 

certain limitations with them. The prior techniques assume a specific mathematical from of the relationship between 

the metrics, but it is not guaranteed that there present a specific mathematical form for the relationship between the 

metrics. Techniques like Simple Linear Regression (SLR) are not able to capture the non-linear dynamics, so that 

they can miss the number of the stable relationships. On the other hand, the techniques like Gaussian Mixture Model 

(GMM) and Locally Weighted Regression (LWR), which deal with the non-linear dynamics, are very costly and 

also they require very careful parameterization which can result into the difficult general applications. The approach 

of combining the different techniques also increase the computational overhead as well as they requires separate 

modeling technique and parameter estimation. This shows that the previous work in this field is on the specific 

mathematical form and they are prohibitive linearly and computationally. 

The current techniques available for the Fault diagnosis of the system based on the metric correlations are 

variants based on Jaccard coefficient. These techniques are evaluated related to the metric-pair methods. One of the 

techniques used for diagnosis is Pinpoint which is problem determination in large dynamic internet services. This 

technique makes use of the user requests tracing for the diagnosis, which is more expensive. There have been very 

few studies on software fault prediction without prior fault data. Zhong et al. [18] proposed a clustering and expert-

based software fault prediction method when the fault labels for software modules are unavailable. They used K-

means and Neural- Gas clustering algorithms to cluster modules. After the clustering phase, a 15-years experienced 

software engineering expert examined the representative module (mean of each metric) of each cluster and several 

statistical data such as maximum, minimum, median of each metric, in order to label each cluster as fault-prone or 

not.  AMPLE (Analyzing Method Patterns to Locate Errors) [24] is a system for identifying faulty classes in 

objectoriented software. It collects hit spectra of method call sequences, which are subsequences of a given length 

that occur in a full trace of incoming or outgoing method calls, received or issued by individual objects of a class. 

Each call sequence is assigned a weight, which captures the extent towhich its occurrence or absence correlates with 

the detection of an error, i.e., it is a combined measure of similarity   call sequences of a class, leading to a class 

weight. Classes with a high weight are most likely to contain the fault that causes the detected error. Although the 

calculation of the sequence weights in AMPLE can be explained as an application of the technique of diagnosis is at 

class level, and the calculated coefficients are used only to collect evidence about classes, not to identify suspicious 

method call sequences. Concluding, we can observe that three existing tools for diagnosis and automated debugging 

rely on an analysis of program spectra. Program spectra themselves were introduced in [25], where hit spectra of 

intra-procedural paths are analyzed to diagnose year 2000 problems. In the distinction between count spectra and hit 

spectra several kinds of program spectra are evaluated in the context of regression testing. As it already mentioned 

in the introduction, in the context of computer programs, fault localization based on the analysis of program spectra 

is an automated debugging technique. An example of a different (black box) technique in that category is Delta 

Debugging [26], which compares the program states of a failing and a passing run, and actively searches for failure-

inducing circumstances in the differences between these states. 

2.2 Need of the Work 

 Prior researches in this field pointing the stable relationships between the metrics exist in the well-behaved 

system, but again the relationships gets disturb with the occurrence of the error, so these methods are quite 

unreliable. Also the prior techniques assume to have a specific mathematical form of relationship between the 

metrics, which is hard to accept and the assumption does not work every time. 

 The previous techniques were proposed the relationships between the metrics, but they consider only the 

metric pair, which makes the job more tedious as each time to pair and examine the metrics takes a long time. Other 
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non-linear techniques are costly and their requirement of the careful parameterization makes it difficult to work with 

general applications. 

 The need arises for the different system monitoring, which provides the relationship between the metrics 

without considering any specific mathematical form. The system considers the similar metrics together as a cluster. 

This system applies the techniques on the cluster for fault detection. Also the method should provide the detection of 

the fault automatically with the help of ranks of the clusters and diagnose the faults with the help of various 

diagnosis algorithms. 

 

3. SOFTWARE METRICS  
3.1 Software metrics 

3.1.1 Introduction  

Software is the collection of computer programs, procedures, rules, associated documentation and data which are 

collected for specific purpose. Software is the various kinds of programs used to operate computers and related 

devices. A program is a sequence of instructions that tells a computer what operations to perform. Programs can be 

built into the hardware itself, or they may exist independently in a form known as software. According to the 

software engineering context, a measure provides a quantitative indication of the extent, amount, dimension, 

capacity, or size of some attribute of a product or process. Measurement is the act of determining a measure. 

