

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1156

 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL

 OF ADVANCED RESEARCH

RESEARCH ARTICLE

System Monitoring with Fault Detection & Diagnosis in Complex Software System

Mr. Rahul Lokhande

Department of Computer Science & Engineering D. Y. Patil College of Engineering & Technology, Kasaba Bawda,

Kolhapur

Manuscript Info Abstract

Manuscript History:

Received: 15 May 2015

Final Accepted: 22 June 2015

Published Online: July 2015

Key words:

software metrics, entropy, mutual

information, clusters etc.

*Corresponding Author

Mr. Rahul Lokhande

In the world of software, the software need to be monitored every time so

they will perform well. Many techniques have been proposed to execute this

kind of monitoring but failed to provide a feasible solution. In this paper,

solution of system monitoring is proposed with the help of Information

Theoretical approach involving software metrics and their respective

entropies. This paper also provides the fault detection and fault diagnosis

techniques to locate the faults within the clusters of the software metrics.

Copy Right, IJAR, 2015,. All rights reserved

INTRODUCTION

1.1 Overview

 Software systems usually start small and simple, but in less period of time they becomes complex because

of more number of features and requirements are added into the system. As more number of components added the

interactions of system grows in non-linear fashion. In mid October 2001, IBM released declaration policies, which

contained the observations that the main obstacle for further progress in the IT industry is dominating software

complexity crisis. The observations also suggested that the difficulty of managing today‟s computing systems goes

well beyond the administration of individual software environments. Computing System complexity appears to be

approaching the limits of human capabilities. This system approach to characterizing the normal behavior of a

system entails finding and modeling stable relationships between system metrics. Software faults are difficult to

remove completely from the system, so it is unrealistic to expect a complex software system is fault free. The major

challenge for the system management is to detect and isolate the software faults effectively from complex software

systems. A large amount of monitoring data can be collected from the system components for fault analysis. This

data can be used for the purpose of monitoring and also for the fault detection and diagnosis. The system monitoring

with fault detection and diagnosis consists of different phases to properly analyze collection of metrics in fault

detection and diagnosis. he base for the consideration of this project is the need for genuine system monitoring

which gives the fault detection and the fault diagnosis as a composite function. The system monitoring implemented

in this project is not used collectively in previous techniques. Previous techniques gives the whole different

approaches for the fault detection and the diagnosis, which require more synchronization between the two

techniques used, because these two were not come under the common approach as in this project. This project will

serve as a more useful function which is build on the basic properties of the project and undoubtedly clear

parameters such as software metrics. With the help of the software entropy values are being calculated very

carefully so, it can be used for further tasks in system monitoring. The fault detection gives non-parameterized

http://www.journalijar.com/

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1157

technique of detection. Along with this the diagnosis gives the diagnosis observations based on the three different

diagnosis algorithms. This project solves the problem of system monitoring, collectively with fault detection and the

diagnosis in a single project, which is an uncommon feature of the system monitoring. It also provides parameters

which have clear values i.e. software metrics and use of the software entropy gives the monitoring parameters to be

observed. It fulfills the need of the monitoring of the software for the fault detection in the normal execution.

2. RELATED WORK
2.1 Background

 There is a considerable work in the field of the identifying the relationship between the metrics. In

the well- behaved system the stable relationships between the metrics are exist [1], [2], [3]. When error occurs in the

relationship between the metrics are distributed. Different, modeling techniques have been proposed to represent the

relationship between the metrics in the system. These techniques are Simple Linear Regression [3], Simple Linear

Regression with Transformed data (SLRT) [11], Locally Weighted Regression (LWR), Autoregressive regression

with eXogenous Input (ARX); [13] Entropy based modeling,[14], Gaussian Mixture models [1]. These systems have

certain limitations with them. The prior techniques assume a specific mathematical from of the relationship between

the metrics, but it is not guaranteed that there present a specific mathematical form for the relationship between the

metrics. Techniques like Simple Linear Regression (SLR) are not able to capture the non-linear dynamics, so that

they can miss the number of the stable relationships. On the other hand, the techniques like Gaussian Mixture Model

(GMM) and Locally Weighted Regression (LWR), which deal with the non-linear dynamics, are very costly and

also they require very careful parameterization which can result into the difficult general applications. The approach

of combining the different techniques also increase the computational overhead as well as they requires separate

modeling technique and parameter estimation. This shows that the previous work in this field is on the specific

mathematical form and they are prohibitive linearly and computationally.

