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The classical wavelet methods suffering from boundary problems 

caused by the application of the wavelet transformations to a finite 

signal, to treatment boundary problems with wavelet regression, we 

propose a simple method that decreasing bias at the boundaries, it is 

based on a combination of wavelet functions and local linear quantile 

regression (WR- LLQ). We use the proposed technique to forecast 

stock index time series. Detailed experiments are implemented for the 

proposed method, in which WR- LLQ, WR, and WR-LP methods are 

compared. The proposed WR- LLQ model is determined to be 

superior to the WR and WR-LP methods in predicting the stock 

closing prices. 
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Introduction:- 
Wavelet regression is a new non parametric method characterized by the ability to detect unusual appearances, 

which might be observed in noisy data. Tendency, collapse points, and discontinuities can be taken into 

consideration by wavelet methods, but when performing wavelet regression it is usual to consider some   boundary 

assumptions, such as periodicity or symmetry. However, such assumptions may not always be logical to treat this 

problem, it is suggested by Oh, Naveau, and Lee (2001) to split   as the sum of a set of wavelet basis functions,   , 

plus a low-order polynomial,   . So          The hope is that, once    is removed from  , the remaining portion 

   can be well estimated using wavelet regression with the said periodic boundary assumption. Practically, this 

approach requires choosing of the polynomial order for    and the wavelet thresholding value for   . Lee, Oh 

(2004), Naveau, and Oh (2003) propose a simple method called polynomial wavelet regression (PWR) for handling 

these boundary problems. Oh and Lee (2005) proposed a method for correcting the boundary bias, they join wavelet 

shrinkage with local polynomial regression, where the latter regression technique known of a perfect boundary 

properties. Simulation results from both the univariate and bivariate settings provide strong evidence that the 

proposed method is very successful in terms of rectify boundary bias. 

 

Originally, this paper proposes an effective method for cure the boundary bias introduced by the incompatible of 

such periodic or symmetric assumption, our idea is to combine wavelet regression (WR) with local linear quantile 

regression (LLQ), where (LLQ) is known to possess excellent boundary properties, the proposed method consists of 

two stages that automatically decrease the boundary effects of wavelet method, at the first stage, LLQ which applied 

to the corrupted and noisy data, at the second stage, wavelet method. The final estimate is the summation of the 

fitting estimates from (LLQ) and (WR). Compare the results with the results obtained by Oh and Naveau (2001). 

The aims of this research are to study these new estimators that are combinations of local linear quantile regression 
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terms and wavelet terms, (wavelet combined with local linear quantile regression) and to overcome boundary 

problems with wavelet regression. 

 

Wavelet Regression:- 
Mathematically we can say that wavelets are functions that break up data into distinct frequency components, and 

then each component is studied with a resolution matched to its scale. Wavelet analysis has been found as a 

powerful tool for the nonparametric estimation of spatially-variable objects, we discuss in detail wavelet methods in 

nonparametric regression, where the data are modeled as observations of a signal contaminated with additive 

Gaussian noise. Wavelet is a   function such as* 
 
 ⁄  (    )      + that is an orthonormal basis for   ( ). This 

  function is called (mother wavelet), which can be often constructed from (father wavelet). The father wavelet is 

not a wavelet, but we can construct wavelets from it, so it is equally important as mother wavelet. 

 

Let   and   be as father and a mother wavelet respectively. Any square integrable   function can be written as the 

following expansion (e.g., Daubechies 1992, p. 130): 

 

                           ( )  ∑     
 
      ( )  ∑ ∑         ( )

 
    

 
                                        (2.1) 

 

where   ( )    
    (    )  and      ( )    

 
 ⁄  (     ). 

 

Here the scaling and detail coefficients are respectively equal to      =∫  ( )
 

  
  ( )   and  

      ∫  ( )
 

  
    ( )    . 

 

Equation (2.1) suggests the following classical nonlinear  wavelet  regression  estimator:  

 

                  ̂ ( )  ∑  ̂   
    
     ( )  ∑ ∑  ̂        ( ) 

 
    

 
                                              (2.2)  

 

where   ̂   ∑     (   )   and   ̂    ∑        (
 

 
) are respectively the empirical scaling and detail coefficients, 

and  ̂        ( ̂   )    (  | ̂   |     . 