The software crisis must be addressed and possibly resolved. For accomplishing this task it requires more accurate 

schedule and cost estimates, better quality products and higher productivity. All these can be achieved through more 

effective software metric use.  The IEEE Standard Glossary of Software Engineering Terms defines metric as “a 

quantitative measure of the degree to which a system, component, or process possesses a given attribute.” 

Metrics should facilitate the development of models that are capable of predicting process or product parameters; 

they do not have to just describe them. The good metrics should posses following properties:  

 Simple - Software metric should be simple so it should be clear how to  

                          evaluate them. 

 Objective- Software metric should have the objective to the greatest extent   

 Easily Obtainable- The metrics should be easily obtainable in a reasonable  

                                     cost. 

 Valid- The metric should measure what it is intended to measure. 

 Robust- Metric should be relatively insensitive  to insignificant changes in   

                   the process.  

3.1.2 Classification of the Metrics 

Software metrics can be classified as either product metrics or process metrics. 

Product Metrics- measures of the software product at any stage of its development from requirements to its installed 

system. Product metrics may measure the complexity of the software design, the size of the final program, or 

number of pages of documentation produced. 

Process Metrics- measures of the software development process, such as overall development time, type of 

methodology used, or the average level of experience of the programming staff.  

Other way to classify the software metrics are:  objective and subjective 

Objective Metrics- these metrics always results in identical values for given metric as measured by two or more 

qualified observers. 

Subjective Metrics- even qualified observes might measures different values for a given metrics.  

For product metrics, size of the products measured in lines of code (LOC) is an objective measure for which any 

informed observer should obtain the same measured value for a given program. For process metrics, development 

time is the objective measure and level of programmer experience is the subjective measure.    

Another way to classify the software metric:  Primitive and computed metrics 

Primitive Metrics- the metrics that can be directly observed, for example program size (in LOC), number of defects 

observed in unit testing, or total development time for the project.  

Computed Metrics- The metrics which cannot be directly observed, but they are computed in some manner from the 

other metrics. Examples are the metrics which are commonly used for the productivity, LOC produced per person – 

month or for product quality such as the number of defects per thousand lines of code. 

  

3.1.3 Software Metric Examples  

 Following are some examples of the software metrics: 

 Number of packages 
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 Number of methods 

 Lines of code (LOC) 

 Number of Interfaces 

 NSM- Number of static methods 

 TLOC- Total Lines of codes. 

 CA- Afferent Coupling 

 RMD- Normalized Distance 

 NOC- Number of Classes 

 SIX- Specialization Index 

 NOF- Number of Attributes 

 NOP- Number of Packages 

 WMC- Weighted Method per Class 

 NSF- No. of static Attributes 

 NORM- Number of Overridden Methods 

 NOM- Number of Methods 

These are few examples of software metrics which represents the state of the software from which they are 

collected.  A right set of metrics can provides the idea about the working state of the software as well as the 

performance of software.  

3.1.4 Software metrics used in the project 

  For this project work this project used the Chidamber & Kemerer Java metrics, which is which is an open 

source command line tool. It calculates the C & K Object Oriented metrics by processing the byte-code compiled 

Java files. Following are the list of software metrics used in this project. 

 WMC- weighed methods per class 

 DIT- Depth of Inheritance Tree 

 NOC- Number of Children 

 CBO- Coupling between object classes 

 RFC- Response for a class 

 Ca-Afferent Coupling 

 NPM- Number of Public Methods 

 Ce- Efferent Coupling 

 DAC- Data Abstract Coupling 

 MPC- Message Passing Coupling 

 COF- Coupling Factor 

 MIC- Method Invocation 

 ICP- Information flow based coupling 

 

4. ENTROPY OF SOFTWARE METRICS 
4.1 Software Entropy 

 The second law of thermodynamics, in principle, states that a closed system's disorder cannot be reduced; it 

can only remain unchanged or increase. A measure of this disorder is entropy. This law also seems plausible for 

software systems; as a system is modified, its disorder, or entropy, always increases. This is known as software 

entropy. Information theory is a branch of applied mathematics, electrical engineering, bioinformatics, and computer 

science involving the quantification of information. Information theory was developed by Claude E. Shannon. 

Entropy is known as the key feature of the information. Entropy quantifies the uncertainty involved in predicting the 

value of a random variable. Information entropy measures the uncertainty or unpredictability of the random variable. 

