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Although high quality multiple sequence alignment is an essential task 

in bioinformatics, it becomes a big dilemma nowadays due to the 

gigantic explosion in the amount of molecular data. The most 

consuming time and space phase is  the  distance matrix computation. 

This paper  addresses this issue by  proposing  a vectorized parallel 

method that accomplishes the huge number of similarity comparisons 

faster in linear space. 
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Introduction:- 
Multiple sequence alignment of several nucleotides or amino acids is an important tool in  bioinformatics. It can 

identify patterns or motifs to  characterize protein families, and is therefore  utilized to detect homology between 

sequences as  well as to perform phylogenetic analysis [1].   

 

It is  playing an increasingly important role in diverse  areas, such as elucidation of the tree of life [2],  studies of 

epidemiology and virulence [3], drug  design [4], and human genetics [5]. Most popular  MSA tools, ClustalW[6], T-
Coffee[7], MAFFT[8], and DIALIGN[9], utilize the progressive method  that was at first introduced in  [10].   

 

It typically  consists of three stages. Stage 1 computes a  Distance Matrix (DM) comprised of the distance  value 

between each pair of input sequences. Stage  2 computes an evolutionary tree from the DM using  some phylogeny 

reconstruction methods like  Neighbor-Joining (NJ) [11] which guides the final  multiple alignment process. In stage 

3, first closely  related sequence or group of sequences is aligned  then  the most divergent sequences are aligned to  

get the final MSA.  

 

However, there are some  obstacles that must be handled carefully when  using the progressive method. First, 

complexity is  of increasing relevance due to the rapid growth of  sequence databases, which now contains enough  

representatives of larger protein families to exceed  the capacity of most current programs.  

 
For  example, aligning two sequences with one  megabyte length each requires several terabytes of  memory, which 

cannot be provided by most of the  commodity computational resources. Second,  computational load of multiple 

alignment  calculations is of great increasing.  

 

For example,  computations of modern homologous sequence  data sets could take days. In fact, the best methods  

sometimes fail  to deal with these complexities  efficiently and obtain biologically accurate  alignments at the same 

time.  The present study overcomes these obstacles by  using two main approaches.  
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The first is the  vectorization, where all matrices are compensated  by vectors, which in turn reduces the memory  

requirement and speedup execution without  affecting the accuracy.  

 

The second approach is  parallelism, the  widespread programming method  nowadays that allows multiple  

independent  processes  which share the same resources,  to be  executed concurrently at less time.  Thus, this work 
proposes  an  optimized  method  for the progressive MSA  distance matrix  computation using vectorization and 

parallelism.   

 

It  aims at producing  a superlative  MSA  tool over  existing ones in space and execution time.  Implementation 

tests uses MATLAB®2012  compiler and explicit parallel programming with  the fork-join model of parallel 

execution on core i7.    

 

MATLAB was the most appropriate  programming language for our work because it is  an interpreted language of  a 

high-level scripting  and interactive sessions.  It tends to be easier to  code and debug.  Its package comes with  

sophisticated libraries for matrix and vector  operations, general numeric methods and plotting of data. It supports 

parallelism and MEX-files  including C++ codes  that accelerate execution and  offer full control over parallelization 

[12].  The multi-core was the candidate platform for  implementation due to its availability, but it is  intended to 
extend our work for clusters; grids; or  clouds. A multi-core processor uses the shared  memory storage mechanism. 

The relationship  between its cores is tightly coupled, and they are  often interconnected by shared-cache, therefore,  

there is almost no communication overhead  between cores [13].  

 

Related Work:-  
This section surveys the most popular parallel tools developed for MSA using multi-cores. It highlights  their 
parallel techniques and  their  performance  enhancement.  ClustalW presented a fully multithreading  optimized 

version called MT-ClustalW [14]. It  utilized the machine resources and achieves higher  throughput. It was 2 times 

faster than the sequential  ClustalW using 8 threads. While on Cell BE [15], it  makes extensive use of vectorization 

and schedules  the application across all cores which speed up the  pairwise alignment  phase. In addition, it applies  

loop unrolling and loop skewing optimizations that  speedup the progressive alignment phase. It  achieves an overall 

speedup of 9.1. Also on a QS21  Cell Blade, it demonstrates a speedup of 24.4 times  when using 16 synergistic  

processor units  compared to single-thread execution on the power  processing unit, and 3.8 times faster than a 3-

thread  version running on an Intel Core2 Duo[16].   Cloud-Coffee [17] is the parallel implementation  of T-Coffee 

that is based on shared-memory  architectures, like multi-core. It was benchmarked  on the Amazon Elastic Cloud 

(EC2) and runs 3.7  times faster.  In  [18],  all stages  of  MAFEET  have been  parallelized using the POSIX 

Threads library with  the best-first  and simple hill-climbing  parallelization strategies. It achieved a speedup of  10 

times with different random numbers on a 16  core PC.  DIALIGN-TX-MPI [19] is the parallel version of  
DIALIGN-TX that was implemented using both  OpenMP and MPI on a heterogeneous multi-core  cluster. It used 

an iterative heuristic method for  MSA that is based on dynamic programming  and  generates alignments by 

concatenating ungapped  regions with high similarity. It obtains a speedup of  3.13.  MSAProbs [20] combines a 

pair-HMM and a  partition function to calculate posterior  probabilities. It investigates weighted probabilistic  

consistency transformation and weighted profile- profile alignment, to achieve high alignment  accuracy. In 

addition, it is optimized for modern  multi-core CPUs by employing a multi-threaded  design in order to reduce 

execution time. It  statistically demonstrates dramatic accuracy  improvements over previous tools.  MSACompro 

[21] incorporates predicted  secondary structure, relative solvent accessibility,  and residue-residue contact 

information into the  currently most accurate posterior probability-based  MSA methods. It uses a multiple-threading  

implementation on a 32 CPU cores machine.  Benchmarks clearly show improvements in  accuracy over MSAProbs 

and all leading tools.  We concluded from the  study of  the above tools  that  MSACompro and MSAProbs are the 
most  accurate but at expense of speed. Sample-Align-D  is the fastest but not available. Clustal and MAFFT  are 

fast, available, portable and can align huge  number of sequences but less accurate. MUSCLE  and T-coffee provide 

a good compromise between  time spent and quality of the resulting alignment.  And most of them exhaust large 

storage space due  to the usage of matrices. Thus this research aims at  addressing the problems concerning space 

and time.  
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Proposed Approach:-  
Some attempts have been made to accelerate DM  computations  using GPU’s  [22],  and CUDA  [23].  This section 

explains our proposed algorithm. It  depends mainly on the espoused idea in this work  of switching from matrices to 

vectors. Its main goal  is to speedup computations and reduces storage.   The baseline  equation  used to  compute 

the  elements of the distance matrix  DM(N×N)  for  aligning N sequences {S1, S2, … , SN} is:   

 

DM (i,j) = 1- nid(Si,Sj) / min(Li,Lj)   1< i, j < N     (1) 
 

where nid(Si,Sj) is the similarity score between Si and Sj.  It is  computed by using  the most popular optimal  local 

alignment known as the Smith-Waterman  algorithm (SM) [24]. It compares two sequences by  computing a 

distance that represents the minimal  cost of transforming one segment into another, with  respect to the given 

scoring system. It identifies  common subsequences between any two sequences  S1  and  S2  of length  L1  and  L2, 

by computing the  similarity  H(i,j)  of two sequences ending at  position i and j, using the following recurrence:        

 ,  1< i, j < N   (2) 
where  sbt   is a  nucleotides or  amino acid  substitution matrix, and g is a gap penalty.   

 

The proposed algorithm vectorizes all above  matrices. First, it benefits from the fact  that  computing any anti-

diagonal in the matrix  H  is  based only on the values of the previous two anti- diagonals. Based on Equation (2), 
each cell H(i,j)  depends only on its    Northern  H(i,j-1), Western  H(i-1,j)  and North-Western  H(i-1,j-1)  

previously  computed. Thus, just one vector V for current anti- diagonal, with two buffers  V1  and  V2  for two  

previously computed anti-diagonals, are enough to  compute the  similarity score.  

 

This is done by  computing all  cells along anti-diagonal  V  in  parallel. The value of each cell is evaluated in  terms 

of its diagonal neighbour  stored at V1, with  its left and upper neighbours  stored at V2, and the  maximum value is 

selected indicating the highest  score,  using the following equation repeatedly  along all  2L-1  anti-diagonals, 

where  it is assumed  that all sequences have the same length  L, for  simplicity.         

 

 

(3) 

 

Fig.  1 illustrates the main idea when aligning  the two sequences  S1={ACCGTCG} and  S2={TCCGTCA} of 

length 7. It shows the  computation of the similarity matrix  H, with the  linear gap cost (-8) and a substitution cost 

of (5) if  the characters are identical and (-4) otherwise, and  how it is replaced by V, using V1 and V2. 
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Fig. 1:- Relation between H, V, V1, V2. 

  

Second, the proposed algorithm also replaces  the distance matrix DM by a distance vector DV. It  exploited the fact 

that DM is symmetric, and stores  only its minor diagonal with its upper triangle,  dispensing repeated values. It 

computed the values  of DV by the following equation:  

 DV (k) = 1-  (dvk)/min(L)                                 (4)  

  

Where (dvk) is the number of similarity score in the  optimal local alignment of  Si  and Sj. Fig. 2 shows  the 

correspondence between  DV  and DM cells  when N=5.  

 
Fig. 2:- The relation between DM, DV. 

  

  

Results and Discussion:-  
This section presents results obtained when  measuring the performance of the above proposed  parallel  method  

implemented using MATLAB®  R2012a on a core-i7 processor with 8 cores of  3.4GHz and 8GB RAM running on 

Windows7.  Evaluations were concerning two attributes of  MSA tools that are of great importance to users.  They 

are time and space.   
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Runtime:-   

The most important  criterion of measuring the  quality of our tool is the consumed time during its  execution.  A set 

of performance evaluation  experiments has been conducted using ten protein  sequence datasets, consisting of 

sequences with  different combinations of sequences’ number  (N)  and length  (L), selected from the Human  

Immunodeficiency Virus (HIV) dataset  downloaded from NCBI.  Table (1) presents the  execution time and 

speedup of the proposed  parallel algorithm for computing the distance  vector  DV, and the original algorithm 
computing  the distance matrix DM. It shows that the greater  the length of sequences, the more acceleration of  DV  

due to the high computation speedup of the  optimal exact matches.  

 

Table 1:- Performance Comparison between  DM, DV Computations 

N L DM(sec.) DV (sec.) Speedup 

400 856 760.812 141.245 5.386 

400 408 213.575 48.063 4.444 

600 462 595.460 142.750 4.171 

800 454 1087.349 230.806 4.711 

1000 858 4895.379 900.068 5.439 

1000 446 1640.334 385.649 4.253 

2000 266 2624.920 570.873 4.598 

4000 247 22720.202 5579.069 4.072 

4000 83 4989.181 1462.492 3.411 

8000 73 16972.691 4733.101 3.586 

 

Our work has achieved higher performance due  to four reasons: (1) the superiority of MATLAB on  other 

languages at dealing with vectors, (2) the  optimal use of Multi-core machine when  parallelizing the computation of  

DV  independent  elements, (3) the perfect use of C++ mix-file when  dealing with memory, (4) the use of RAM 

only for  storing the V’s and H’s.   

  

Usage Space:-  

Storage space is the second parameter of measuring  the quality of the MSA tool because of the huge  growth of 
sequence databases that exceed current  programs’ capacity. It is  measured by the space  needed to store data. 

Experiment results of used  storage during computations of both  DM  and DV  were recorded as given in Table (2), 

with respect to  the size of the N input sequences. It is clear that the  proposed algorithm has reduced the overall 

space  almost to the half. This is because the space  required for the matrix DM whose size is N×N has  been 

reduced to DV of size N×(N-1)/2.   

 

Table 2:- Storage Comparisons between DM, DV   

N L DM(Mbyte) DV(Mbyte) 

400 408 0.64 0.31 

400 856 0.64 0.31 

600 462 1.44 0.70 

800 454 2.56 1.25 

1000 446 4 1.95 

1000 858 4 1.95 

2000 266 16 7.80 

4000 247 64 31.19 

4000 83 64 31.19 

8000 73 256 124.78 

 

In addition, Table (3) shows the RAM storage  exhausted when storing H’s in comparison  to that  of  V’s. This 

remarkable achievement comes from  the fact that SW algorithm consumes  (L+1)2  word  to find similarity between 

two sequences of length  L, while DV uses only 3(L+1) word.  
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Table 3:- Storage Comparisons between H’s, V’s 

L H’s(Kbyte) V’s(Kbyte) 

408 334.56 2.45 

856 1468.90 5.14 

462 428.74 2.78 

454 414.05 2.73 

446 399.62 2.68 

858 1475.76 3.54 

266 142.58 1.60 

247 123.01 1.49 

83 14.11 0.51 

73 10.95 0.44 

 

Conclusion  and Future Work:-  
The contribution of this work contain optimizations  for SW algorithm,  and  DM  computation  for  addressing the 

problem of building a parallel tool  for multi-cores that produces the best alignment of  multiple sequences in short 

time without using  much storage space. Results prove that the  proposed approach for DM and SW has good  ability 

to aligning large number of sequences  through powerful improved storage handling  capabilities with efficient 

improvement  of the  overall processing time.   

 

For future,  it is planned to  apply the same  mechanism on NJ stage, and combine all  algorithms to produce the 

aligner. Then the aligner  will be  extended  to operate on different parallel  platforms. Challenges expected to be 

tackled when  merging optimization techniques for improving  accuracy may affect performance improvements.  
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