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The aim of this study is to estimate and compare the classical and 
Bayesian stochastic volatility models for stock returns of developed 

and developing 10 countries. For the reason that financial series have 

fat-tails in the conditional distribution Bayesian stochastic volatility 

models with fat-tailed residuals in the mean equation, asymmetric 

Bayesian stochastic volatility models that allow leverage effect via 

correlation between the volatility and mean equation residual and 

Bayesian stochastic volatility models that allow both leverage effect 

and fat-tailed residuals are also estimated. In general when examining 

the results of the models it is seen that Bayesian models give better 

results for all indexes.  
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Introduction:-  
Volatility represents the variability in the random component of the time series and measured by the standard 

deviation or variance of the returns. Volatility is a statistical measure that expresses the dispersion of time series and 

symbolize uncertainty in financial decision making by indicating the size and speed of the fluctuations in time series 

(Rachev et al. 2008). The returns of stock exchanges are different according to the development level of the 

countries. These differences also affect the return volatilities. Stock return volatility represents the variability of 

stock price changes during a period of time. Return volatilities can be explained by using ARCH/GARCH type 

models or classical stochastic volatility (SV) models, known as the volatility models. 

 

Returns are heteroscedastic and the fluctuations of financial asset returns can have drift. Volatility clustering is 
called as drift and it explains the tendency of returns being in the low and high volatility periods. Mandelbrot (1963) 

was one of the first to put forward an idea that large changes in asset prices tend to be followed by large changes and 

small changes tend to be followed by small changes. Volatility clustering define the tendency between low and high 

volatility periods. Engle (1982) was the first that used Autoregressive Conditional Heteroscedasticity (ARCH) 

model to express volatility persistence. Conditional variance of returns at time t, is a linear function of the past 

squared observations. Being autoregressive means volatility tend to be persistent, being conditional expresses that 

volatility varies in time and heteroscedasticity states that volatility is not constant. Bollerslev (1986) generalized the 

model of Engle (1982) and suggested GARCH model to formulate the conditional variance as a linear function of 

past squared observations and past squared conditional variances. ARCH models assume that all relevant 

information is observed and the model correctly specified, the volatility is known or predetermined as of time (t-1), 

stochastic volatility (SV) or stochastic variance models assume that only some parts of these informations can be 
known, the real volatility is never observed and it is a latent variable (Andersen et al. 2005). SV models include an 

unobserved shock component occurred in the return variance in the characterisation of volatility dynamics.      
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There are two approaches in stochastic volatility modeling. Even both of these approaches can be adaptable to one 

another, one of those is implemented in discrete time and the other one is implemented in continuous time. First one 

is the mixture of distributions hypothesis suggested by Clark (1973) where returns are directed by the time process 

according to the intensity of the news relevant to the prices. Second approach is based on Black and Scholes (1973) 

in which price and volatility process are modeled separately with continuous sample path diffusions directed by the 

stochastic differential equations. In practice continuous time models are generally converged to discrete time 
models. SV models are natural discrete time adaptation of continuous time models in modern finance theory. Hull 

and White (1987) introduced the continuous-time stochastic volatility models and the discrete-time SV models 

introduced by Taylor (1986).   

 

There are alternative SV models in literature. While Stein and Stein (1991), Johnson and Shanno (1987) assume that 

 follows an Ornstein-Uhlenbeck (OU) process with Brown motion, Hull and White (1987), Heston (1993) 

assume that it follows geometric Brown Motion. In the case of discrete time, many SV models can be seen as 

generalized GARCH models. There is not any specific method for choosing the appropriate functional form among 

SV models but determination of the correct SV function become important since marginal distribution of volatility is 
related to the functional form of stochastic volatility. Logarithmic SV model has been estimated by many methods: 

simple method of moments (MM) by Taylor (1986), generalized method of moments (GMM) by Melino and 

Turnbull (1990), simulated method of moments (SMM) by Duffie and Singleton (1993), quasi-maximum likelihood 

method (QML) by Harvey et al. (1994), efficient method of moments (EMM) by Gallant and Tauchen (1996). To 

provide maximum likelihood efficiency the auxiliary model has to take part in structural model. Gallant and Nycka 

(1987) used semi-nonparametric density for providing this efficiency. Gallant and Long (1997) used technical 

assumptions on structural model which indicate standard properties of estimators based on quasi-maximum 

likelihood and Hermite expansion.   

 

Bayesian approach has been applied in numerous fields for many years. Volatility models can be developed and 

estimated with Bayesian approach. Carlin, Polson and Stoffer (1992) used Bayesian approach to analyse state-space 
models and literature has expanded in time. Jacquier, Polson and Rossi (1994, JPR) were the first to use Bayesian 

Markov chain Monte Carlo (MCMC) method to examine SV models. Geweke (1994) used Bayesian importance 

sampling Monte Carlo Method, Kim, Shephard and Chib (1998) used Bayesian and maximum likelihood inference 

based on MCMC to estimate SV model. JPR (1994) and Kim et al. (1998) used single move Gibbs Sampler in their 

studies. Kim et al. (1998) used accept-reject sampling, Chib and Greenberg (1995) proposed independence chain 

Metropolis–Hastings (M-H) algorithm and accept-reject M-H algorithm methods for simulating volatility because of 

the conditional density of volatility is not in standard form. JPR (1994) combined accept-reject sampling with M-H 

algorithm.    