For discrete random variable X, the entropy is given by, 

H X = Ep  log
1

p(X)
= − p(xi) log p(xi)

n

i=1

  

where X takes values from the set {x1; x2; . . . ; xn}; Ep refers to the expectation with respect to the probability 

distribution of X characterized by the density function p. If p(X =xi) =1 and p(X = xj) = 0 for any i≠ j, i.e., there is no 

uncertainty about X, then H(X) is zero. Otherwise, H(X) takes a positive value. 

 

4.2 Conditional Entropy 

http://en.wikipedia.org/wiki/Second_law_of_thermodynamics
http://en.wikipedia.org/wiki/Closed_system
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Entropy
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Quantification
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Claude_E._Shannon
http://en.wikipedia.org/wiki/Random_variable
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 The conditional entropy measures the uncertainty of a random variable Y given another random variable X. 

It represents the remaining uncertainty of Y knowing values taken by X. It is defined by 

H Y X = Ep log
1

p(Y|X)
 

                                             = −  p(xi , yj) log p(yj|xi)

m

j=1

n

i=1

 

 

4.3 Mutual Information  

 The mutual information measures the reduction in uncertainty of a random variable Y given another 

random variable X. This reduction represents the amount of information either variable provides about the other. It 

is defined by 

I X, Y = H Y − H(Y|X) 

4.4 Normalized Mutual Information 

 However, it is impractical to use either conditional entropy or MI as a measure of the similarity between X 

and Y. Conditional entropy is not symmetric, i.e., H (Y |X) is often not equal to H (X|Y). While MI is symmetric, its 

absolute value is not necessarily comparable across random variables. MI is influenced by H(X) and H(Y), which 

may have different maximal values. Strehl and Ghosh [7] developed normalization for mutual information, called 

Normalized Mutual Information (NMI), to address the shortcomings 

of MI. It is defined by 

NMI X, Y =
I(X, Y)

 H X H(Y)
 

 

 For any random variables, X and Y, NMI has following properties 

1. 0≤ NMI(X, Y) ≤ 1. 

2. NMI(X, Y) = NMI(Y, X). 

3. If X and Y are independent, NMI(X, Y) = 0. 

4. If Y = f(X), NMI(X, Y) = 1, for any invertible function f. 

The more correlated two variables are, the higher NMI they have, in spite of the specific form of their 

relationship. Because of these properties NMI provides a good measure of the correlation between two variables, 

and can be used as a similarity measure.  

 

4.5 Empirical Entropy, Empirical Conditional Entropy and Similarity Matrix 

 The metric values are periodically been collected for calculating the Empirical Entropy, after collecting the 

values following formula is applied on the  random variable X  

H X = − 
ni

n

k

i=1

log
ni

n
 

 The Empirical Conditional Entropy can also be calculated using the formula: 

H X = −  
nij

n
ji

log
nij

ni
 

 Where nij is the number of samples (x, y) with x in bin i and y in bin j. 

With the help of Empirical Entropy and Empirical Conditional Entropy the NMI will be calculated, which 

will form a metrics Similarity Matrix. 

5. CLUSTERING AND CLUSTER ENTROPY 
5.1 Clustering 

If both (X, Y) and (Y, Z) are strongly correlated, then (X, Z) are also likely correlated. This implies that 

there exist groups of mutually correlated metrics, or clusters. This is used to group the metrics having the similar 

values. This is done by using the Complete Link Hierarchical Clustering algorithm. By getting the similarity matrix 

from the complete link hierarchical agglomerative clustering is applied to group the similar metrics. This algorithm 

works by grouping the metric one by one on the basis of nearest distance measures of all the pair wise distance 

between the metrics. 

Algorithm for clustering: 
    Steps: 
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1. Take similarity matrix M as a input 

2. Define the threshold for maximum distance between two clusters. 

3. Define the maximum distance between the two clusters as the distance between the two clusters. 

4. Treat every metric as a single cluster and merge nearest cluster until either the distances between every two clusters 

exceed the predefined threshold or all metrics belong to one cluster. 

  The algorithm gives the guarantee about all metrics in cluster have similarity of the predefined threshold. 

The algorithm gives facility that the specification of clusters a priori is not necessary. 

5.2 Cluster entropy 

After forming the clusters of the software metrics having the similar values with the help of the Similarity 

Matrix, the next step will be computing the entropy of the clusters created. This module computes the status of the 

each cluster in the form of entropy. The metrics in one cluster are closely correlated with each other since, the 

relationships between the metrics are either linear or nonlinear it is difficult to establish analytical models for the 

cluster or for the metrics in the cluster. 