The current techniques available for the Fault diagnosis of the system based on the metric correlations are

variants based on Jaccard coefficient. These techniques are evaluated related to the metric-pair methods. One of the

techniques used for diagnosis is Pinpoint which is problem determination in large dynamic internet services. This

technique makes use of the user requests tracing for the diagnosis, which is more expensive. There have been very

few studies on software fault prediction without prior fault data. Zhong et al. [18] proposed a clustering and expert-

based software fault prediction method when the fault labels for software modules are unavailable. They used K-

means and Neural- Gas clustering algorithms to cluster modules. After the clustering phase, a 15-years experienced

software engineering expert examined the representative module (mean of each metric) of each cluster and several

statistical data such as maximum, minimum, median of each metric, in order to label each cluster as fault-prone or

not. AMPLE (Analyzing Method Patterns to Locate Errors) [24] is a system for identifying faulty classes in

objectoriented software. It collects hit spectra of method call sequences, which are subsequences of a given length

that occur in a full trace of incoming or outgoing method calls, received or issued by individual objects of a class.

Each call sequence is assigned a weight, which captures the extent towhich its occurrence or absence correlates with

the detection of an error, i.e., it is a combined measure of similarity call sequences of a class, leading to a class

weight. Classes with a high weight are most likely to contain the fault that causes the detected error. Although the

calculation of the sequence weights in AMPLE can be explained as an application of the technique of diagnosis is at

class level, and the calculated coefficients are used only to collect evidence about classes, not to identify suspicious

method call sequences. Concluding, we can observe that three existing tools for diagnosis and automated debugging

rely on an analysis of program spectra. Program spectra themselves were introduced in [25], where hit spectra of

intra-procedural paths are analyzed to diagnose year 2000 problems. In the distinction between count spectra and hit

spectra several kinds of program spectra are evaluated in the context of regression testing. As it already mentioned

in the introduction, in the context of computer programs, fault localization based on the analysis of program spectra

is an automated debugging technique. An example of a different (black box) technique in that category is Delta

Debugging [26], which compares the program states of a failing and a passing run, and actively searches for failure-

inducing circumstances in the differences between these states.

2.2 Need of the Work

 Prior researches in this field pointing the stable relationships between the metrics exist in the well-behaved

system, but again the relationships gets disturb with the occurrence of the error, so these methods are quite

unreliable. Also the prior techniques assume to have a specific mathematical form of relationship between the

metrics, which is hard to accept and the assumption does not work every time.

 The previous techniques were proposed the relationships between the metrics, but they consider only the

metric pair, which makes the job more tedious as each time to pair and examine the metrics takes a long time. Other

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1158

non-linear techniques are costly and their requirement of the careful parameterization makes it difficult to work with

general applications.

 The need arises for the different system monitoring, which provides the relationship between the metrics

without considering any specific mathematical form. The system considers the similar metrics together as a cluster.

This system applies the techniques on the cluster for fault detection. Also the method should provide the detection of

the fault automatically with the help of ranks of the clusters and diagnose the faults with the help of various

diagnosis algorithms.

3. SOFTWARE METRICS
3.1 Software metrics

3.1.1 Introduction

Software is the collection of computer programs, procedures, rules, associated documentation and data which are

collected for specific purpose. Software is the various kinds of programs used to operate computers and related

devices. A program is a sequence of instructions that tells a computer what operations to perform. Programs can be

built into the hardware itself, or they may exist independently in a form known as software. According to the

software engineering context, a measure provides a quantitative indication of the extent, amount, dimension,

capacity, or size of some attribute of a product or process. Measurement is the act of determining a measure.