 

Sometimes the soft-thresholded coefficients    ̂      are replaced by the hard-thresholded coefficients     ̂      

 ̂    (| ̂   |  )  (see, for examples, Donoho and Johnstone (1994, 1995)). 

 

Boundary Problems:-  
In order to overcome the boundaries problems when using wavelet regression, two types of approach are usually 

used. The first one can either put some extra constraints on the function  , such as periodicity, symmetry or anti 

symmetry, second one construct some specific wavelets on   [0, 1]. 

 

The advantage of the first method is that it is easy to be applied to real data. Indeed, wavelet code for most high-

level statistical or mathematical software packages, like S-Plus or R, are now accessible, then, artificially large 

wavelet coefficients result when the extra constraints on   are not satisfied, and artificial wiggles are created at the 

boundaries. 

 

The second method is to construct specific wavelet functions on   [0, 1]. One difficulty is that inquiry a modified 

discrete wavelet transform is considerably more embroiled than implementing the classical transform and imposing 

the simple periodic or symmetric boundary conditions.  

 

Objective in this paper is to provide a new approach that is easily to be carrying out and that also has the power to 

significantly minimize the bias at boundaries observed with periodic or symmetric boundary conditions 

 

Local Linear Quantile (LLQ) Regression:- 

Basically, the seminal study of Koenker and Bassett [1978] introduced parametric quantile regression, which is 

considered an alternative to the classical regression in both parametric and nonparametric fields. Numerous models 
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for the nonparametric approach have been introduced in statistical literature, such as the locally polynomial quantile 

regression by Chaudhuri (1991) and the kernel methods by Koenker et al. [1994]. In this paper, we endorse the LLQ 

regression proposed by Yu and Jones (1998). 

 

 Let {(  ,  ), i = 1 . . . , n} be bivariate observations. To estimate the  th conditional quantile function of response  , 

the equation below is defined given   =  : 
 

                                                       ( ) =    (𝜏 |  ) .                                                                        (3.1) 

We will put   as positive symmetric unimodal kernel function, and consider the following weighted quantile 

regression problem: 

 

 

                                                    
    

∑    ( )   (            (      ))
 
                              (3.2) 

where  ( ) =  ((   −  )/ℎ)/ℎ.  

 

Once the covariate observations are centered at point, the estimate of   ( ) is simply   , which is the first 

component of the minimizer of (3.1) and determines the estimate of the slope of the function   at point  . 

 

Proposed Method:- 
The proposed method consists of two stages that automatically decrease the boundary effects of wavelet method, at 

the first stage, LLQ which is considered as an excellent boundary treatment Cai and Xu (2008) is applied to the 

corrupted and noisy data. The remaining series is then expected to be hidden in the residuals, at the second stage, 

wavelet method is applied to the residuals. The final estimate is the summation of the fitting estimates from LLQ 

and WR. Compare the results with the results obtained by Oh and Naveau (2001). 

 

The main idea of the proposed method is to estimate the underlying function   with the sum of a set of wavelet 

regression functions,  , and LLQ function,     . That is, 

 

 ̂       ̂   ̂                                                                                           (3.3) 

 

To obtain the wavelet regression - Local Linear Quantile Regression estimate  ̂      we need to estimate the two 

components:  ̂  and  ̂   . Inspired by the back-fitting algorithm of Hastie and Tibshirani (1990), we propose the 

following iterative algorithm for computing  ̂  ,  ̂    and hence  ̂     .  

 

1. Obtain  an initial  estimate  ̂  for  , and set  ̂   
    ̂  . 

2. For  j=1,…..,  iterate  the following  steps:  

     (a) Apply wavelet regression to     ̂   
   

 and obtain   ̂ 
 
. 

                 (b) Estimate ̂   
 

 by fitting local quantile  regression to      ̂ 
 
 

    3. Stop if   ̂        ̂   
 

+  ̂ 
 
   converges. 

 

     

To use the above algorithm, one needs to choose the initial curve estimate  ̂  in Step 1 and the smoothing parameter 

for the local quantile fit  ̂   
 

 in Step 2(b). For computing  ̂ , we use high-level statistical or mathematical software 

packages (R) .. 

 

Bandwidth Selection:- 

The practical performance of  ̂ ( ) strongly depends on the selected bandwidth parameter. We take on the strategy 

of Yu and Jones [1998]. In sum, we will employ the automatic bandwidth selection strategy for smoothing 

conditional quantiles as follows. 
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1- We will use the ready-made and sophisticated methods in selecting ℎ    ; we employ Ruppert, Sheather, and 

Wand (1995) who explored a “direct plugin” bandwidth selection procedure, which relies on asymptotically optimal 

bandwidth 

 

     =⌈   ( )(   )    
 ∫⌊ ( )

 ⌋
 
 ( ) ( )⌉

   

 

                                                =   ( )*
  (   )

    
+
 
 ⁄  

2- We use          {
 (   )

( (   ( )) ⁄ }

 
 ⁄

 to obtain all of the other    from      . where   and Φ are 

standard normal density and distribution functions, and       is a bandwidth parameter  for  regression mean 

estimation with various existing methods. This procedure obtains identical bandwidths for the   and (1 − ) quantiles. 

 

Description of The data and Experiment Analysis:- 

The daily closing prices of major European stock indices, 1991–1998: Germany DAX (Ibis), and UK FTSE. The 

data are sampled in business time, i.e., weekends and holidays are omitted, a multivariate time series with 1860 

observations on 4 variables. The data were kindly provided by Erste Bank AG, Vienna, Austria. 

 

Presents  the  proposed  method  for  improving  boundary  adjustment  in  wavelet regression. Driven by the fact 

that local quantile regression is extremely effective in adapting to boundary conditions. We analyze the indices 

based on the WR-LLQ and WR and the WR-LP methods. 

 

The forecasting accuracy measures employed  in this  study are  root mean square error (RMSE), mean absolute 

error (MAE), and mean absolute percentage error (MAPE). The RMSE, MAE, and MAPE values obtained through 

the WR -LLQ, WR and WR-LP methods.  In each test set for the two index  series  are summarized  in Tables 1 and 

2. The  results  demonstrate that  the  proposed WR -LLQ method  is  more  successful  in  all  cases  in  forecasting  

the stock  closing  prices  than  the WR and  the WR-LP methods. 

  
Figure 1:- FTSE price and DAX closing price index, respectively. 

 

Table 1:- Comparison of RMSE, MAE, and MAPE values for DAX using the WR-LP, WR, and WR-LLQ methods 

quantiles n.head=10 RMSE MAE MAPE 

 

𝜏     

WR 16.0152 14.3811 0.817226 

WR-LP 13.00762 11.23252 0.638528 

WR-LLQ 9.033317 7.978742 0.45279 

 

𝜏     
 

WR 16.0152 14.3811 0.817226 

WR-LP 13.00762 11.23252 0.638528 

WR-LLQ 8.294448 7.277219 0.412813 

 

𝜏     
 

WR 16.0152 14.3811 0.817226 

WR-LP 13.00762 11.23252 0.638528 

WR-LLQ 11.67783 8.983242 0.507962 
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Table 2:- Comparison of RMSE, MAE, and MAPE values for FTSE using the WR-LP, WR, and WR-LLQ methods 

quantiles n.head=10 RMSE MAE MAPE 

 

𝜏     

WR 130.026 123.2905 4.924095 

WR-LP 62.7433 55.62809 2.226658 

WR-LLQ 22.84248 18.69655 0.748319 

 

𝜏     

 

WR 130.026 123.2905 4.924095 

WR-LP 62.7433 55.62809 2.226658 

WR-LLQ 42.87112 36.72086 1.471088 

 

𝜏     
 

WR 130.026 123.2905 4.924095 

WR-LP 62.7433 55.62809 2.226658 

WR-LLQ 49.55608 41.91537 1.679824 

 

Conclusions:- 
In this paper a wavelet regression local quantile regression method is proposed to minimize the boundary bias that is 

commonly found in the wavelet method, whereas the proposed method is based on a coupling of classical the 

wavelet method and local quantile regression. The performance of the method was tested on different real data, 

results from these experiments illustrate the improvement of the wavelet regression- local quantile regression over 

the classical wavelet methods. 
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