The empirical entropy can be taken as the signature of the cluster, which provides the status of the cluster. 

For a given cluster, a significant change in the behavior of the cluster entropy indicates a fault. 

The steps for computing cluster entropy: 

1. Normalization of all metric values by dividing each value with its average values which is based on data collected 

during normal operations. 

2. Relate the different metric values to a single variable. 

3. Calculate the empirical entropy of the random variable over time. 

1. Set the range to[0,7]  

2. Divide it into seven equal bins. 

3. Add an eighth bin with the range [7, ∞], for the values that do not fit in the other seven bins. 

4. Monitor the cluster entropy over time i.e. tracking the entropy of each cluster. 

 

6. FAULT DETECTION AND DIAGNOSIS 
6.1 Fault Detection 

Consider the entropy behavior of the clusters. They show the behavior of cluster entropy when some fault 

occurs at time. Human operators can readily identify unusual changes in the pattern of the in-cluster entropy, and, as 

a result, suspect errors. It is impractical to have these operators continuously track the behavior of all clusters. 

Instead, automatically identifying anomalies in the in-cluster entropy is nontrivial because there are no general rules 

that differentiate between normal and disturbed behavior. 

For this purpose nonparametric statistical test namely Wilcoxon Rank-Sum Test is used to identify 

significant shifts in In-cluster entropy of individual clusters for detecting the fault within the systems.  

Let Ei be the In-cluster entropy of cluster E at time i. For detecting the significant change in Ei when fault 

occurs, two sliding windows of Ei are kept. The test window consists of most recent nEi‟s and the baseline window 

consists of mEi‟s before the test window, then applying the Wilcoxon Rank-Sum Test on these windows. If the 

significant change is indicated by the test alarm is raised. 

For example, if {Es+1, Es+2,…,E s+m} and {E s+m+1, E s+m+2,…,E s+m+n} are two sample sets from two sample windows 

(s+1,s+m) and (s+m+1,s+m+n) are from the same distribution, then Wilcoxon Rank-Sum statistic is given by the 

formula: 

W =   hs+i,s+m+j +
m(m + 1)

2

n

j=1

m

i=1

 

                            Where  

 

 1,     Xi < Xj 

                                           hi, j=          0.5, Xi = Xj, 

                                                           0,    otherwise. 

6.2 Fault Diagnosis 

The goal of diagnosis is to determine the cause of errors (i.e., to localize the fault). The faster the source of 

an error can be found, the faster its cause can be addressed. This 

reduces the amount of downtime the system incurs, thereby improving system availability. 

In this module, the diagnosis algorithms are used to locate the faults correctly. A system S is the collection 

of the subsystems S1, S2, S3…, Sn. Set of all metrics be M a set of all clusters be C. There is n-to-1 mapping 
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between metrics to subsystems α: M      S, the set of all the n-to-1 mappings α is called as A. There is n-to-1 

mapping between metrics to clusters β: M      C, the set of all the n-to-1 mappings β is called as B. At any time t, 

each cluster can be checked for the anomalies. Record will be kept as o (t) =1, if Ci reports anomaly, o (t) =0 

otherwise. This results into an Observation vector O(t)=[o1(t),o2(t),…,om(t)]
T .

 

Inputs for the diagnosis algorithms are the matrix M and the observation vector O(t) which gives the output 

as anomaly score vector r=[ c1,c2,…,cm]
T  

such that the subsystem Si is considered as  more faulty than the Sj if  ci 

>cj.. 

 Following diagnosis algorithms are used:   

1. RatioScore 

2. SigScore 

3. BayesianScore 

6.2.1. RatioScore 

 RatioScore entails counting the number of times a component is found in anomalous clusters. The idea 

behind RatioScore is that a faulty component is likely to cause the clusters which contain the component‟s metrics to 

show anomalous behavior. As a result, a component has a higher anomaly score than other components if more 

clusters 

containing metrics of those component exhibit anomalies.   

Inputs for the RatioScore are model subsystem association matrix M, and observation vector O (t), using 

Jaccard coefficient for the assignment of the anomaly scores to each component: 

rj =
 ci(t) ∩ Mij

m
i=1

 ci ∪ Mij
m
i=1

 

6.2.2 SigScore 

 This algorithm is based on the observation that the anomaly score of a component on which many others 

depend (i.e., the more popular or significant it is) tends to be too high and often less reliable. For adjusting the score 

got by the RatioScore, the SigScore is calculated by using the formula: 

rj =
 ci(t) ∩ Mij

m
i=1

π(Cj) ci(t) ∪ Mij
m
i=1

 

where, ∏ (Cj) is a probability distributed vector. 

