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Introduction:-  

Throughout ,  S represents a monoid with zero element . A nonempty set M is called  a unitary right S-system 

denoted by Ms , if there is a mapping f : M × S ⟶ M f(m,s) = ms such that : (1) m ∙1=m (2) m(st) = (ms)t for all m 

∈ M and s,t∈ S , where 1 is the identity element of S . Similarly we define a unitary left S-system . Throughout this 

work the basic S-system is a unitary right S-system . Let Ms , Ns be S-systems . A mapping α : Ms → Ns is called S-

homomorphism in case α(ms) = α(m)s for all s ∈ S and m ∈ M.  

 
Let As , Ms be two S-systems . As is called Ms-injective if given an S- monomorphism α : N → Ms where N is a 

subsystem of Ms and every S-homomorphism β : N → As ,can be extended to an S-homomorphism σ : Ms →As [7] . 

An S-system As  is called injective if it is Ms-injective for all S-systems Ms . As is called quasi injective if it is As-

injective . 

 

An S-system Ms is called pseudo Ns- injective if each S-monomorphism from a subsystem of Ns into Ms extends to 

an S-homomorphism from NsintoMs. An S-system Ms is called pseudo injective if Ms is pseudo Ms-injective [8] .  

 

In [5] , V.S.Ramamurthi  introduced the concept of finitely injective modules . This concept motivate us to consider 

and study finitely injective systems  relative to other S-systems as follows , an S-system Ms is called finitely Ns-

injective ( simply , F-Ns-injective)  , if every homomorphism from a finitely generated subsystem of Ns to Ms 

extends to an S-homomorphism of Ns into Ms [6] . An S-system Ms is called finitely quasi injective( simply FQ-
injective) if Ms is F-Ms-injective system .  

 

A subset A of an S-system Ms is called a set of generating elements of Msif every element m inMs can be presented 

as m = as for some a ∈ A , s ∈S . ThusMs is finitely generated if Ms = < 𝐴 > for some│A│ < ∞, where < 𝐴 >  is 

the subsystem of Ms generated by A([4], p.63) . An S-system Ns is called Ms-generated , where Ms is an S-system , 

if there exists an S-epimorphism α:Ms
(I)⟶Ns for some index set I . If I is finite , then Ns is called finitely Ms-

generated of Ms [2].  
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In [2] , the authors introduced and studied pseudo-injective S-systems and obtained some results .In this work , we 

adopt generalizations of pseudo-injective and FQ-injective S-system . 

 

Pseudo FinitelyQuasi Injective Systemsover Monoids:- 

 

Definition(2.1):Let Ms and Ns be two S-systems . Ms is called pseudo finitely Ns-injective (simply PF-N-injective ) 
if every monomorphism from a finitely generated subsystem of Ns into Ms extends to a homomorphism of Ns into 

Ms . An S-system  Ms is called pseudo finitely quasi-injective (simplyPFQ-injective)  if Ms is PF-M-injective system 

.A monoid S is called right PF-injective if Ss is pseudo FQ-injective . 

 

Example and Remarks(2.2):- 

(1) Every pseudo- injective(quasi-injective , injective)S-system is pseudo FQ-injective  .Let S be the monoid 

{1,a,b,0} with ab = a2 = a and ba= b2 =b , 0 is the zero element and 1 is the identity .  S as a right S-system over 

itself  is not pseudo FQ- injective, in fact  consider the subsystemN={0,a,b} and α be S-monomorphismfrom N into 

S which defined by α(x) =  
a if x =  b
b  if x =  a 

  , and clearly α(0) = 0 .Then this S-monomorphism cannot be extended to 

S-endomorphism of S  .  

 

(2) The converse of (1) is not true in general , for example : let R with usual multiplication be R-system over itself . 