The software crisis must be addressed and possibly resolved. For accomplishing this task it requires more accurate

schedule and cost estimates, better quality products and higher productivity. All these can be achieved through more

effective software metric use. The IEEE Standard Glossary of Software Engineering Terms defines metric as “a

quantitative measure of the degree to which a system, component, or process possesses a given attribute.”

Metrics should facilitate the development of models that are capable of predicting process or product parameters;

they do not have to just describe them. The good metrics should posses following properties:

 Simple - Software metric should be simple so it should be clear how to

 evaluate them.

 Objective- Software metric should have the objective to the greatest extent

 Easily Obtainable- The metrics should be easily obtainable in a reasonable

 cost.

 Valid- The metric should measure what it is intended to measure.

 Robust- Metric should be relatively insensitive to insignificant changes in

 the process.

3.1.2 Classification of the Metrics

Software metrics can be classified as either product metrics or process metrics.

Product Metrics- measures of the software product at any stage of its development from requirements to its installed

system. Product metrics may measure the complexity of the software design, the size of the final program, or

number of pages of documentation produced.

Process Metrics- measures of the software development process, such as overall development time, type of

methodology used, or the average level of experience of the programming staff.

Other way to classify the software metrics are: objective and subjective

Objective Metrics- these metrics always results in identical values for given metric as measured by two or more

qualified observers.

Subjective Metrics- even qualified observes might measures different values for a given metrics.

For product metrics, size of the products measured in lines of code (LOC) is an objective measure for which any

informed observer should obtain the same measured value for a given program. For process metrics, development

time is the objective measure and level of programmer experience is the subjective measure.

Another way to classify the software metric: Primitive and computed metrics

Primitive Metrics- the metrics that can be directly observed, for example program size (in LOC), number of defects

observed in unit testing, or total development time for the project.

Computed Metrics- The metrics which cannot be directly observed, but they are computed in some manner from the

other metrics. Examples are the metrics which are commonly used for the productivity, LOC produced per person –

month or for product quality such as the number of defects per thousand lines of code.

3.1.3 Software Metric Examples

 Following are some examples of the software metrics:

 Number of packages

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1159

 Number of methods

 Lines of code (LOC)

 Number of Interfaces

 NSM- Number of static methods

 TLOC- Total Lines of codes.

 CA- Afferent Coupling

 RMD- Normalized Distance

 NOC- Number of Classes

 SIX- Specialization Index

 NOF- Number of Attributes

 NOP- Number of Packages

 WMC- Weighted Method per Class

 NSF- No. of static Attributes

 NORM- Number of Overridden Methods

 NOM- Number of Methods

These are few examples of software metrics which represents the state of the software from which they are

collected. A right set of metrics can provides the idea about the working state of the software as well as the

performance of software.

3.1.4 Software metrics used in the project

 For this project work this project used the Chidamber & Kemerer Java metrics, which is which is an open

source command line tool. It calculates the C & K Object Oriented metrics by processing the byte-code compiled

Java files. Following are the list of software metrics used in this project.

 WMC- weighed methods per class

 DIT- Depth of Inheritance Tree

 NOC- Number of Children

 CBO- Coupling between object classes

 RFC- Response for a class

 Ca-Afferent Coupling

 NPM- Number of Public Methods

 Ce- Efferent Coupling

 DAC- Data Abstract Coupling

 MPC- Message Passing Coupling

 COF- Coupling Factor

 MIC- Method Invocation

 ICP- Information flow based coupling

4. ENTROPY OF SOFTWARE METRICS
4.1 Software Entropy

 The second law of thermodynamics, in principle, states that a closed system's disorder cannot be reduced; it

can only remain unchanged or increase. A measure of this disorder is entropy. This law also seems plausible for

software systems; as a system is modified, its disorder, or entropy, always increases. This is known as software

entropy. Information theory is a branch of applied mathematics, electrical engineering, bioinformatics, and computer

science involving the quantification of information. Information theory was developed by Claude E. Shannon.

Entropy is known as the key feature of the information. Entropy quantifies the uncertainty involved in predicting the

value of a random variable. Information entropy measures the uncertainty or unpredictability of the random variable.

For discrete random variable X, the entropy is given by,

H X = Ep log
1

p(X)
= − p(xi) log p(xi)

n

i=1

where X takes values from the set {x1; x2; . . . ; xn}; Ep refers to the expectation with respect to the probability

distribution of X characterized by the density function p. If p(X =xi) =1 and p(X = xj) = 0 for any i≠ j, i.e., there is no

uncertainty about X, then H(X) is zero. Otherwise, H(X) takes a positive value.

4.2 Conditional Entropy

http://en.wikipedia.org/wiki/Second_law_of_thermodynamics
http://en.wikipedia.org/wiki/Closed_system
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Entropy
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Quantification
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Claude_E._Shannon
http://en.wikipedia.org/wiki/Random_variable

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1160

 The conditional entropy measures the uncertainty of a random variable Y given another random variable X.

It represents the remaining uncertainty of Y knowing values taken by X. It is defined by

H Y X = Ep log
1

p(Y|X)

 = − p(xi , yj) log p(yj|xi)

m

j=1

n

i=1

4.3 Mutual Information

 The mutual information measures the reduction in uncertainty of a random variable Y given another

random variable X. This reduction represents the amount of information either variable provides about the other. It

is defined by

I X, Y = H Y − H(Y|X)

4.4 Normalized Mutual Information

 However, it is impractical to use either conditional entropy or MI as a measure of the similarity between X

and Y. Conditional entropy is not symmetric, i.e., H (Y |X) is often not equal to H (X|Y). While MI is symmetric, its

absolute value is not necessarily comparable across random variables. MI is influenced by H(X) and H(Y), which

may have different maximal values. Strehl and Ghosh [7] developed normalization for mutual information, called

Normalized Mutual Information (NMI), to address the shortcomings

of MI. It is defined by

NMI X, Y =
I(X, Y)

 H X H(Y)

 For any random variables, X and Y, NMI has following properties

1. 0≤ NMI(X, Y) ≤ 1.

2. NMI(X, Y) = NMI(Y, X).

3. If X and Y are independent, NMI(X, Y) = 0.

4. If Y = f(X), NMI(X, Y) = 1, for any invertible function f.

The more correlated two variables are, the higher NMI they have, in spite of the specific form of their

relationship. Because of these properties NMI provides a good measure of the correlation between two variables,

and can be used as a similarity measure.

4.5 Empirical Entropy, Empirical Conditional Entropy and Similarity Matrix

 The metric values are periodically been collected for calculating the Empirical Entropy, after collecting the

values following formula is applied on the random variable X

H X = −
ni

n

k

i=1

log
ni

n

 The Empirical Conditional Entropy can also be calculated using the formula:

H X = −
nij

n
ji

log
nij

ni

 Where nij is the number of samples (x, y) with x in bin i and y in bin j.

With the help of Empirical Entropy and Empirical Conditional Entropy the NMI will be calculated, which

will form a metrics Similarity Matrix.

5. CLUSTERING AND CLUSTER ENTROPY
5.1 Clustering

If both (X, Y) and (Y, Z) are strongly correlated, then (X, Z) are also likely correlated. This implies that

there exist groups of mutually correlated metrics, or clusters. This is used to group the metrics having the similar

values. This is done by using the Complete Link Hierarchical Clustering algorithm. By getting the similarity matrix

from the complete link hierarchical agglomerative clustering is applied to group the similar metrics. This algorithm

works by grouping the metric one by one on the basis of nearest distance measures of all the pair wise distance

between the metrics.

Algorithm for clustering:
 Steps:

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1161

1. Take similarity matrix M as a input

2. Define the threshold for maximum distance between two clusters.

3. Define the maximum distance between the two clusters as the distance between the two clusters.

4. Treat every metric as a single cluster and merge nearest cluster until either the distances between every two clusters

exceed the predefined threshold or all metrics belong to one cluster.

 The algorithm gives the guarantee about all metrics in cluster have similarity of the predefined threshold.

The algorithm gives facility that the specification of clusters a priori is not necessary.

5.2 Cluster entropy

After forming the clusters of the software metrics having the similar values with the help of the Similarity

Matrix, the next step will be computing the entropy of the clusters created. This module computes the status of the

each cluster in the form of entropy. The metrics in one cluster are closely correlated with each other since, the

relationships between the metrics are either linear or nonlinear it is difficult to establish analytical models for the

cluster or for the metrics in the cluster.

The empirical entropy can be taken as the signature of the cluster, which provides the status of the cluster.

For a given cluster, a significant change in the behavior of the cluster entropy indicates a fault.

The steps for computing cluster entropy:

1. Normalization of all metric values by dividing each value with its average values which is based on data collected

during normal operations.

2. Relate the different metric values to a single variable.

3. Calculate the empirical entropy of the random variable over time.

1. Set the range to[0,7]

2. Divide it into seven equal bins.

3. Add an eighth bin with the range [7, ∞], for the values that do not fit in the other seven bins.

4. Monitor the cluster entropy over time i.e. tracking the entropy of each cluster.

6. FAULT DETECTION AND DIAGNOSIS
6.1 Fault Detection

Consider the entropy behavior of the clusters. They show the behavior of cluster entropy when some fault

occurs at time. Human operators can readily identify unusual changes in the pattern of the in-cluster entropy, and, as

a result, suspect errors. It is impractical to have these operators continuously track the behavior of all clusters.

Instead, automatically identifying anomalies in the in-cluster entropy is nontrivial because there are no general rules

that differentiate between normal and disturbed behavior.

For this purpose nonparametric statistical test namely Wilcoxon Rank-Sum Test is used to identify

significant shifts in In-cluster entropy of individual clusters for detecting the fault within the systems.

Let Ei be the In-cluster entropy of cluster E at time i. For detecting the significant change in Ei when fault

occurs, two sliding windows of Ei are kept. The test window consists of most recent nEi‟s and the baseline window

consists of mEi‟s before the test window, then applying the Wilcoxon Rank-Sum Test on these windows. If the

significant change is indicated by the test alarm is raised.

For example, if {Es+1, Es+2,…,E s+m} and {E s+m+1, E s+m+2,…,E s+m+n} are two sample sets from two sample windows

(s+1,s+m) and (s+m+1,s+m+n) are from the same distribution, then Wilcoxon Rank-Sum statistic is given by the

formula:

W = hs+i,s+m+j +
m(m + 1)

2

n

j=1

m

i=1

 Where

 1, Xi < Xj

 hi, j= 0.5, Xi = Xj,

 0, otherwise.

6.2 Fault Diagnosis

The goal of diagnosis is to determine the cause of errors (i.e., to localize the fault). The faster the source of

an error can be found, the faster its cause can be addressed. This

reduces the amount of downtime the system incurs, thereby improving system availability.

In this module, the diagnosis algorithms are used to locate the faults correctly. A system S is the collection

of the subsystems S1, S2, S3…, Sn. Set of all metrics be M a set of all clusters be C. There is n-to-1 mapping

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1162

between metrics to subsystems α: M S, the set of all the n-to-1 mappings α is called as A. There is n-to-1

mapping between metrics to clusters β: M C, the set of all the n-to-1 mappings β is called as B. At any time t,

each cluster can be checked for the anomalies. Record will be kept as o (t) =1, if Ci reports anomaly, o (t) =0

otherwise. This results into an Observation vector O(t)=[o1(t),o2(t),…,om(t)]
T .

Inputs for the diagnosis algorithms are the matrix M and the observation vector O(t) which gives the output

as anomaly score vector r=[c1,c2,…,cm]
T

such that the subsystem Si is considered as more faulty than the Sj if ci

>cj..

 Following diagnosis algorithms are used:

1. RatioScore

2. SigScore

3. BayesianScore

6.2.1. RatioScore

 RatioScore entails counting the number of times a component is found in anomalous clusters. The idea

behind RatioScore is that a faulty component is likely to cause the clusters which contain the component‟s metrics to

show anomalous behavior. As a result, a component has a higher anomaly score than other components if more

clusters

containing metrics of those component exhibit anomalies.

Inputs for the RatioScore are model subsystem association matrix M, and observation vector O (t), using

Jaccard coefficient for the assignment of the anomaly scores to each component:

rj =
 ci(t) ∩ Mij

m
i=1

 ci ∪ Mij
m
i=1

6.2.2 SigScore

 This algorithm is based on the observation that the anomaly score of a component on which many others

depend (i.e., the more popular or significant it is) tends to be too high and often less reliable. For adjusting the score

got by the RatioScore, the SigScore is calculated by using the formula:

rj =
 ci(t) ∩ Mij

m
i=1

π(Cj) ci(t) ∪ Mij
m
i=1

where, ∏ (Cj) is a probability distributed vector.

6.2.3 BayesianScore

 SigScore takes the relative significance of components into account and adjusts the RatioScore in an

efficient way, it is not well-justified theoretically. Bayesian inference rules are used to infer the likelihood of each

component being faulty. Bayesian inference is a well established method to infer the cause given results. In the

system when fault is the cause and disturbed correlations are the results; therefore, Bayesian inference is a good

algorithm for diagnosis. Bayesian inference rules to infer the likelihood of the components being faulty. Sj denote

the event that the fault is in component j. The probability of Sj, given the observation vector O is given by:

P Sj O =
P O Sj P(Sj)

P(O)
=

P O Sj P(Sj)

 P Sj P(O|Sj)
n
j=1

 P (O|Sj) can be computed using frequently used Bayesian assumption:

P O Sj = P(Oi|Sj)

m

i=1

Three cases are considered for reporting the cluster faulty

1. False alarm

2. Error spread

3. Contains metrics from faulty components

Notations according to the cases mentioned above

1. β1 for false alarms

2. Cj reports an error because of error spread by the п(Cj)

3. β 2 indicates metrics from the faulty component

Estimation of P (Oi|Sj) can be done as follows:

P Oi = 1 Sj = β1 + 1 − β1 (π Cj + 1 − π Cj Mijβ2)

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1163

P Oi = O Sj = 1 − P(Oi = 1|Sj)

7. DESIGN
7.1 Problem Statement

“In complex software systems, it becomes necessary to find out the automated and efficient approaches for

system monitoring. So, the goal is to design and implement the framework for system monitoring with the help of

system metrics together with the fault detection and diagnosis technique using the information- theoretical

approach.”

7.2 Architecture Work

Figure- 7.1 Architecture of the dissertation work

 Figure shows the architecture of the dissertation work. The dissertation work mainly focuses on collection of

software metrics, entropy calculation, clustering, Fault detection and diagnosis. The entropy calculation plays

important role as the relation between collected software metrics is established with the help of entropy also the in-

cluster entropy also depends on the entropy calculation.

7.2.1 Collection of metrics

 In this module the software metrics of the system are collected, which are part of Chidamber & kemerer

Object oriented tool. The software metrics are carefully chosen which represent the state of the system. The software

metrics are collected and their values are stored for further procedures.

7.2.2. Computing the Similarities

 After getting all the values of software metrics, the need to find out the similarities between the software

metrics is necessary which is accomplished by using the Information Theoretic approach i.e. entropy. Entropy is

uncertainty about the random variable. The formulae of the Empirical Entropy and Empirical Conditional Entropy

are applied on the software metric values. Using these two formulae the Normalized Mutual Information is

calculated which is used as the similarity measure of the software metric values.

 These NMI values are used to form a similarity matrix, which is the representation of the relationships of

software metrics between each other. The similarity matrix is provided to the clustering module for further work.

7.2.3 Clustering

 The software metrics which are having similar values are collected from the similarity matrix and the

clusters are formed. For clustering Complete Link Hierarchical Agglomerative clustering algorithm (HAC) is used.

The clusters formed with this algorithm have the software metrics which have similar or nearly similar values.

7.2.4 Computing In-cluster Entropy

 In-cluster entropy is calculated which is used to be monitoring measure for the fault detection. The metrics

in one cluster are closely correlated with each other since, the relationships between the metrics are either linear or

nonlinear it is difficult to establish analytical models for the cluster or for the metrics in the cluster. The

empirical entropy can be taken as the signature of the cluster, which provides the status of the cluster. For a given

cluster, a significant change in the behavior of the cluster entropy indicates a fault.

7.2.5 Fault Detection

 In this step nonparametric statistical test namely Wilcoxon Rank-Sum Test is used to identify significant

shifts in In-cluster entropy of individual clusters for detecting the fault within the systems.

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1164

7.2.6 Fault Diagnosis

 In this step, the diagnosis algorithms are used to locate the faults correctly. A system S is the collection of

the subsystems S1, S2, S3… Sn. Set of all metrics be M and set of all clusters be C. There is n-to-1 mapping

between metrics to subsystems α: M S the set of all the n-to-1 mappings α is called as A. There is n-to-1 mapping

between metrics to clusters β: M C, the set of all the n-to-1 mappings β is called as B. At any time t, each cluster

can be checked for the anomalies. Record will be kept as o (t) =1, if Ci reports anomaly, o (t) =0 otherwise. This

results into an Observation vector O(t)=[o1(t),o2(t),…,om(t)]
T .

Inputs for the diagnosis algorithms are the matrix M and the observation vector O(t) which gives the output

as anomaly score vector r=[c1,c2,…,cm]
T

such that the subsystem Si is considered as more faulty than the Sj if ci

>cj..

 Following diagnosis algorithms are used:

1. RatioScore

2. SigScore

3. BayesianScore

8.EXPERIMENTAL RESULTS
 For experiments, JAVA source codes are used. Following are the results obtained and its analysis.

8.1 Result Analysis & Performance Evaluation

This is the Performance Evaluation based on the results obtained, where the analysis of the dissertation

work is explained with the help of graphs which are drawn with data collected during the implementation of the

work. The three graphs are explained here

8.1.1 Cluster size Vs Fault Detected

 Figure 8.1- Graph showing relationship between Cluster Size & Faults Detected.

In this graph the relationship between the cluster size and the faults detected during the implementation of

the work is represented. The graph values are collected by running the project on the various numbers of source

codes. The graph shows the gradual increase as the size of the clusters gets increased. The reason for the increment

of faults detected is, as the clusters size increased the different values of the software metrics are observed they

results into the increment in the faults detection. More number of software entropy values will give increased

number of the In-cluster entropies which again results into the increased fault detection. The graph suggests that as

more number of the clusters involved the complexity increased as a result the flow gets disturbed which results into

possible increase in faults detection.

8.1.2 NMI VS Faults detected.

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1165

 Figure 8.2 - Graph showing relationship between NMI Threshold & Faults Detected.

 The graph represents the relationship between the NMI (i.e. Normalized Mutual Information) threshold and

the faults detected. The graph values are observed on the basis of various number of source code running on the

project. For each project the values collected of the NMI are more in number with comparison of other collected

values. The increment in the NMI threshold shows the increased difference in the metric entropies which gives large

difference in the cluster entropies which results into the increased fault detection. On the basis of the graph,

evaluation can be made as the NMI is directly proportional to the faults detected.

8.1.3 Candidate Set-Size VS Fault coverage

 Figure 8.3 - Graph showing relationship between Candidate set size & Fault Coverage.

 The graph shows the relationship between the candidate set size and the faults coverage by the diagnosis

algorithms Ratio Score, SigScore and Bayesian Score used. The graph values are collected from running the various

source codes on the project. The values of the diagnosis algorithms are collected with respect with the different

cluster sizes. The observation of the graph is that the Ratio Score diagnosis algorithm gives the primary diagnosis of

the faults whose values are changed randomly. The sigscore suggests the correction of the diagnosis of the ratio

score and also gives the nearby values which are results of the ratio score. The Bayesian score line in the graph

shows a little randomly behavior with the increased candidate set size. The reason for the graph line behavior is

increased candidate se size may increase the faults detected which ultimately results into the diagnosis behavior

observed with the diagnosis algorithms. Bayesian score is represented with the blue line, sigscore is presented with

the light green line and the Ratio Score is shown with the red line.

09. CONCLUSION
 In this project, n approach is presented which is built on information theoretic measures, to automatically

monitor the health of complex software systems and localize faulty components when faults occur. The approach

consists of tracking the entropy of metric clusters. I employ the Wilcoxon Rank-Sum test to automatically identify

significant changes in cluster entropy, thereby enabling robust fault detection. For diagnosing faulty components, I

extend the use of the Jaccard coefficient to clusters of metrics. In addition, I present SigScore and BayesianScore,

two new diagnosis algorithms motivated by PageRank. I evaluate the approach using a various software systems. I

ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 7, 1156-1166

1166

show through experiments that the fault-detection approach has high fault coverage I also show improvement in

diagnosis when using the SigScore and BayesianScore algorithms. Results indicate that the proposed diagnosis

algorithms can provide valuable help for addressing faults in complex systems.

 FUTURE WORK
The SigScore and BayesianScore algorithms require information on component dependencies. However,

complete dependency information is not always available. Also,

in dynamic systems, dependencies may change. To study the effect of incomplete and dynamic dependency

information on diagnosis is part of future work.

REFERENCES
[1] Z.Guo, G. Jiang and K.Yoshihira, “Tracking Probabilistic Correlation of

 Monitoring Data for Fault Detection in Complex Systems”, Proc int‟l Conf.

 Dependable Systems and Networks (DSN „06). 2006.

[2] G. Jiang. H. Chen and K.Yoshihira, “Modeling and Tracking of Transaction

 Flow Dynamics for Fault Detection in Complex Systems” IEEE Transactions

 Dependable and Secure Computing, Oct-Dec 2006.

[3] M. A. Munawar and P. A. Ward “Adaptive Monitoring in Enterprise Software

 Systems” Proc .Workshop Systems Modeling Language (SysML), June2006

[4] J. O. Kephart and D.M. Chess, “The Vision of Autonomic Computing”

 Computer, vol.36, Jan 2003.

[5] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox and E.A. Brewer, “PinPoint:

 Problem Determination in Large Dynamic Internet Services” Proc int‟l Conf.

 Dependable Systems and Networks (DSN). 2002.

[6] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A. Fox

 “Capturing, Indexing, Clustering and Retrieving System History” Proc.

 Symp. Operating Systems Principles (SOSP), 2005

 [7] “An Evaluation of Similarity Coefficients for Software Fault Localization”,

 Rui Abreu, Peter Zoeteweij, Arjan J.C. van Gemund Software Technology

 Department Faculty of Electrical Engineering, Mathematics, and Computer

 Science Delft University of Technology.

 [8] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Problem

 determination in large, dynamic internet services. In Proceedings of the 2002

 International Conference on Dependable Systems and Networks, pages 595–

 604, Washington, DC, USA, 2002. IEEE Computer Society.

 [9] “Limitations in the use and interpretation of metrics” article on Google.”

 [10] “Parametric Tests” by Chong-ho yu PhDs.

 [11] “Scenarios Where Utilizing a Spline Model in Developing a Regression Model

 is Appropriate”, Ning Huang, University of Southern

 California.

 [12] “Locally Weighted Regression: An Approach to Regression Analysis by

 Local Fitting”, William S. Cleveland; Susan J. Devlin, Journal of the

 American Statistical Association, Vol. 83, No. 403. (Sep., 1988), pp. 596-

 610.

 [13] “Parameterization of multi-output autoregressive-regressive models for self-

 tuning control”, Mirosla Vkárný.

 [15] “Adaptive Monitoring with Dynamic Differential Tracing- Based Diagnosis”

 Mohammad A. Munawar, Thomas Reidemeister, Miao Jiang, Allen George,

 and Paul A.S. Ward.

 [16] “A Review of Fault Detection Techniques to Detect Faults and Improve the

 Reliability in Web Applications”, Jyoti Tamak, Department of Computer

 Science and Engineering, University Institute of Engineering & Technology

 Kurukshetra University, Kurukshetra, Haryana, India.