6.2.3 BayesianScore 

  SigScore takes the relative significance of components into account and adjusts the RatioScore in an 

efficient way, it is not well-justified theoretically.  Bayesian inference rules are used to infer the likelihood of each 

component being faulty. Bayesian inference is a well established method to infer the cause given results. In the 

system when fault is the cause and disturbed correlations are the results; therefore, Bayesian inference is a good 

algorithm for diagnosis. Bayesian inference rules to infer the likelihood of the components being faulty. Sj denote 

the event that the fault is in component j. The probability of Sj, given the observation vector O is given by: 

P Sj O =
P O Sj P(Sj)

P(O)
=

P O Sj P(Sj)

 P Sj P(O|Sj)
n
j=1

 

 P (O|Sj) can be computed using frequently used Bayesian assumption: 

P O Sj =  P(Oi|Sj)

m

i=1

 

                         

 

Three cases are considered for reporting the cluster faulty 

1. False alarm 

2. Error spread 

3. Contains metrics from faulty components 

Notations according to the cases mentioned above 

1. β1 for false alarms 

2. Cj reports an error because of error spread by the п(Cj) 

3. β 2 indicates metrics from the faulty component 

Estimation of P (Oi|Sj) can be done as follows: 

P Oi = 1 Sj = β1 +  1 − β1 (π Cj +  1 − π Cj  Mijβ2) 
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P Oi = O Sj = 1 − P(Oi = 1|Sj) 

7. DESIGN 
7.1 Problem Statement 

“In complex software systems, it becomes necessary to find out the automated and efficient approaches for 

system monitoring. So, the goal is to design and implement the framework for system monitoring with the help of 

system metrics together with the fault detection and diagnosis technique using the information- theoretical 

approach.”   

7.2 Architecture Work 

 
Figure- 7.1 Architecture of the dissertation work 

 Figure shows the architecture of the dissertation work. The dissertation work mainly focuses on collection of 

software metrics, entropy calculation, clustering, Fault detection and diagnosis. The entropy calculation plays 

important role as the relation between collected software metrics is established with the help of entropy also the in-

cluster entropy also depends on the entropy calculation.  

7.2.1 Collection of metrics 

 In this module the software metrics of the system are collected, which are part of Chidamber & kemerer 

Object oriented tool. The software metrics are carefully chosen which represent the state of the system. The software 

metrics are collected and their values are stored for further procedures. 

7.2.2. Computing the Similarities 

 After getting all the values of software metrics, the need to find out the similarities between the software 

metrics is necessary which is accomplished by using the Information Theoretic approach i.e. entropy. Entropy is 

uncertainty about the random variable. The formulae of the Empirical Entropy and Empirical Conditional Entropy 

are applied on the software metric values. Using these two formulae the Normalized Mutual Information is 

calculated which is used as the similarity measure of the software metric values.  

 These NMI values are used to form a similarity matrix, which is the representation of the relationships of 

software metrics between each other. The similarity matrix is provided to the clustering module for further work. 

7.2.3 Clustering 

 The software metrics which are having similar values are collected from the similarity matrix and the 

clusters are formed. For clustering Complete Link Hierarchical Agglomerative clustering algorithm (HAC) is used. 

The clusters formed with this algorithm have the software metrics which have similar or nearly similar values.  

7.2.4 Computing In-cluster Entropy 

 In-cluster entropy is calculated which is used to be monitoring measure for the fault detection. The metrics 

in one cluster are closely correlated with each other since, the relationships between the metrics are either linear or 

nonlinear it is difficult to establish analytical models for the cluster or for the metrics in the cluster.  The 

empirical entropy can be taken as the signature of the cluster, which provides the status of the cluster. For a given 

cluster, a significant change in the behavior of the cluster entropy indicates a fault. 

7.2.5 Fault Detection 

 In this step nonparametric statistical test namely Wilcoxon Rank-Sum Test is used to identify significant 

shifts in In-cluster entropy of individual clusters for detecting the fault within the systems. 
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7.2.6 Fault Diagnosis 

 In this step, the diagnosis algorithms are used to locate the faults correctly. A system S is the collection of 

the subsystems S1, S2, S3… Sn. Set of all metrics be M and set of all clusters be C. There is n-to-1 mapping 

between metrics to subsystems α: M      S the set of all the n-to-1 mappings α is called as A. There is n-to-1 mapping 

between metrics to clusters β: M      C, the set of all the n-to-1 mappings β is called as B. At any time t, each cluster 

can be checked for the anomalies. Record will be kept as o (t) =1, if Ci reports anomaly, o (t) =0 otherwise. This 

results into an Observation vector O(t)=[o1(t),o2(t),…,om(t)]
T . 

 
Inputs for the diagnosis algorithms are the matrix M and the observation vector O(t) which gives the output 

as anomaly score vector r=[ c1,c2,…,cm]
T  

such that the subsystem Si is considered as  more faulty than the Sj if  ci 

>cj.. 

 Following diagnosis algorithms are used:   

1. RatioScore 

2. SigScore 

3. BayesianScore 

 

8.EXPERIMENTAL RESULTS 
  For experiments, JAVA source codes are used. Following are the results obtained and its analysis. 

8.1 Result Analysis & Performance Evaluation 

This is the Performance Evaluation based on the results obtained, where the analysis of the dissertation 

work is explained with the help of graphs which are drawn with data collected during the implementation of the 

work. The three graphs are explained here 

8.1.1 Cluster size Vs Fault Detected 

 
       Figure 8.1- Graph showing relationship between Cluster Size & Faults Detected. 

In this graph the relationship between the cluster size and the faults detected during the implementation of 

the work is represented. The graph values are collected by running the project on the various numbers of source 

codes. The graph shows the gradual increase as the size of the clusters gets increased. The reason for the increment 

of faults detected is, as the clusters size increased the different values of the software metrics are observed they 

results into the increment in the faults detection. More number of software entropy values will give increased 

number of the In-cluster entropies which again results into the increased fault detection. The graph suggests that as 

more number of the clusters involved the complexity increased as a result the flow gets disturbed which results into 

possible increase in faults detection.  

8.1.2 NMI VS Faults detected. 
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    Figure 8.2 - Graph showing relationship between NMI Threshold & Faults Detected. 

 The graph represents the relationship between the NMI (i.e. Normalized Mutual Information) threshold and 

the faults detected. The graph values are observed on the basis of various number of source code running on the 

project. For each project the values collected of the NMI are more in number with comparison of other collected 

values. The increment in the NMI threshold shows the increased difference in the metric entropies which gives large 

difference in the cluster entropies which results into the increased fault detection. On the basis of the graph, 

evaluation can be made as the NMI is directly proportional to the faults detected. 

8.1.3 Candidate Set-Size VS Fault coverage 

 

 
                Figure 8.3 - Graph showing relationship between Candidate set size & Fault Coverage. 

 The graph shows the relationship between the candidate set size and the faults coverage by the diagnosis 

algorithms Ratio Score, SigScore and Bayesian Score used. The graph values are collected from running the various 

source codes on the project. The values of the diagnosis algorithms are collected with respect with the different 

cluster sizes. The observation of the graph is that the Ratio Score diagnosis algorithm gives the primary diagnosis of 

the faults whose values are changed randomly. The sigscore  suggests the correction of the diagnosis of the ratio 

score and also gives the nearby values which are results of the ratio score. The Bayesian score line in the graph 

shows a little randomly behavior with the increased candidate set size. The reason for the graph line behavior is 

increased candidate se size may increase the faults detected which ultimately results into the diagnosis behavior 

observed with the diagnosis algorithms. Bayesian score is represented with the blue line, sigscore is presented with 

the light green line and the Ratio Score is shown with the red line. 

09. CONCLUSION 
  In this project, n approach is presented which is built on information theoretic measures, to automatically 

monitor the health of complex software systems and localize faulty components when faults occur. The approach 

consists of tracking the entropy of metric clusters. I employ the Wilcoxon Rank-Sum test to automatically identify 

significant changes in cluster entropy, thereby enabling robust fault detection. For diagnosing faulty components, I 

extend the use of the Jaccard coefficient to clusters of metrics. In addition, I present SigScore and BayesianScore, 

two new diagnosis algorithms motivated by PageRank. I evaluate the approach using a various software systems. I 
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show through experiments that the fault-detection approach has high fault coverage I also show improvement in 

diagnosis when using the SigScore and BayesianScore algorithms. Results indicate that the proposed diagnosis 

algorithms can provide valuable help for addressing faults in complex systems.  

                                

  FUTURE WORK 
The SigScore and BayesianScore algorithms require information on component dependencies. However, 

complete dependency information is not always available. Also, 

in dynamic systems, dependencies may change. To study the effect of incomplete and dynamic dependency 

information on diagnosis is part of future work.   
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