 

Bayesian stochastic volatility (BSV) model with normal residuals can be used to analyse volatility. For the reason 

that financial series have fat-tails in the conditional distribution Nelson (1991) and Bollerslev (1997) suggested 
classical GARCH models which the conditional mean has fat tailed distribution. Geweke (1994c), Gallant, Hsieh, 

Tauchen (1997) proposed BSV models which the conditional mean has fat tailed distribution and estimated BSV 

models with fat-tailed residuals (BSVF) in the mean equation. Carlin and Polson (1991) set v degree of freedom 

constant. Harvey and Shephard (1996) offered SV model that includes leverage effect via correlation between the 

volatility and mean equation residual and named the model as asymmetric Bayesian SV model (ABSV).   

 

Leverage effect is specified in two different ways in BSV models. One of those is the Euler Approach to BSV model 

with leverage effect which was suggested by Yu (2005) and the other one is the discrete time BSV model approach 

which was suggested by JPR (2004). JPR (2004) also estimated BSV models that allow both leverage effect and fat-

tailed residuals (ABSVF). In this study, classical SV, BSV, BSVF, ABSV and ABSVF models are estimated for 

stock returns of developed and developing markets. The aim of this study is to examine which models can give 

better results for developed and developing market data by comparing the estimated results. 
 

The contribution of this study to the literature is the estimation of bayesian stochastic volatility models that allow 

both leverage effect and fat-tailed residuals on the assumption that a decline in stock prices in period t following an 

increase in stock return volatility in period (t+1) which has not been tried in the literature before. 
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Classical Stochastic Volatility Model:- 

On the assumption that constant mean, Taylor (1986) expresses asset return with the basic SV model in discrete time 

format, 

 

 

 

 
 

here  is used instead of  for the reason that volatility can not completely identified conditional on 

 returns,  random variables are white noise (i.i.d.),  is a parameter controlling the persistence of 

volatility and states how slowly autocorrelation decay and .  return is distributed as a mixture with 

variance of  variable. The number of unobservable parameters are as many as the sample size therefore model 

estimation becomes complicated.   

 

In this study, EMM is used to estimate classical SV model. This method is generally provides consistent estimations 
in cases where implementation of maximum likelihood method is difficult (Gallant and Tauchen 1996). As EMM 

provides the elasticity of GMM, also provides the constitution of moments efficiently. An algorithm is used to 

obtain parameter estimations in EMM. Structural model is estimated with the aid of auxiliary model. The connection 

between the auxiliary model and the structural model is achieved by the means of the scores of the auxiliary model. 

The derivatives of logarithmic likelihood function respect to the parameters are named as “score”. Assumptions that 

imply standard properties of quasi-maximum likelihood estimators and properties of estimators based on Hermite 

expansions are used on structural model (Gallant and Long 1997). The semi-nonparametric density is used for 

providing the efficiency of maximum likelihood (Gallant and Nychka 1987). The parameters of the auxiliary model 

are obtained by the EGARCH model of Nelson (1991).    

 

Bayesian Stochastic Volatility Model:- 
BSV model parameters can be estimated by two different MCMC approach. The first of those is “single-move 

sampler” which consists of updating a single parameter at a time. Second approach consists of updating several 

variables at a time and called  “multi-move sampler”. In this study “single-move sampler” is used in the analysis.   

 

If logarithmic volatility at time t is represented as , BSV model with normal residuals can be written as, 

 

 

 

 
 

where  is the two-dimensional unit matrix,  is the intercept,  is the volatility persistency and  is the standard 

deviation of the shock that occurs in .  Likelihood function is, 

 

 
 

where  and  is the vector of latent volatility, is the parameter vector. 

As  is latent, analytical solution of T dimensional integral in likelihood function is very difficult.  

 

BSV model can be determined with the three hierarchical process of three conditional distributions (JPR 1994). 

MCMC stand for the multidimensionality problem by breaking the joint posterior  into its complete set of 
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conditional distributions (Kim et al. 1998). For the single-move Gibbs sampler, the complete set of full conditional 

distribution in other words full conditional posteriors are, 

 

 

 
 

where , shows the elements of  excluding . Full conditional posteriors determine the joint 

posterior  with the Clifford-Hammersley Theorem. Here  is the parameter 

vector .According to this theorem the joint posterior  can be determined by its complete set 

of conditionals  and  therefore, primarily these conditional probabilities have to be determined 

(Meng 2009). The most difficult part of Gibbs sampler is to obtain  from conditional distribution 

 

 

Alternative Stochastic Volatility Models:- 
The estimation of SV models are more difficult than ARCH models. BSV model is restricting in terms of many 

economic and financial applications. The usage of this model can lead biased volatility forecasts especially in the 

high volatility periods. JPR (2004) developed BSV model that allows fat-tailed residuals (BSVF) in the mean 

equation, allows leverage effect via correlation between the volatility and mean equation residual (ABSV) and 

allows both leverage effect and fat-tailed residuals (ABSVF). 

 

Fat-tailed Bayesian Stochastic Volatility Model:- 

BSV model is inadequate to reflect the effects of outliers (Geweke 1994c). t  probability distribution can become 

fat-tailed with scale mixture of normals by keeping the symmetry property. In this approach variable of scale 

mixture is the latent variable. BSVF model in the mean equation, 

 

 

 

 

The probability distributions  and  are chosen to reflect the fat-tailed probability of . Here t  

supposed to distribute as inverse-gamma independently and identically or . In this case the marginal 

distribution of t  is Student-t with v degree of freedom (JPR 1999). Prior distributions  

specified in BSV model are also used in here. Conjugate inverse gamma prior for  is identified as 

. 

 

Bayesian Stochastic Volatility Model with Leverage Effect:- 

Asymmetric response of volatility to stock price changes is known as “leverage effect” (Black and Scholes 1973). 

Positive variance shock has less effect on the conditional variance in comparison with negative shock. This negative 

correlation forms leverage effect. BSV model is expressed by Euler approach with stochastic difference equations in 

BSV model with leverage effect. ABSV model,  

 

 

 
where s(t) is the asset price and  denotes volatility.  and  are Brownian motions.  

and . If  than leverage effect is existent.In practice the representation 

above is become discrete in terms of easiness. ABSV model (Yu 2005), 
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where  is the continuous return variable, ,  

and , 
2

t th  . Here 
t
 and t  are iid N(0,1). The relationship between t  and 1t   is denoted with 

 correlation coefficient. In this study the ABSV model that suggested by Yu (2005) is used in the application. Full 

conditional distributions are not log-concave in ABSV models therefore M-H step is used in simulation and 

expressed as, 

 

 

 
 

 

Bayesian Stochastic Volatility Model That Allows Both Leverage Effect And Fat-Tailed Residuals:- 

When correlated model is developed for including fat-tail property, the full model is, 
 

 

 

 
 

with the priors ( , , , , )p v    . The algorithm mentioned before can also be used here.  

 

Empirical Application:- 
Classical SV, BSV, BSVF and ABSVF models are estimated and compared for stock returns of developed and 

developing 10 countries. 

 

Data:- 
In the study Argentina, Brasil, China, Mexico and Turkey are taken as the stock returns of developing markets, 

United Kingdom, France, Germany, United States and Japan are taken as the stock returns of developed markets1.  

 

The daily return series of BOVESPA (BVSP) (Brasil), HANGSENG (HSI) (China), IPC (Mexico), Istanbul stock 

exchange 100 (ISE 100) (Turkey), FTSE 100 (UK), CAC 40 (France), DAX (Germany), S&P 500 (US), NIKKEI 

225 (Japan) indexes are used between the dates 04.01.1995-18.06.2010. Only the initial date of MERVAL (MERV) 

(Argentina) is 09.10.19962. Return series  are calculated with the formula  where 

 denotes closing price of index at the day t,  denotes closing price of index at the day (t-1). 

 

The descriptive statistics of return series are reported in Table 1. When examining the means of series it is seen that 

all of them are around zero. ISE 100 index has the maximum mean with the value of 0.14, BVSP and IPC are 

following respectively. The means of all return series are positive except NIKKEI. Skewness of the BVSP, HSI, 

IPC, CAC return series are skewed to the right, the others are skewed to the left. Kurtosis of all series are sharply 

indicating the distributions have fat-tails. According to the Jarque-Bera Test none of the series distributed as normal. 

 

                                                        
1http://www.ams.org/membership/individual/types/mem-develop and http://www.icce2010.org/docs/developingCountries.pdf 
2http://finance.yahoo.com/intlindices?e=americas 

http://www.ams.org/membership/individual/types/mem-develop
http://www.icce2010.org/docs/developingCountries.pdf
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Table 1:- Descriptive Statistics of Return Series 

*Me; mean, Med;median, Max;maximum, Min;minimum, SD; standard deviation, SK; skewness, KU; kurtosis,  

JB; Test statistics of Jarque-Bera, Prob.; probabillity value of JB Test, N; the number of observations.   

 

Estimation Results:- 
To estimate the classical SV model by EMM first of all auxiliary model based on semi-nonparametric density has to 

be determined. The results of EMM estimation is in Table 2.  

 
Table 2:- The results of EMM estimation of Classical SV model 

 EG EG EG EG EG EG EG EG EG EG 

 (1,1)-

H(8,0) 

(1,1)-

H(9,0) 

(1,1)-

H(9,0) 

(1,1)-

H(3,0) 

(1,1)-

H(10,0) 

(1,1)-

H(10,0) 

(1,3)-

H(5,0) 

(1,1)-

H(2,0) 

(1,1)-

H(2,0) 

(1,1)-

H(9,0) 

 MERV BV HSI IPC ISE FTSE CAC DAX S&P NK 

J-Test 66.92 133.31 33.82 71.74 28.45 1803.0 29.68 32.83 140.13 56.63 

df 10 11 11 5 12 12 9 4 4 11 

 

18.31 19.68 19.68 11.07 21.03 21.03 16.92 9.49 9.49 19.68 

T statistics of J Test for the Auxiliary Model Parameters   

 

-0.39 -1.03 0.27 2.03 1.26 -5.43 0.45 4.68 -2.11 -1.03 

 

1.07 -2.50 -1.91 -4.84 -0.22 3.00 0.82 -5.43 -7.97 -4.89 

 

         1.31     

 

         -0.13     

 

0.84 -0.35 -1.58 -4.00 -0.17 -1.60 0.72 -3.42 -6.31 -4.78 

 

-0.03 1.04 1.69 6.63 1.36 9.72 0.04 5.27 11.18 5.74 

 

0.84 -0.61 -0.87 0.64 -0.59 19.94 1.43 -3.23 5.07 -0.04 

a 1 0 -1.61 -3.33 -1.15 -3.34 -3.43 0.65 -2.90 -2.03 -1.48 0.03 

a 2 0 -1.32 -5.30 -0.57 1.21 0.14 -1.59 1.40 2.29 -5.67 -2.97 

a 3 0 1.28 0.67 0.62 2.43 1.24 6.93 -0.61    3.05 

a 4 0 1.50 -0.25 0.00  -0.37 17.35 1.89    0.20 

a 5 0 1.48 -1.53 0.17  1.57 -3.72 -3.71    -0.24 

a 6 0 0.04 -1.66 2.68  -2.53 -10.24      0.19 

a 7 0 1.51 1.85 0.07  -0.68 -4.58      -1.30 

a 8 0 1.84 1.93 -1.12  -0.33 3.45      -2.94 

a 9 0   1.87 -0.06  -1.01 -0.13      1.30 

a10 0       -0.89 4.75       

Estimated Parameter Values and t-Statistics of Structural Model  

 

0.07 0.17 0.09 0.14 0.12 -0.09 0.06 0.02 -0.001 0.01 

(t) 0.008 0.008 0.032 25.64 0.076 -0.009 0.33 1.76 -0.61 0.36 

 

0.92 0.83 0.84 0.80 0.92 0.93 0.81 0.96 0.97 0.97 

(t) 0.05 0.10 0.306 236.8 0.30 0.024 1.64 123.6 4283.8 59.87 

 

0.51 0.41 0.29 0.36 0.34 0.43 0.40 0.15 0.01 0.13 

(t) 0.11 0.097 0.201 89.35 0.27 0.052 5.97 27.04 16.06 13.35 

  Me. Med.  Max.  Min.  SD SK KU  JB Prob. N 

MERV 0.04 0.1 16.12 -14.76 2.26 -0.25 8.34 4057.05 0.00 3384 

BVSP 0.07 0.14 28.83 -17.21 2.38 0.48 15.16 23680.49 0.00 3821 

HSI 0.02 0.04 17.25 -14.73 1.79 0.11 12.42 14206.94 0.00 3839 

IPC 0.07 0.09 12.15 -14.31 1.67 0.04 8.71 5268.82 0.00 3873 

ISE 0.14 0.15 17.77 -19.98 2.74 -0.04 7.65 3460.65 0.00 3841 

FTSE  0.01 0.06 9.38 -9.26 1.23 -0.13 9.09 6042.73 0.00 3904 

CAC 0.02 0.05 10.59 -9.47 1.49 0.01 7.81 3781.94 0.00 3921 

DAX 0.03 0.09 10.8 -7.43 1.56 -0.05 7.12 2768.18 0.00 3914 

S&P 0.02 0.07 10.96 -9.47 1.28 -0.2 10.97 10320.95 0.00 3893 

NIKKEI -0.02 0 13.23 -12.11 1.58 -0.19 8.28 4438.3 0.00 3800 
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 * “EG” denotes EGARCH. Df is the degree of freedom,   is the short-run response to the shocks,  is persistency, 

κ1 is the asymmetric volatility  effect, κ2 denotes the changes in standardised process. 

 

Table 2 contains estimation results of the auxiliary models EGARCH (1,1)-H(Kx,0), EGARCH (1,2)-H(Kx,0), 
EGARCH (1,3)-H(Kx,0) and EGARCH (1,1)-H(Kx,1) for all return series and the best models are chosen by 

comparing the values of logarithmic likelihood, AIC, Schwarz and Hannan-Quinn Criteria. The selected auxiliary 

models are: MERV-EGARCH(1,1)-H(8,0), BVSP-EGARCH(1,1)-H(9,0), HSI-EGARCH(1,1)-H(9,0), IPC-

EGARCH(1,1)-H(3,0), ISE-EGARCH(1,1)-H(10,0), FTSE-EGARCH(1,1)-H(10,0), CAC-EGARCH(1,3)-H(5,0), 

DAX-EGARCH(1,1)-H(2,0), S&P-EGARCH(1,1)-H(2,0), NIKKEI-EGARCH(1,1)-H(9,0). 

 

Strong convergences are provided in all the auxiliary and structural model estimations. J Test results of structural 

models are notably high for each series (Gallant et al. 1997). This is commonly encountered in the EMM literature. In 

this situation decision is made by the results of t statistics of the auxiliary model parameters (Van der Sluis 1998). 

When examining the t statistics of the auxiliary model parameters for J Test, the zero hypothesis that defends model is 

valid is accepted for each series except S&P return index because of the statistics of  κ1parameter is larger than the 
critical value. 

 

Structural model estimates show that structural model parameters for IPC is statistically significant for the error rate 5 

%, for DAX is statistically significant for the error rate 10 %. In consequence only these two models are interpreted. 

Considering the results of structural models for IPC and DAX, it is seen that persistency parameters are very high with 

the value of 0.80 and 0.96, respectively.    

 

It is very crucial to determine priors in Bayesian approach. Like Meyer and Yu (2000) in this study the priors that Kim 

et al. (1998) suggested are used. As market stock return series have different forms, they may also have different 

priors. For the determination of prior parameters first of all beta distribution parameters which gives minimum DIC 

value for the estimated BSV model are determined for each stock return. After that in the same way gamma 

parameters and normal distribution parameters are determined. Uniform(0,1) prior is also tried for  persistency 

parameter, but the required result can not be obtained. The new mean values are determined by adding 

 to the mean of the distribution and with these new mean values the distribution parameters 

are obtained coinciding with the previous standard deviation. Model is reestimated with these new parameter values 

and the parameters that give minimum DIC values are selected as proper parameter values with 10000 iterations. The 

priors and distribution parameters that make DIC value minimum through tried models take part in Table 3. 

 

Table 3:-  The Prior Parameters Determined for Persistency  and  Parameter 

 For  Parameter For  Parameter 

MERV beta(20, 3.2) Inverse gamma(2, 0.025) 

BVSP beta(20, 3.2) Inverse gamma(2.5, 0.025) 

HSI beta(26.44, 2.83) Inverse gamma(2.5, 0.025) 

IPC beta(20, 1.5) Inverse gamma(2.5, 0.025) 

ISE beta(20, 3.2) Inverse gamma(2, 0.025) 

FTSE beta(20, 1.5) Inverse gamma(2.5, 0.025) 

CAC beta(20, 1.5) Inverse gamma(2.5, 0.025) 

DAX beta(20, 1.5) Inverse gamma(2.5, 0.025) 

S&P beta(32.02, 4.51) Inverse gamma(3, 0.025) 

NK beta(20, 1.5) Inverse gamma(2.5, 0.025) 

*Because of it provides minimum DIC value for all models  

is obtained.   

 

After determining the priors, initial values have to be defined. WinBUGS 1.4.3 is used in the application. At first 

models are estimated by simulation with 10000 iterations without specifying the initial values of the parameters, 

after that the posterior means of parameters are taken as initial values.  is defined as  and 

distributed as uniform in ABSV model. ,  and  parameters are estimated at first with 50000 next 100000 
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iterations, but according to the results of Raftery and Lewis (1992) Diagnostic Test for providing convergence 

1000000 iterations are needed therefore models are estimated with 1000000 iterations. 

 

Autocorrelation graphs and Pearson correlation coefficients of the values following each other in the chain are also 

examined. High autocorrelation indicates taking long time for reaching the posterior of the parameter. Even the size 

of correlations affect the convergence speed of the sampling algorithm, it does not affect convergence in anyway.  
Table 4a and 4b in the below present posterior means of the model parameters estimated with 1000000 iterations.  

 

Table 4a:- Estimation Results of the Bayesian Models for Developing Markets. 

  BSV BSVF ABSV ABSVF 

  1.7460  (0.0007) 
(1.5630, 1.9430) 

1.6130  (0.0013) 
(1.4150, 1.8220) 

1.7440  (0.0006) 
(1.5570, 1.9430) 

1.6060  (0.0008) 
(1.4050, 1.8140) 

ME 
 

0.9560 (0.0002) 

(0.9380, 0.9713) 

0.9683  (0.0002) 

(0.9529, 0.9810) 

0.9590  (0.0002) 

(0.9420, 0.9731) 

0.9701  (0.0002) 

(0.9555, 0.9819) 

 
 

0.2692  (0.0007) 

(0.2233, 0.3201) 

0.2161  (0.0009) 

(0.1723, 0.2643) 

0.2526  (0.0007) 

(0.2117, 0.2994) 

0.2058  (0.0008) 

(0.1650, 0.2519) 

 
 

  -0.0017  (0.0031) (-

0.9504, 0.9510) 

0.0015  (0.0042) 

(-0.9460, 0.9534) 

 CV2 1.3211 1.1137 1.2132 1.0524   

 
 

1.9790  (0.0013) 

(1.7570, 2.2650) 

1.9390  (0.0029) 

(1.7030, 2.2670) 

1.9970  (0.0016) 

(1.7660, 2.3090) 

1.9580  (0.0024) 

(1.7090, 2.3480) 

BV 
 

0.9742  (0.0001) 

(0.9629, 0.9843) 

0.9786  (0.0001) 

(0.9678, 0.9881) 

0.9768  (0.0001) 

(0.9660, 0.9865) 

0.9806  (0.0001) 

(0.9705, 0.9899) 

 
 

0.1840  (0.0005) 

(0.1552, 0.2158) 

0.1644(0.0005) 

(0.1356, 0.1974) 

0.1685  (0.0005) 

(0.1424, 0.1974) 

0.1533  (0.0005) 

(0.1267, 0.1821) 

 
 

  -0.0077  (0.0038) 

(-0.9486, 0.9527) 

0.0025  (0.0033) 

(-0.9489, 0.9499) 

 CV2 0.9439 0.8932 0.8572 0.8434 

  1.4750  (0.0024) 

(1.2130, 1.8380) 

1.4080  (0.0040) 

(1.1290, 1.8230) 

1.4750  (0.0014) 

(1.2100, 1.8420) 

1.4060  (0.0012) 

(1.1300, 1.8050) 

HS  0.9900  (0.0001) 

(0.9842, 0.9951) 

0.9929  (0.0001) 

(0.9882, 0.9969) 

0.9901  (0.0001) 

(0.9841, 0.9951) 

0.9929  (0.0000) 

(0.9881, 0.9969) 

 
 

0.1288  (0.0005) 
(0.1065, 0.1534) 

0.1066  (0.0005) 
(0.0867, 0.1297) 

0.1286  (0.0004) 
(0.1071, 0.1531) 

0.1068  (0.0004) 
(0.0871, 0.1291) 

 
 

  -0.0010  (0.0043) 

(-0.9501, 0.9519)  

0.0068  (0.0031) 

(-0.9506, 0.9521) 

 CV2 1.301 1.2325 1.3149 1.2392 

 
 

1.4390  (0.0014) 

(1.2680, 1.6710) 

1.4330  (0.0093) 

(1.2040, 1.9770) 

1.4400  (0.0014) 

(1.2700, 1.6680) 

1.4270  (0.0047) 

(1.2070, 1.9010) 

IP 
 

0.9736  (0.0002) 

(0.9601, 0.9852) 

0.9817  (0.0002) 

(0.9695, 0.9945) 

0.9737  (0.0002) 

(0.9605, 0.9851) 

0.9819  (0.0002) 

(0.9703, 0.9938) 

 
 

0.1981  (0.0007) 

(0.1615, 0.2396) 

0.1605  (0.0009) 

(0.1235, 0.2021) 

0.1975  (0.0007) 

(0.1608, 0.2372) 

0.1595  (0.0008) 

(0.1246, 0.1978) 

 
 

  0.0027  (0.0041) 

(-0.9540, 0.9476) 

0.0000  (0.0030) 

(-0.9531, 0.9525) 

 CV2 1.1238 1.0347 1.1201 1.0323 

 
 

2.2080 (0.0009) 

(1.9740, 2.4560) 

2.1020  (0.0016) 

(1.8460, 2.3630) 

2.2040  (0.0007) 

(1.9610, 2.4600) 

2.0870  (0.0009) 

(1.8270, 2.3580) 

IS 
 

0.9664 (0.0002) 

(0.9513, 0.9787) 

0.9748  (0.0002) 

(0.9620, 0.9854) 

0.9701  (0.0002) 

(0.9568, 0.9812) 

0.9770  (0.0002) 

(0.9652, 0.9868) 

 
 

0.2200 (0.0007) 

(0.1821, 0.2642) 

0.1826  ((0.0008)) 

(0.1437, 0.2235) 

0.2008  (0.0006) 

(0.1678, 0.2380) 

0.1703  (0.0008) 

(0.1358, 0.2084) 

    0.0009  (0.0031) 

(-0.9458, 0.9498) 

0.0045  (0.0032) 

(-0.9512, 0.9518) 

 CV
2
 1.0804 0.9542 0.9828 0.8923 
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Table 4b:-  Estimation Results of the Bayesian Models for Developed Markets. 

 *The Geweke statistics of these parameters are not significant so the estimated  models involving these    

parameters are left out of assessment.  

 

In the Table 4a and 4b the expressions in the brackets at the same line show the MC simulation errors of estimations. 

The expressions in the brackets at the low line indicate the 2.5th and 97.5th quantiles of posteriors of parameters. CV2 

is a variability measure of volatility and expressed as the squared coefficient of variation of the volatility process, 

  BSV BSVF ABSV ABSVF 

 
 

0.8954  (0.0013) 

(0.6942, 1.0950) 

0.8688  (0.0014) 

(0.6733, 1.0630) 

0.8960  (0.0007) 

(0.6987, 1.0950) 

0.8678  (0.0007) 

(0.6709, 1.0650) 

FT 
 

0.9906  (0.0001) 

(0.9846, 0.9959) 

0.9914  (0.0001) 

(0.9857, 0.9963) 

0.9906  (0.0001) 

(0.9848, 0.9958) 

0.9913  (0.0001) 

(0.9857, 0.9962) 

 
 

0.1303  (0.0005) 

(0.1073, 0.1550) 

0.1240  (0.0004) 

(0.1028, 0.1476) 

0.1298  (0.0004) 

(0.1081, 0.1539) 

0.1244  (0.0004) 

(0.1037, 0.1481) 

 
 

  0.0006  (0.0031) 

(-0.9499, 0.9517) 

0.0014  (0.0032) 

(-0.9496, 0.9480) 

 CV2 1.4778 1.4542 1.4606 1.4431 

 
 

1.198  (0.0018) 

(0.9843, 1.432) 

1.1460  (0.0016) 

(0.9328, 1.3740) 

1.1910  (0.0006) 

(0.9774, 1.4220) 

1.1490  (0.0006) 

(0.9364, 1.3810) 

CA  0.9898  (0.00008) 

(0.9837, 0.9951) 

0.9912  (0.0001) 

(0.9855, 0.9960) 

0.9899  (0.0001) 

(0.9839, 0.9952) 

0.9911  (0.0001) 

(0.9853, 0.9960) 

 
 

0.1205  (0.0005) 

(0.1003, 0.1435) 

0.1112* (0.0004) 

(0.0919, 0.1339) 

0.1202  (0.0004) 

(0.1004, 0.1419) 

0.1116  ( 0.0004) 

(0.0920, 0.1336)  

    -0.0034  (0.0031) 
(-0.9467, 0.9508) 

-0.0075  (0.0029) 
(-0.9518, 0.9484) 

 CV2 1.045 1.0252 1.0521 1.0194 

 
 

1.127  (0.0022) 

(0.8497, 1.3750) 

1.0760  (0.0024) 

(0.7821, 1.3270) 

1.1300  (0.0011) 

(0.8519, 1.3750) 

1.0720  (0.0011) 

(0.7791, 1.3210) 

DA 
 

0.9897  (0.0001) 

(0.9834, 0.9956) 

0.9910  (0.0001) 

(0.9852, 0.9965) 

0.9897  (0.0001) 

(0.9834, 0.9954) 

0.9911  (0.0001) 

(0.9853, 0.9965) 

 
 

0.1356  (0.0004) 

(0.1139, 0.1601) 

0.1264  (0.0005) 

(0.1042, 0.1501) 

0.1357  (0.0004) 

(0.1157, 0.1595) 

0.1256  (0.0004) 

(0.1053, 0.1487) 

 
 

  0.0040  (0.0039) 

(-0.9477, 0.9508) 

0.0008  (0.0030) 

(-0.9501, 0.9520) 

 CV2 1.4528 1.4390 1.456 1.4357 

 
 

0.8804  (0.0014) 

(0.6696, 1.0630) 

0.8038  (0.0023) 

(0.5631, 0.9950) 

0.8786  (0.0010) 

(0.6642, 1.0610) 

0.7985  (0.0015) 

(0.5478, 0.9914) 

SP 
 

0.9886  (0.0001) 

(0.9822, 0.9943) 

0.9907* (0.0001) 

(0.9847, 0.9961) 

0.9887  (0.0001) 

(0.9822, 0.9945) 

0.9910  (0.0001) 

(0.9850, 0.9964) 

 
 

0.1394  (0.0004) 

(0.1173, 0.1645) 

0.1252 (0.0005) 

(0.1026, 0.1505) 

0.1388  (0.0005) 

(0.1142, 0.1654) 

0.1228  (0.0005) 

(0.0991, 0.1498) 

 
 

  -0.0024  (0.0033) 

(-0.9512, 0.9500) 

0.0007  (0.0029) 

(-0.9464, 0.9508) 

 CV2 1.3565 1.3319 1.3568 1.3199 

  1.3290  (0.0009) 

(1.1700, 1.5050) 

1.2580  (0.0014) 

(1.0870, 1.4370) 

1.3290  (0.0005) 

(1.1680, 1.5030) 

1.2610  (0.0005) 

(1.0870, 1.4450) 

NI  0.9806  (0.0001) 

(0.9709, 0.9888 ) 

0.9843  (0.0001) 

(0.9759, 0.9916) 

0.9810* (0.0001) 

(0.9714, 0.9892) 

0.9843  (0.0001) 

(0.9757, 0.9918) 

 
 

0.1448  (0.0005) 
(0.1210, 0.1728) 

0.1279  (0.0005) 
(0.1032, 0.1544) 

0.1429* (0.0005) 
(0.1183, 0.1705) 

0.1274  (0.0005) 
(0.1028, 0.1544) 

 
 

  -0.0050  (0.003) 

(-0.9507, 0.9476) 

-0.0008  (0.0031) 

(-0.9451, 0.9489) 

 CV2 0.7258 0.6906 0.7204 0.6837 



ISSN: 2320-5407                                                                                  Int. J. Adv. Res. 4(9), 2077-2089 

2086 

 

computed as in JPR (1994). MC error shows the standard error of the estimation obtained by Markov chain 

algorithm and  has to be small as for as possible ( 0.05).  

 

When examining the results of BSV model in Table 4a and 4b, it is seen that beta parameter value of ISE index has 
the maximum posterior mean with the value of 2.208, S&P has the minimum posterior mean with the value of 

0.8804 in all stock returns. Posterior means of phi persistency parameters are between the range of 0.956 and 0.9906 

again in all the stock returns, displaying high persistency in conditional variance as in the estimations in ARCH 

literature. Persistency parameter of HSI is considerably higher comparing to other developing market stock returns 

with the posterior mean of 0.99 in Table 4a. BVSP, IPC and ISE are following HSI respectively. In Table 4b it is 

seen that the posterior means of persistency parameters for developed market stock returns are too close to each 

other and about 0.98, FTSE has the maximum posterior mean of persistency parameter with the value of 0.9906 in 

all the stock returns. Unit root in volatility do not exist in all the series. When examining variability of volatility, 

FTSE has the maximum variability with the value of 1.4778 in all the stock returns. DAX, S&P, MERV and HSI are 

following FTSE with the values of 1.4528, 1.3565, 1.3211, 1.301 respectively. The stock return which has the 

minimum variability is NIKKEI with the value of 0.7258. The high variability represents high risk and high return 
values. The variability in upper quantiles are much more greater than lower quantiles for all the stock returns.   

 

When looking at the results of BSVF model in Table 4a and 4b, it is seen that the highest and the lowest posterior 

means of beta parameter are belong to ISE and S&P as in the results of BSV model. Posterior mean of phi 

persistency parameters are between the range of 0.9683 and 0.99 in all the stock returns, displaying high persistency 

in conditional variance as in the results of BSV model. Persistency parameter of HSI is considerably higher 

comparing to other developing market stock returns as in the results of BSV model with the posterior mean of 

0.9929 in Table 4a. IPC, BVSP, ISE and MERV are following HSI respectively. In Table 4b it is seen that the 

posterior means of persistency parameters for developed market stock returns are too close to each other and 

NIKKEI has the minimum posterior mean of persistency parameter with the value of 0.9843. When examining the 

posterior means of persistency parameters on the basis of all markets generally, HSI has the highest posterior mean. 

Unit root in volatility do not exist in all the series. FTSE has the maximum variability of volatility as in the BSV 
model with the value of 1.4542. NIKKEI has the minimum variability as in the BSV model, BVSP and ISE are 

following NIKKEI respectively.  

 

The results of ABSV model in Table 4a and 4b shows that the highest and the lowest posterior means of beta 

parameter are again belong to ISE and S&P as in the results of BSV and BSVF models. Posterior mean of phi 

persistency parameters are between the range of 0.959 and 0.9906 in all the stock returns, and displaying high 

persistency in conditional variance as in the previous models. Persistency parameter of HSI is considerably higher 

comparing to other developing market stock returns with the posterior mean of 0.9901. BVSP, IPC, ISE and MERV 

are following HSI respectively. In Table 4b it is seen that the posterior means of persistency parameters for 

developed market stock returns are too close to each other and S&P has the minimum posterior mean of persistency 

parameter with the value of 0.9887. When examining the posterior means of persistency parameters on the basis of 
all markets generally, FTSE has the highest posterior mean and HSI, CAC, DAX, S&P, BVSP, IPC, ISE and MERV 

are following FTSE respectively. Unit root in volatility do not exist in all the series. When examining the posterior 

means of  leverage effect parameter, it is seen that developing market stock returns MERV, BVSP and HSI and 

developed market stock returns CAC and S&P have negative values confirming the existence of leverage effect. 

FTSE has the maximum variability of volatility with the value of 1.4606, BVSP has the minimum variability with 

the value of 0.8572.   

 

The results of ABSVF model show that the highest and the lowest posterior means of beta parameter are belong to 

ISE and S&P as in the previous models in Table 4a and 4b. Posterior mean of phi persistency parameters are 
between the range of 0.9635 and 0.9929 in all the stock returns, displaying high persistency in conditional variance 

as in the previous models. Persistency parameter of HSI is considerably higher comparing to other developing 

market stock returns as in the results of previous models with the posterior mean of 0.9929 in Table 4a. IPC, BVSP, 

ISE and MERV are following HSI respectively. In Table 4b it is seen that the posterior means of persistency 

parameters for developed market stock returns are too close to each other and NIKKEI has the minimum posterior 

mean of persistency parameter with the value of 0.9843. When examining the posterior means of persistency 

parameters on the basis of all markets generally, HSI has the highest posterior mean and FTSE, S&P, CAC=DAX, , 

NIKKEI, IPC, BVSP, ISE and MERV are following HSI respectively. Unit root in volatility do not exist in all the 
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series. When examining the posterior means of  leverage effect parameter, it is seen that just developed market 

stock returns CAC and NIKKEI have negative values confirming the existence of leverage effect. FTSE has the 

maximum variability of volatility as in the previous models with the value of 1.4431. DAX, S&P, HSI, MERV, IPC, 

CAC, ISE, BVSP, and NIKKEI are following FTSE. As in the previous models NIKKEI has the minimum 
variability, BVSP and ISE are following NIKKEI respectively.  

 

The significance of all of the Bayesian models are examined by Geweke (1992) statistics (Z-scores). In the 

estimation results of BSV and ABSVF models, Geweke statistics of all parameters are between the range of +2 and -

2 confirming the convergence is provided. Only the sigma parameter of CAC and the phi parameter of S&P in the 

results of BSVF model, phi and sigma parameters of NIKKEI in the results of ABSV model have the values out of 

the range of 2. Except these specified parameters convergency is provided for all models.   

 

Heidelberger and Welch (1983) diagnostic test is used for detecting the stationarity of the Markov chain. All 
estimated parameters passed from the stationarity and halfwidth test, there is no need to run the chain longer or 

increase the number of iteration.     

 

DIC criteria is used for comparing and choosing the most proper Bayesian model.  DIC values for estimated models 

are in Table 5. When examining Table 5 BSV model has minimum DIC value for each stock return except S&P. 

ABSV model is the best model for S&P. 

 

Table 5:- DIC values of BSV, BSVF, ABSV and ABSVF Models. 

 BSV BSVF ABSV ABSVF 

MERV 13721.3 13743.3 13733.8 13771.3 

BVSP 15897.5 15917.2 15914.2 15936.3 

HSI 13495.8 13497.2 13513 13517.4 

IPC 13600.9 13629.4 13604.4 13647.7 

ISE 17344 17412.4 17369.6 17405.2 

FTSE 10848.9 10873.2 10856.4 10880.8 

CAC 12785 12801.6* 12798.6 12819 

DAX 12933.9 12959.3 12935.2 12961.2 

S&P 11039.9 11057.7* 11038.8 11072.1 

NK 13152.5 13167.3 13165.9* 13188.6 

* These models are left out of assessment because the results of Geweke statistics are not valid.  

 

The models give better results for each stock return involving the classical SV are taking part in Table 6.    

 
Table 6:- The Models That Give Better Results For Each Stock Return. 

MERV BSV  

BVSP BSV  

HSI BSV  

IPC BSV EGARCH(1,1) - H(3,0)-SVM 

ISE BSV  

FTSE BSV  

CAC BSV  

DAX BSV EGARCH(1,1) - H(2,0)-SVM 

S&P ABSV  

NK BSV  

 

According to Table 6 it is seen that the results of classical SV models are significant for only IPC and DAX. 

Generally Bayesian models give the best results for each market stock returns.  

 

Conclusion:- 
The volatility modeling of developed and developing markets are aimed in this study. For this purpose classical 
stochastic volatility, Bayesian stochastic volatility, fat-tailed Bayesian stochastic volatility, asymmetric Bayesian 
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stochastic volatility and Bayesian stochastic volatility model that allows both leverage effect and fat-tailed residuals 

are estimated and compared for 10 market stock returns to investigate which models give better results for 

developed and developing market stock returns. In the analysis MERVAL (MERV) (Argentina), BOVESPA 

(BVSP) (Brasil), HANGSENG (HSI) (China), IPC (Mexico), Istanbul stock exchange 100 (ISE 100) (Turkey) are 

taken as developing market daily stock returns and FTSE 100 (UK), CAC 40 (France), DAX (Germany), S&P 500 

(US), NIKKEI 225 (Japan) are taken as developed market daily stock returns.  
 

The estimation results of classical stochastic volatility models by efficient method of moments are significant for 

only IPC and DAX.  During the estimation of Bayesian stochastic volatility models, the most proper parameter 

values are found by trying different parameter values of priors which have been used in the important studies in the 

literature. At first Bayesian stochastic volatility models are estimated by simulation with 10000 iterations without 

specifying the initial values of the parameters, after that the posterior means of parameters are taken as initial values 

and then models reestimated with 1000000 iterations.  

 

The variability of volatility is higher in upper quantiles according to lowers for each stock returns in all estimated 

Bayesian stochastic volatility models. While developed market return FTSE has the maximum variability of 

volatility in all models, again developed market return NIKKEI has the minimum variability in all models except 

asymmetric Bayesian stochastic volatility model. BVSP has the minimum variability for this model. The high 
variability represents high risk and high return values.  

 

The results of the models show that Bayesian stochastic volatility models which have normal distributed residuals 

give the best results for all stock returns when comparing the deviance information criteria of the models except 

S&P. Asymmetric Bayesian stochastic volatility model is the best model for S&P.     Because of determining 

different priors in accordance with data, the results of Bayesian stochastic volatility models are significant for all the 

stock returns. This represents superiority of Bayesian approach from other methods clearly.      
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