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Introduction:- 
Several authors discussed the properties of the smoothing periodograms using data window and considered the 

estimation of spectral measure of stationary process, Brillinger(1969), Dahlhaus(1985), Ghazal and Farag(2000), 

Teama and Bakouch(2004), Ghazal(2001,2005), Ghazal, Faraj and El-Desokey(2005), Ghazal and 

Elhassanein(2006), Ghazal, Mokaddis and El- Desokey(2010), Elhassanein(2013). 
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and we defined the second-order spectral densities by  
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we defined the second-order spectral measures by  
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YYF . These estimates based on the matrix of second order smoothing modified 

periodograms . 

 

Assumption  I.  

   Let )(tX is a strictly stability continuous time series all of whose moments are exist. For each 

1...,,2,1  kj   and any k-tuple kaaa ...,,, 21 we have, 

                          ...,3,2,...),....,(
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Assumption  II.  

   Let R  ,)( is a weight function which is bounded and has bounded first derivative such that 
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Assumption  III.  

   Let )()( th T

a is bounded has bounded variation and vanishes for 10  Tt ,  is called data window and 
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   Note  that    
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     The success of recording an observation not depends on the fail of another and so they are independent . We may 

then define the modified series as 
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We construct the expanded finite Fourier transform with data window with missed observations as : 
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The paper is organized as follows : In Section(1) Introduction,  Section (2) we will considered the smoothing 

modified periodograms, We will study the statistical properties of the spectral measure and spectral density in 

Section (3), application  on our theoretical study in the climate in Section (4). 

 

2. The Smoothing Modified Periodograms. 

In this section, the modified periodogram will be constructed. Using expanded finite Fourier transform (1.10) we 

construct the modified periodogram as:  
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The bar denotes the complex conjugate . The moments of modified periodogram will be given in the following 

theorems.                                       

Theorem  2.1 

Let ),min(....,,2,1,)()()( sratBtHtW aaa   are missed observations on the strictly stability continuous 

series which satisfies Assumption I with mean zero,  uuha ),(  satisfies Assumption )(III for 

),,min(...,,1 sra   and let 
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Lemma 2.1. 
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for some constants L , C and ),min(...,,1,,0,, 21 sraaR   . 

 

Corollary  2.1.   

Under the conditions of theorem (2.1) we have 
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Proof  
The prove comes directly from (2.3) by taking the limits for both sides and then using the given conditions . 
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Corollary  2.2. 

   Under the conditions of theorem (2.1) then for all R,  , 
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Where )(   is the Kroncker delta function which is given by : 
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Proof 

   By substituting about R  , , aaa  21 , bbb  21 , ),min(..,,1, srba  into 

corollary(2.2) we get 
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3. Asymptotic moments of spectral measure and spectral density function 
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proof 

   Formula (3.3) comes directly by taking the limits for both sides of (3.1) and the proof is complete.  

 

Corollary  3.2.   

    Under the conditions of theorem (3.1) if the spectral density function  )(xfab  is bounded by a constant ,k  
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Corollary 3.3 
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Application on the Theoretical Study: 
We will apply our theoretical case study in climate as following : 

 

4.1. Studying the Atmospheric Pressure and Maximum temperature.  

The data in this research represents the daily maximum temperatures and atmospheric pressure in Tripoli for the 

period from 1/1/ 2016 to 29/2/2016.  

 

4.1.1. Studying the Atmospheric pressure. 

In this study we will comparison between our results, model of strictly stability time series (the Atmospheric 

pressure) with some missing observations and the classical results, where all observations are available. 

 

Let )(tX a  is the data of the  daily of the atmospheric pressure where all observations are available (classical case)  

suppose that there is some missing observations in a random way (our study), table  4.1.1 shows the comparison 

between our results, spectral analysis of strictly stability time series with some missing observations and the classic 

results, where all observations are available.  

 

Table 4.1.1:- comparison of the results with and without missed observations of the  Atmospheric pressure 
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ARIMA Model: Parameters with missed 

observations 
)1,1,1(ARIMA   

Final Estimates of Parameters 

 

Type           Coef          SE Coef           T            P 

AR   1         0.4868      0.1403           3.47        0.001 

MA   1        0.9454       0.0743          12.73       0.000 

Constant     0.04450     0.05131         0.87        0.389 

 

Differencing: 1 regular difference 

Number of observations:  Original series 60, after 

differencing 59 

Residuals:    SS =  1399.75 (backforecasts excluded) 

              MS =  25.00  DF = 56 

 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag                  12        24       36        48 

Chi-Square      4.3       8.8      18.3      34.4 

DF                   9          21       33         45 

P-Value         0.891     0.991   0.982   0.876 

ARIMA Model: : Parameters without  missed 

observations 
)1,1,1(ARIMA   

Final Estimates of Parameters 

Type           Coef       SE Coef           T             P 

AR   1      0.6033       0.1374          4.39        0.000 

MA   1     0.9460       0.0813           11.63      0.000 

Constant  0.04098     0.05103         0.80       0.425 

 

Differencing: 1 regular difference 

Number of observations:  Original series 60, after 

differencing 59 

Residuals:    SS =  1339.81 (backforecasts excluded) 

              MS =  23.93  DF = 56 

 

Modified Box-Pierce (Ljung-Box) Chi-Square 

statistic 

Lag                  12         24            36          48 

Chi-Square     5.4         11.1         22.7       28.7 

DF                    9           21           33          45 

P-Value         0.797      0.960       0.910     0.972 

 

4.1.2. Studying the Maximum temperature:- 
In this study we will comparison between our results, model of strictly stability time series (the Maximum 

temperature) with some missing observations and the classical results, where all observations are available.  

Let )(tYa  is the data of the  daily of the Maximum temperature where all observations are available (classical case)  

suppose that there is some missing observations in a random way (our study), table  4.1.2 shows the comparison 

between our results, spectral analysis of strictly stability time series with some missing observations and the classic 

results, where all observations are available. 

 

Table (4.1.2)  comparison of the results with and without missed observations of the Maximum temperature.  

with missed observations without missed observations 
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Real part of Maximum temperature with missed 

observations 

 

 
Real part of Maximum temperature without missed 

observations 

 

 
Imaginary part of Maximum temperature with 

missed observations 

 

 
Imaginary part of Maximum temperature without 

missed observations 

RIMA Model: Maximum temperature with 

missed observations 

)1,2,2(ARIMA   

Final Estimates of Parameters 

Type         Coef         SE Coef          T             P 

AR   1      -0.2436     0.1383         -1.76       0.034 

AR   2     -0.3080      0.1561          -1.97      0.044 

MA   1      0.9563      0.1034          9.25       0.000 

Constant   0.00223    0.03716        0.06       0.952 

Differencing: 2 regular differences 

Number of observations:  Original series 60, after 

differencing 58 

Residuals:    SS =  680.271 (backforecasts 

excluded) 

              MS =  12.598  DF = 54 

Modified Box-Pierce (Ljung-Box) Chi-Square 

statistic 

Lag                   12         24         36         48 

Chi-Square       10.1     16.2       26.2      47.0 

DF                    8           20         32         44 

P-Value          0.259     0.702    0.753     0.351 

RIMA Model: Maximum temperature without 

missed observations 

)1,2,2(ARIMA  

Final Estimates of Parameters 

Type            Coef          SE Coef            T            P 

AR   1         -0.2172      0.1418         -1.53        0.031 

AR   2         -0.3010      0.1541         -1.95       0.056 

MA   1         1.0024      0.0920         10.90       0.000 

Constant     -0.00053    0.01891       -0.03       0.978 

Differencing: 2 regular differences 

Number of observations:  Original series 60, after 

differencing 58 

Residuals:    SS =  725.838 (backforecasts 

excluded) 

              MS =  13.441  DF = 54 

Modified Box-Pierce (Ljung-Box) Chi-Square 

statistic 

Lag                   12         24          36          48 

Chi-Square       5.5        9.4         16.7       27.2 

DF                     8          20          32         44 

P-Value            0.705    0.978    0.988     0.978 

 

4.1.3. Studying the Regression Between the Atmospheric pressure and the Maximum temperature 

In this study we will comparison between our results, regression model between the Atmospheric pressure and the 

Maximum temperature with some missing observations and the classical results, where all observations are 

available,  the comparison between  two cases is shown in table (4.1.3) . 
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Table 4.1.3:- Comparison of the results with and without missed observations of the regression analysis 

Without missed observations With missed observations 

The regression equation is 

Pressure =  3.27 + 1.36 MaxTemp 

Predictor          Coef         SE Coef             T           P 

Constant          3.266         1.779             -1.84      0.041 

MaxTemp       1.35816     0.08596         15.80      0.000 

S = 2.79138   R-Sq = 81.1%   R-Sq(adj) = 80.8% 

 

Analysis of Variance 

Source            DF           SS         MS              F              P 

Regression        1         1945.1    1945.1      249.64     0.000 

Residual Error  58         451.9      7.8 

Total                 59        2397.0 

Durbin-Watson statistic = 1.55496 

The regression equation is 

Pressure.miss = 4.80 + 0.933 Max.T.miss 

Predictor         Coef       SE Coef        T           P 

Constant         4.805      3.087          1.56      0.025 

Max.T.miss    0.9325     0.1491       6.26      0.000 

S = 4.55758   R-Sq = 80.8%   R-Sq(adj) = 79.9% 

 

Analysis of Variance 

Source            DF       SS          MS            F          P 

Regression       1       812.85     812.85     39.13  0.000 

Residual Error 58     1204.75    20.77 

Total                59      2017.60 

Durbin-Watson statistic = 1.5732 
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Materials and Methods:- 

We used  SPSS and  MINITAB, XL.STAT the software programming to solve our numerical example . 

 

Results and Discussion:- 
1. The study of the time series with missed observations and with the modified periodogram had the same results 

as the study of the classical time series . 

2. The study of regression model between classical time series X(t) ,Y(t) had the same results as case of  missed 

observations .                      

 

References:- 
1. D.R. Brillinger,  M.Rosenblatt,  Asymptotic theory of estimates of k-th order spectra,  in: B. Harris (Ed.), 

Advanced Seminar on Spectral Analysis of time series, Wiley,  New York, 1967, pp.153-188 . 

2. D.R. Brillinger, "Asymptotic properties of spectral estimates of second order", Biometrika56(2), (1969)375-

390. 

3. R. Dahlhaus, "On a spectral density estimate obtained by averaging  periodograms", J. Appl. Probab. 22(1985) 

592-610. 

4. (4) M.A. Ghazal, E.A. Farag, "Estimating the spectral density, autocovariance function and spectral measure of 

continuous-time   stationary processes, in: Annual Conference", ISSR, Cairo, Vol.33, no. part, 1998, pp.1-20. 

5. M.A. Ghazal, "On a spectral density estimate on non-crossed intervals observation", Int. J. Appl. Math.1 (8) 

(1999) 875-882. 

6. M.A. Ghazal, E.A. Farag, "Some Properties of The Expanded Finite Fourier Transform, Statistica", anno LX, 

no.3, 2000. 

7. D.R. Brillinger , Time Series Data Analysis and Theory (2001). 

8. A.A.M. Teamah , H.S. Bakouch, " Multitaper Multivriate Spectral Estimators Time Series with Distorted 

Observations", International Journal of Pure and Applied Mathematics,Vol,No.1(2004),45-57. 



ISSN: 2320-5407                                                                                    Int. J. Adv. Res. 5(11), 336-349 

349 

 

9. Chris Chatfiold, The Analysis of Time series An Introduction . 

10. M. A. Ghazal, E. A. Farag, A.E EL-Desokey," Some properties of the Discrete Expanded finite Fourier 

transform with  missed Observations", Vol.40, No.3, 30 September (2005),  pp887-902. 

11. M.A. Ghazal and A. Elhassanein, "Periodogram Analysis with Missing Observations", J.Appl. Math. 

Computing Vol.22 (2006), No.1-2,pp209-222. 

12. M.A. Ghazal, G.S. Mokaddis, A.E. El-Desokey, "Spectral analysis of strictly stationary continuous time series", 

Journal of Mathematical Sciences, Vol.3, No.1 (2009). 

13. G.S. Mokaddis,  M.A. Ghazal and A.E. El-Desokey, " Asymptotic Properties of Spectral Estimates of Second-

Order with Missed Observations", Journal of Mathematics and statistics 6(1):10-16,(2010). 

14. A. ELhassanein, "Nonparametric Spectral Analysis On Disjoint Segments Of Observations",  Journal of the 

Applied Mathematics,  Statistics and Informatics(JAMSI),7 (2011),No.1. 

15. A. ELhassanein, "On the Theory of continuous Time series", Indian J. Pure Appl .Math, 45 (3): 297-310, June 

(2014). 

16. M.A.Ghazal, A.I.El-desokey, A.M.Ben Aros "Statistical analysis of linear stability continuous time seies 

between two vector valued stochastic process" International Journal of Scientific Engineering Research, 

Volume8,Issue4,April-2017 ISSN 2229-5518. 

17. M.A. Ghazal,  A.I. El-Desokey, M.A. Alargt " Asymptotic properties of the discrete stability time series with 

missed observations between two-vector valued stochastic process" International Research Journal of 

Engineering and Technology (IRJET) Volume4,Issue4,April-2017. 


	title
	Introduction
	Materials
	Discussion
	References