Then , take the basis {e1,e2,e3,n1,n2,n3,n4} of R with the following multiplication table : 

 e1 e2 e3 n1 n2 n3 n4 

e1 e1 0 0 0 0 n3 0 

e2 0 e2 0 n1 0 0 n4 

e3 0 0 e3 0 n2 0 0 

n1 n1 0 0 0 0 0 0 

n2 n2 0 0 0 0 0 0 

n3 0 0 n3 0 0 0 0 

n4 0 0 n4 0 0 0 0 

 

Then for R-system M = e2R , the only five subsystems of M are(Θ) , N1 = n1R , N2 = n4R , N1⨁ N2 =(n1 , n2)R and M 

. It is easy to show that n1R is not isomorphic to n4R , therefore M is not quasi injective and any monomorphism 

from N1 , N2 orN1⨁ N2 to M must be an inclusion map and hence can be lifted to identity map of M . This shows 
that M is pseudo injective ( pseudo FQ-injective )  

 

(3) It is clear that definition(2.1) is up to isomorphism . This means isomorphic system to pseudo FQ-injective is 

pseudo FQ-injective .Also , if Ms is pseudo F-N1-injective with N1≅ N2, then Ms is pseudo F-N2-injective .  

 

In the following theorem , we give characterizations of pseudo finitely quasi injective S-systems : 

 

For an S-system Ms and fixed positive integers m and n . We write Mn×m , for the set of all formal n×m matrices 

whose entries are elements in M . We will write also Mn = M1×n and Mn = Mn×1 .  

 

Theorem(2.3) : The following statements are equivalent for an S-system Ms with T = Ends(Ms) : 
(1) Ms is PFQ-injective . 

(2) γ
Sn

(x)= γ
Sn

(y)  , where x , y ∈ Mn , n ∈ Z+ implies that Tx = Ty . 

(3) If xi∈ Ms , i = 1, 2, … , n and α, β: ⋃ i=1
n xiS → Ms are monomorphism, then there exists S-homomorphism 𝜍 ∈ T 

such that 𝛼 = 𝜍β . 

 

Proof : (1→2) Let x,y∈ Mn where n ∈ Z+ and x =(x1 , x2 , … , xn) , y =(y1 , y2 , … , yn) . Define α: ⋃ i=1
n xiS→Ms by 

α(xs) = ys for each s ∈ S. If  xs = xs/ for some s , s/∈ Sn , then (s,s/) ∈ γ
sn

(x) ⊆ γ
sn

(y) which implies ys = ys/ and 

hence α  is well-defined and it is clear that α is S-monomorphism. By (1) , there exists 𝜍 ∈ T such that 𝜍is an 

extension ofα . For each i = 1,2,…,n ,yi = α(xi) = 𝜍(xi) , so y = 𝜍x  and henceTy ⊆ Tx  . By similar argument ,we get 

Tx⊆ Ty and hence Tx = Ty . 
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(2→3) Since α , β are monomorphism , thenγ
sn

(α(x)= γ
sn

(β(x)) . By (2) , we have Tα(x) = Tβ(x) , for each x ∈ Mn. 

So  , α(x) = 𝜍β(x)  for some 𝜍 ∈ T  . Thusα = 𝜍β . 

 

(3→1) Take β ∶ ⋃ i=1
n xiS → Ms to be the inclusion mapping in (3) .  

 

Corollary(2.4) :  The following statements are equivalent for a monoid S : 

(1) S is a right PF-injective . 

(2) γ
Sn

(α) =  γ
Sn

(β)  , where α , β ∈ Sn , n ∈ Z+ implies that Sα = Sβ. 

(3) If ai∈ S , i = 1, 2, … , n and  α, β: ⋃ i=1
n aiS → S are monomorphism , then there exists S-homomorphism b ∈ S 

such that α = bβ . 
 

In the following theorem we get another form of theorem(2.3) . First , let  Ms be S-system . For all element x =(x1 , 

… , xn) ∈ Mn   and α , β ∈ T = End(Ms) ,define the following three sets  : 

 

Ax = { y ∈ Mn │γ
sn
 x =  γ

sn
 y } ; 

S(α,x) = { β ∈ T │kerβ⋂ ⋃ i=1
n (xiS × xiS) = kerα⋂ ⋃ i=1

n (xiS × xiS) } ; 

Bx = {α ∈ T│kerα⋂ ⋃ i=1
n (xiS × xiS) = Ixi S} . Where Ixi S  is the trivial congruence on xiS for each i .  

 

In fact Ax (respectively S(α,x)) is an equivalence class of the following equivalence relation on Mn . For 

x,y∈ Mn , x ~ y iffγ
sn
 x =  γ

sn
 y  and for x ∈ Mn  , α , β ∈ T , we say α ≈ β if and only if   

kerα⋂ ⋃ i=1
n (xiS × xiS) = kerβ⋂ ⋃ i=1

n (xiS × xiS)  . 

 

Theorem(2.5) : Let Ms be an S-system with T=End(Ms) , the following conditions are equivalent:  
(1)Ms is PFQ-injective , 

(2)Ax = Bx  x, for all x in Mn ,  

(3) If Ax = Ay  , then Bx  x = By  y , 

(4) For every S-monomorphismα, β: ⋃ i=1
n xiS → Ms , there exists S-homomorphism 𝜍 ∈ T such that 𝛼 = 𝜍β . 

 

Proof : (1→2) Let y = (y1 , … , yn) ∈ Ax  , this implies Ax = Ay  , α: ⋃ i=1
n xiS → Ms is defined by α(xs) = ys . It is 

obvious that α is well-defined and S-monomorphism . Since Ms is PFQ-injective , so by (1) , there exists σ ∈ T such 

that 𝜍 extends α , then y= α(x) = σ(x) , where i = 1 , 2 ,… , n , so y = 𝜍x   .  This means that , ∀ x = (x1 , … , xn)  

∈ Mn  , we have y = α(x) = σ(x) = σ • x , so σ ∈ Bx  ( In fact , if (xs , xt) ∈ kerσ⋂ ⋃ i=1
n (xiS × xiS)  ,then σ(xs) = 

σ(xt) and xs = xt . So , kerσ⋂ ⋃ i=1
n (xiS × xiS) = Ixi S) . Thus ,  Ax ⊆ Bx  x . Conversely , if σ x ∈ Bxx , then σ ∈ Bx 

, that is  kerσ⋂ ⋃ i=1
n (xiS × xiS) = Ixi S  . It is obvious that γ

sn
 x ⊆ γ

sn
(σx) , since for  (r, s) ∈ γ

sn
(x) , we have xr 

= xs , since σ is well-defined , so σ(xr) = σ(xs) . Thus , σ(x)r = σ(x)s which implies that (r,s) ∈ γ
sn

(σx) . Now, if 

σ(xr) = σ(xs) and (xr , xs) ∈ kerσ⋂ ⋃ i=1
n (xiS × xiS) = Ixi S  , then xr =xs and (r,s) ∈ γ

sn
(x). Hence , γ

sn
 σx ⊆

γ
sn

(x) . Then , γ
sn
 σx = γ

sn
(x) . Therefore , σx ∈ Ax  and  Bx  x ⊆ Ax . 

 

(2→3) Let Ax = Ay  . Then , Ax = Bx  x  , Ay = By  y . So , Bx  x  = By  y . 

 

(3→4) Let α : ⋃ i=1
n xiS → Ms and β : ⋃ i=1

n xiS → Ms  be S-monomorphisms . Then , for x = ( x1 , … , xn) , γsn
 βx =

γ
sn

(αx) . Since , for (s, t) ∈ γ
sn

(βx) ,  then β(xs) = β(xt) . Since β is monomorphism , so  xs = xt . Since α is well-

defined , so α(xs) = α(xt) . This means γ
sn
 βx ⊆ γ

sn
(αx). In similar way we can prove γ

sn
 αx ⊆ γ

sn
(βx) , which 

implies Aαx = Aβx , then by(3) Bαxαx = Bβxβx . Since kerIM⋂ α xS × α xS  = Iα(xS ) , so 1M ∈ Bαx  . Then 

αx ∈ Bβxβx , so there exists σ ∈ Bβx such that α = σβ .  

 

(4→1)Let β = Ixi S  be the inclusion map of ⋃ i=1
n xiS in(4), so we obtain the required . 

 

 

Proposition(2.6): Let Ms be PFQ-injective  S-system  with T = End(Ms) . Then , for α ∈ T , we have :  
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S(α,x) = Bαxα⋃ℓT(xiS × xiS) , ∀x ∈ Mn  

 

Proof : Let β ∈ S(α,x) . Then , kerβ⋂(⋃ i=1
n (xiS × xiS)) = kerα⋂ ⋃ i=1

n (xiS × xiS)  . We claim that γ
sn
 αx =

 γ
sn

(βx) . In fact , if (s, t) ∈ γ
sn

(αx) , then α(xs) = α(xt) which implies (xs, xt) ∈ kerα⋂(⋃ i=1
n (xiS × xiS)) and 

(xs, xt) ∈ kerβ⋂(⋃ i=1
n (xiS × xiS)) which implies β(xs) = β(xt) and then β(x)s = β(x)t . Thus  s, t ∈ γ

sn
(βx) . 

Hence , γ
sn
 αx ⊆ γ

sn
(βx) , similarly we have γ

sn
(βx) ⊆ γ

sn
 αx  and then we obtain γ

sn
 αx = γ

sn
(βx)  . Then , 

we have β ∈ Aαx  . Since Aαx ⊆ Bαx αx  , by theorem (2.5) , so β ∈ Bαx αx and since β(xs) = β(xt) , where β ∈ T , thus 

β ∈ ℓT(xiS × xiS)and then β ∈ Bαx α⋃ℓT(xiS × xiS) . This means  S(α,x) ⊆ Bαx α⋃ℓT(xiS × xi S)      …(1) . 

Conversely , let β ∈ Bαx α⋃ℓT(xiS × xiS) . If β ∈ ℓT(xiS × xiS) , so β ∈ T and β(xis) = β(xit) . If β ∈ Bαα , so there 

exists φ ∈ Bα such that β = φοα . Also , kerφ⋂ ⋃ i=1
n (α(xiS) × α(xi S) = Iα(xi S) and kerβ⋂ ⋃ i=1

n (α xiS ×

α(xiS) = Iα(xi S) . Now, if (xs, xt) ∈ kerφα⋂(⋃ i=1
n (xiS × xiS)) , then φα(xs) = φα(xt)  . Hence (α xs , α(xt)) ∈

kerφ⋂ ⋃ i=1
n (α xi S × α(xiS) = Iα . This implies that (xs, xt) ∈ kerα⋂(⋃ i=1

n (xiS × xiS)) .Thus , 

kerβ⋂(⋃ i=1
n (xiS × xiS)) ⊆ kerα⋂(⋃ i=1

n (xiS × xiS))   …(1) . If (xs, xt) ∈ kerα⋂(⋃ i=1
n (xiS × xiS))  , so α(xs) = 

α(xt) , since φ ∈ T, so φα(xs) = φα(xt)  which implies β(xs) = β(xt) and then (xs, xt) ∈  kerβ⋂(⋃ i=1
n (xiS × xiS)). 

Thus , kerα⋂(⋃ i=1
n (xiS × xiS)) ⊆ kerβ⋂(⋃ i=1

n (xiS × xiS)) …(2) . From (1) and (2) , we have kerα⋂(⋃ i=1
n (xiS ×

xiS)) = kerβ⋂(⋃ i=1
n (xiS × xiS))  and then β ∈ S(α,x)   . 

 

Proposition(2.7) :  Let Ms be  PFQ-injective S-system  with T = End (Ms) and α∈ T , x ∈ Mn  . Then :α ∈ Bx if and 

only if  Bx = Bαxα⋃ℓT(xiS × xiS) .  

 

Proof : ⇒) Let α ∈ Bx and f ