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Introduction:-

Several authors discussed the properties of the smoothing periodograms using data window and considered the
estimation of spectral measure of stationary process, Brillinger(1969), Dahlhaus(1985), Ghazal and Farag(2000),
Teama and Bakouch(2004), Ghazal(2001,2005), Ghazal, Faraj and EI-Desokey(2005), Ghazal and
Elhassanein(2006), Ghazal, Mokaddis and El- Desokey(2010), Elhassanein(2013).

Let B(t) = {? (it))} ,

with X (t), r vector-valued and Y(t), S wvector-valued a strictly stability (r+S) series, where

t=0,+1 +2, ... (1.1)

Y(t)~) a(t-u) X(t). We construct the statistics Ly (A) (—o0 < A <o), the matrix of second order

smoothing modified periodograms, FBB(T)(/I), which is the matrix of second order spectral measures, and

fos ™ (A) s the matrix of second order spectral densities .

Suppose that :
E{[X (t+u)-CJIX (1) ~C,I'}=C,, (u) ,
E{[X (t+u)-C,JIY()-C, T }=C,,(u) , (1.2)
E{IY(t+u)-C,IIY () -C,T = C,, () ,
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and we defined the second-order spectral densities by

L ()=@0)" [C,0Ep Ci)d,

—00

f,(2)=(22)" j C,(U)Bp (Hiuydu, forieR (L.3)

f,(2)=(22)" j C, (U)Exp (-idu)du,

—00

we defined the second-order spectral measures by

Fxx(i):j;fxx(a) d(Z, (0</1<7Z')
Fy (ﬂ)=j f, (@) da, (0<A<n) (1.4)
Fyy(/l)=f f,, () da, (0<A<n)

we construct estimates CXX(T)(U), CXY(T)(U), CYY(T)(U), fXX(T)(/I), fXY(T)(ﬁ), fYY(T)(/%),FXX D,

FXY(T)(Z) and FYY(T)(/l). These estimates based on the matrix of second order smoothing modified
periodograms .

Assumption 1.
Let X(t)is a strictly stability continuous time series all of whose moments are exist. For each

J=1 2, .., k=1 and anyk-tuple &,, a,, ..., &, we have,

<o, k=23, ..

..... ty

where

.....

a,..a =42 ..,r, u,..,u,, teR, k=2, 3,..)

Assumption 11.
Let W(«), a € Ris a weight function which is bounded and has bounded first derivative such that
[ ¥(a)da =1.
Given B; >0 we then set

¥0 (a) = B M (B ).

Assumption Il1.

Let hg)(t) is bounded has bounded variation and vanishes for O <t <T —1, is called data window and
satisfies
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T

1
leha”dt_)jha(u)du, a=1r

0 T—w g
Tl k
Gaan) = j {H h® () }exp {~iat}dt,
ol j=L
for —o<A<o0, a,..,a, =L..., r

Let H,(t), a=1, 2, ...,r(t € R) beaprocess independent of B(t) such that for everyt,
PIH, () =1=p, .
P[H, () =0]=q, .
Note that E{H,(t)}=P . (1.6)

(1.5)

The success of recording an observation not depends on the fail of another and so they are independent . We may
then define the modified series as

W(t)=H@®B() . (L7)
where
W, (t) = H,(1)B, (1), (18)
and
1, if X,(t),Y,(t)are observed
H, ()= (.) ® : (19)
0, otherwise
We construct the expanded finite Fourier transform with data window with missed observations as :
T _% )
d (1) = {2;; | (hf’(t))z} [h W, (ep{-id,  forieR, (1.10)
0 —o0

The paper is organized as follows : In Section(1) Introduction, Section (2) we will considered the smoothing
modified periodograms, We will study the statistical properties of the spectral measure and spectral density in
Section (3), application on our theoretical study in the climate in Section (4).

2. The Smoothing Modified Periodograms.
In this section, the modified periodogram will be constructed. Using expanded finite Fourier transform (1.10) we
construct the modified periodogram as:

1" () = 226,00 2,7 (15,7 (4) . 2.1)

where
:
o) (1) = [ h, (W, (t) ep(-iAt)dt. 2.2)
0

The bar denotes the complex conjugate . The moments of modified periodogram will be given in the following
theorems.
Theorem 2.1

Let W,(t)=H_(t)B,(t), a=1 2,.....min(r,s) are missed observations on the strictly stability continuous

series which satisfies Assumption | with mean zero, h,(U), —oo<u<oo satisfies Assumption (I11) for
a=1 ...,min(r,s), and let
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w D =[1L."W]= [ere. O 2. " (e, P (),

then

o) { i Fas, () 5. Tan, (DA’ Hocr-l) ocr-l)} 23

A T, (4) Pblbz A T, WA | [O(TH) O )

Where O(T ™) isuniformin A and A(1) = f (4) f ()™

and

covfl,, ()1, P ()= 6., V006, V@) %
<|(P*G,. (1 10)Gyy (A= pNZ +P'G,, (A+11)Gyy (A + iNZ [+

AT IMG, " () +O ), @4)
where
fa a, (l) falb2 (ﬂ') A(l)T 7 — alaz ( ﬂ') falb2 (_ﬁ“) A(l)T
| A foa, (1) AA) T, (AT | A(A) T, (FA) - A fyp, (FA)AA)T

_[o@ o)
{0(1) 0(1)}

Lemma 2.1.
Let ham (t), teR, a=1, ..., min(r,s)is bounded by a constant L and satisfying

ha”’(t+u)—ha(t)\sc|u| .
then

.
j h, ™ (Oh,, " @) exp(-iat)dt

0

< —+ LC, (2.5)

for some constants L, Cand 4, A€R, 1#0, a,a,= 1,..., min(r,s).

Corollary 2.1.
Under the conditions of theorem (2.1) we have
f A A)A(A
el w]o Py e fone DAQ
A foa, (D) A Ty, (AR
a,b=1 .. min(r,s), 1eR.
Proof

The prove comes directly from (2.3) by taking the limits for both sides and then using the given conditions .
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Corollary 2.2.
Under the conditions of theorem (2.1) then forall A, z€ R,

lim Cov[t., @ ()1, ()|

T
[PAS(A—uNZ + P S(A+ pVZ, if A+ u=0
0, if A+ =0

Where O(A — u) is the Kroncker delta function which is given by :

1, 42=0
5(1)={0 ow

Proof:

When A £ 1 =0, and by using the Assumption 111 then we get from (2.4)
Covll,y P (1, ™ (1) |= PAS(A — NZ +P*S(A+ NZ +O(T )
In the limit , then
Cov|l,, V(). 1., O ()|= P44 - pNZ +P*S(A+ uNZ .
Now, when A+ £ #0, A, 1€ R, then take the modulus for both sides of (2.4) and then using lemma (2.1) and
the boundedness of f,, (1) a, b=1, 2, ..., min(r,s), A € R, we obtain

Covll,, " (4,1, V()] < 6,1,V (00G,,, " O

% 2Ly, 2K2 4 2L,v, 2Kz +
[sin(A+ )12 [sin(A— )12

FTET MG, ()| +(T7H),

where , for some constant K, we have

) 2|_1V 2L v
T 2M (T 11 < K == . ==2"2
S (21| < “|sin(/1+ﬂ)/2|} +[|Si”(i—ﬂ)/2|:lx

o 1P I B
[sin(A+ 1) /2| sin(2—u) /2| ||’

using lemma (2.1) we get Covllalbl(T)(/l), Lb, m(,u)J—) 0 as T — oo .hence, the corollary is obtained. In the

case of A =t corollary (2.2) indicates corollary (2.3) as the following .

Corollary 2.3.

Under the conditions of theorem(2.1) and corollary (2.2) then,

. P*S(A—u\VZ , ifA=u=w=0
lim D1, (=1 _, . _

T P'O(A—pu)NZ+P°S(A+uNZ, fA=pu=w0=0
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Proof
By substituting about A=pu=w,weR, a=a,=a,b =b,=b,a b=1.,min(r,s)into
corollary(2.2) we get

lim DI, ()] = P*8(0— w)VZ +P*S(w+ w)VZ ,

T—w

when @ # 0, by noting that f,,(w) = fy,(-@)into V, Z, &, b=1 .., min(r,s), @ Rthen
lim DIl (D] =P*5(w-w)VZ.

T—o
When @ = 0, then we obtain

lim DI, ()] =PVZ +P*VZ .
T—o
Hence the proof is complete .

3. Asymptotic moments of spectral measure and spectral density function

In this section we will study the statistical properties of FXX(T)(/l) and fXX(T)(l) by deriving mean and

covariance. Let fXX(T) (1) be defined as (1.3) and FXX(T) (1) be defined as (1.4), then from Theorem (2.1) we get,

Theorem 3.1
Let W (t) satisfies Assumption | then:

E{Fabm ( ,1)}= 2| Fas, (1) F (DAY T
AAF,. (A) ARy, (DAQ)

[ery o]
oT™) o)

where O(T ™) is uniformin A.
-1
ooV{F, " (), Fos, O ()= 6,6, 08, VO] |

A z
xP*G, 4, (0)[] VZda,+ | VZdal:I +O0(TY) (2
Corollary 3.1.
Let W, (t)=H,_ (t)B,(t) ,a=1 2, ...,min(r,s) are missed observations on the strictly stability continuous

series which satisfies Assumption(l) with mean zero, hé1 (t), —oo <t <00, be data window satisfies Assumption
() for a=1, ...,min(r,s), and let

L") =[1."W)]- o6, O 4. T (),
then

M) 2 Fala2 (ﬂ“) Falb2 (ﬂ“) A(ﬂ“)T
I [Aw Fo () ARy, (DA } '
forall a, b=1, ...,min(r,s).

(3.3)
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proof
Formula (3.3) comes directly by taking the limits for both sides of (3.1) and the proof is complete.

Corollary 3.2.
Under the conditions of theorem (3.1) if the spectral density function fab(X) is bounded by a constant K,

a,b=1 ..., min(r,s) and continuous at point X=A4, A €R, then

lim Cov[F., ()., V()] =0

T—o
for a;, b; =1, .., min(r,s), j=1 ..k, k=1 2,...

Proof
Taking the modulus on both sides of (3.2) , we get

CovlF., " (4).Fo, V0] < 2)|p*

Galazblbz (0) X

<6, (01, V@] <[P

¢! 2y
G | IVl izl -0

Using Assumption (111) and the boundedness of f,, (1), a, b=1, ..., min(r,s), 1R we get
CovlF,, " (A), Fu,, " ()] =0T ) —5 =0

T oo
Then the corollary is obtained .

Lemma 3.1.
Let h{”(t), —oo<t<oo, be data window satisfies Assumption 11l for a =1, ...,min(r,s)then h{"(t)
satisfies the following properties

;
1. j ¥,, " (4, -a,)G,, (A-w)dt, =22%,, " (1, - 1) +O(),
t,=0
T . -
2. ¥, 7 (4 -2,)G,,, (A+ 1)Gyy, (A+ w)dt, =
t,=0
=276, . (O, (4, — ) +O(T ™).
Theorem 3.2
Let W, (t)=B,(t)H,(t), t=0, £1, ..... , a=1 ...,min(r +s)are missed observations on the strictly

stability continuous B, (t), a=1 ..,min(r+s), teR which satisfies Assumption | with mean zero,
h,(t), a=1, ..., min(r +s) ,t € R be data window satisfies Assumption 111, and let

)
£, (1) = j YO A-a), " (a)dt (3.4)
t=0

Where P (A — &) is weight function which is defined in assumption I1. Then

fae, (@) fop, (@) A(@)

; |dt+
Ala) fyo, (@) Al) fyp, (@) Ala)

E{f,," ()= P? ]Wab‘”(z—a)
t=0
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(3.5)

+{ocr-l) ocr-l)}
oT?) oT?]’
and

covif,, P (), f., V(D))= 227G, " (0)G,, " (0)] ' x

;
X Gqapi, (0){ j ¥, (@), (4, -4 +a)VZdt, +

=0
.
A
+ [ 2, (@, (%ﬂi —a)\VZ dtl} +O(T2), (36)
t,=0 T
when B; =1

covif,, P (A), f., V() |=

- { ]xpalbf” (@)¥,,," (@) dtl}[a(z1 — A, WVZ + 84+ LNVZ |+

t,=0

:
- [0, D@, (e dtl} +O(B/T™). @)

t,=0 T

when B;* -0 B, T —>oas T — 0.

Corollary 3.3
Under the conditions of Theorem (3.2) if A #0, A€Rand B; -0 as T — o0, then

Elf. " (D)} P?

Tow©

|: fala2 (a) falbz (0!) A(a)T :l
A(@) Ty, (@) A@) o, (@)Al@)" |

Proof
proof comes directly by taking the limits for both sides of formula (3.5) as T — o

Corollary 4.2.
Under the conditions of theorem (3.2) if the spectral density function f,,(X)is bounded by a constant M,
a, b=1, ..., min(r +s)and continuous at a point X=4, A €Rand B, -0,B, T —>00 as T —> o0, then
(T) (T)
Cov{falbl (l)’ fazbz (l)}ﬁ)o
forall a;, bj =1 ...,min(r+s), 4; €R, j=1 ...k, k=1 2,..

Proof
Taking the modulus for both sides of equation (3.6), then using Assumption 11 and the boundedness of fab(ﬂ,)

by constant M , we get
covif,, P (A), ., V() }=O(B;") =O(B;*T 1) ———0.
Then the corollary is obtained .
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Application on the Theoretical Study:
We will apply our theoretical case study in climate as following :

4.1. Studying the Atmospheric Pressure and Maximum temperature.
The data in this research represents the daily maximum temperatures and atmospheric pressure in Tripoli for the
period from 1/1/ 2016 to 29/2/2016.

4.1.1. Studying the Atmospheric pressure.
In this study we will comparison between our results, model of strictly stability time series (the Atmospheric
pressure) with some missing observations and the classical results, where all observations are available.

Let Xa(t) is the data of the daily of the atmospheric pressure where all observations are available (classical case)

suppose that there is some missing observations in a random way (our study), table 4.1.1 shows the comparison
between our results, spectral analysis of strictly stability time series with some missing observations and the classic
results, where all observations are available.

Table 4.1.1:- comparison of the results with and without missed observations of the Atmospheric pressure

without missed observations with missed observations

Time Series Plot of Pressure.diff1 Time Series Plot of Pressure.miss.diff1

hpa.diff1

o
Pressure.miss.diff1
o

i 6 12 18 24 30 36 42 48 54 60 i & 12 18 24 30 36 42 48 54 60

Index

The daily Atmospheric pressure

Index

The daily Atmospheric pressure

Partial Autocorrelation Function for Pressure.diff1
(with 5% significance limits for the partial autocorrelations)

1.0

0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8
-1.0

Partial Autocorrelation
°
o

i 2 3 4 5 6 7 & 8§ 10 11 12 13 14 15
Lag

PACF for the daily Atmospheric pressure

Partial Autocorrelation Function for Pressure.miss.diff1
(with 5% significance limits for the partial autocorrelations)

1.04

0.6
0.4
0.2

0 | I — L
] I S N IO L

-0.64
-0.84
-1.04

Partial Autocorrelation
e o

i 2 3 4 5 6 7 6 9 10 11 12 13 14 15
Lag

PACF for the daily Atmospheric pressure

344



ISSN: 2320-5407 Int. J. Adv. Res. 5(11), 336-349

Spectral density function Spectral density function

600
+ 500
+ 400
+ 300
-+ 200
- 100

RE

Index Index

Real part of Atmospheric Pressure without missed Real part of Atmospheric Pressure with missed

observations observations
Spectral density function Spectral density function
1000 1000
+ 800 + 800
+ 600 + 600
2 =
+ 400 + 400
-+ 200 -+ 200
t t t 0 t t t 0
4 3 2 1 0 4 3 2 1 0
Index Index
Imaginary part of Atmospheric Pressure without Imaginary part of Atmospheric Pressure with
missed observations missed observations
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ARIMA Model: : Parameters without missed
observations

ARIMA(L,11)

Final Estimates of Parameters

Type Coef  SE Coef T P

AR 1 0.6033 0.1374 4.39 0.000
MA 1 09460 0.0813 11.63  0.000

Constant 0.04098 0.05103 0.80 0.425
Differencing: 1 regular difference

Number of observations: Original series 60, after
differencing 59

Residuals: SS = 1339.81 (backforecasts excluded)

MS = 23.93 DF =56

Modified Box-Pierce (Ljung-Box) Chi-Square
statistic

Lag 12 24 36 48
Chi-Square 5.4 11.1 22.7 287

DF 9 21 33 45
P-Value 0.797 0960 0910 0.972

ARIMA  Model: Parameters with  missed
observations

ARIMA(111)

Final Estimates of Parameters

Type Coef SE Coef T P

AR 1 0.4868  0.1403 3.47 0.001
MA 1 0.9454 0.0743 12.73 0.000
Constant  0.04450 0.05131 0.87 0.389

Differencing: 1 regular difference

Number of observations: Original series 60, after

differencing 59

Residuals: SS = 1399.75 (backforecasts excluded)
MS = 25.00 DF =56

Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 4.3 88 183 344
DF 9 21 33 45
P-Value 0.891 0.991 0.982 0.876

4.1.2. Studying the Maximum temperature:-

In this study we will comparison between our results, model of strictly stability time series (the Maximum
temperature) with some missing observations and the classical results, where all observations are available.

Let Y, (t) is the data of the daily of the Maximum temperature where all observations are available (classical case)

suppose that there is some missing observations in a random way (our study), table 4.1.2 shows the comparison
between our results, spectral analysis of strictly stability time series with some missing observations and the classic

results, where all observations are available.

Table (4.1.2) comparison of the results with and without missed observations of the Maximum temperature.

without missed observations

with missed observations

Time Series Plot of MAX.diff2_

h o

MAX.diff2.
: v

1 6 12 18 24 30 36 a2 48 54 60
Index

The daily Maximum temperature

Time Series Plot of Max.T.miss.diff2

Max.T.miss.diff2
: v

1 6 12 18 24 30 36 42 48 54
Index

The daily Maximum temperature

Partial Autocorrelation Function for MAX.diff2_
(with 5% significance limits for the partial autocorrelations)

Partial Autocorrelation
. S o

i 2 3 4 s 6 7 8 6 10 11 12 13 14 15
Lag

PACF for the daily Maximum temperature

Partial Autocorrelation Function for Max.T.miss.diff2
(with 5% significance limits for the partial autocorrelations)

1.04
0.84

0.44
0.2

Srprrorro T

-0.6
-0.84
-1.04

Partial Autocorrelation

1 2 3 4 5 6 7 8 8§ 10 11 12 13 14 15
Lag

PACEF for the daily Maximum temperature

346



ISSN: 2320-5407

Int. J. Adv. Res. 5(11), 336-349

Spectral density function

300
+ 250
+ 200
+ 150 &
+ 100
- 50

Index

Spectral density function

300
+ 250
+ 200
+ 150 B
1 100
L 50

Index

Real part of Maximum temperature without missed
observations

Real part of Maximum temperature with missed
observations

Spectral density function

400
+ 300
+ 200 =

-+ 100

Index

Spectral density function

400
+ 300
+ 200 =

-+ 100

4 3 2 1 0
Index

Imaginary part of Maximum temperature without
missed observations

Imaginary part of Maximum temperature with
missed observations

RIMA Model: Maximum temperature without
missed observations

ARIMA(2,2,1)

Final Estimates of Parameters

Type Coef SE Coef T P
AR 1 -0.2172  0.1418 -1.53 0.031
AR 2 -0.3010  0.1541 -1.95 0.056
MA 1 1.0024 0.0920 10.90  0.000
Constant -0.00053 0.01891  -0.03  0.978

Differencing: 2 regular differences
Number of observations: Original series 60, after
differencing 58
Residuals:
excluded)

MS = 13.441 DF =54
Modified Box-Pierce (Ljung-Box) Chi-Square
statistic

SS = 725.838 (backforecasts

Lag 12 24 36 48
Chi-Square 5.5 9.4 16.7 272
DF 8 20 32 44
P-Value 0.705 0.978 0.988 0.978

RIMA Model: Maximum temperature with
missed observations

ARIMA(2,2,0)

Final Estimates of Parameters

Type Coef SE Coef T P

AR 1 -0.2436 0.1383 -1.76  0.034
AR 2 -0.3080 0.1561 -1.97 0.044
MA 1 0.9563 0.1034 9.25  0.000

Constant 0.00223 0.03716 0.06
Differencing: 2 regular differences
Number of observations: Original series 60, after
differencing 58
Residuals:
excluded)
MS = 12.598 DF =54
Modified Box-Pierce (Ljung-Box) Chi-Square

0.952

SS = 680.271 (backforecasts

statistic

Lag 12 24 36 48
Chi-Square 101 16.2 26.2 470
DF 8 20 32 44
P-Value 0.259 0.702 0.753 0.351

4.1.3. Studying the Regression Between the Atmospheric pressure and the Maximum temperature

In this study we will comparison between our results, regression model between the Atmospheric pressure and the
Maximum temperature with some missing observations and the classical results, where all observations are
available, the comparison between two cases is shown in table (4.1.3) .
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Table 4.1.3:- Comparison of the results with and without missed observations of the regression analysis

Without missed observations With missed observations
The regression equation is The regression equation is
Pressure = 3.27 + 1.36 MaxTemp Pressure.miss = 4.80 + 0.933 Max.T.miss
Predictor Coef SE Coef T P Predictor Coef SE Coef T P
Constant 3.266 1.779 -1.84 0.041 Constant 4805 3.087 156 0.025
MaxTemp 1.35816 0.08596 15.80  0.000 Max.T.miss 0.9325 0.1491 6.26  0.000
S$=279138 R-Sq=81.1% R-Sq(adj) =80.8% S=4.55758 R-Sq=80.8% R-Sq(adj) =79.9%
Analysis of Variance Analysis of Variance
Source DF SS MS F P Source DF SS MS F P
Regression 1 19451 1945.1 249.64 0.000 | Regression 1 81285 812.85 39.13 0.000
Residual Error 58 4519 7.8 Residual Error 58  1204.75 20.77
Total 59 2397.0 Total 59 2017.60
Durbin-Watson statistic = 1.55496 Durbin-Watson statistic = 1.5732
Probability Plolt of RESI1 Probability Plolt of RESI2
Normal Normal
mae g T T - R N )
RESIL RES2
Normal-plot of standardized Residuals Normal-plot of standardized Residuals
Without missed observations With missed observations

Materials and Methods:-
We used SPSS and MINITAB, XL.STAT the software programming to solve our numerical example .

Results and Discussion:-

1. The study of the time series with missed observations and with the modified periodogram had the same results
as the study of the classical time series .

2. The study of regression model between classical time series X(t) ,Y(t) had the same results as case of missed
observations .
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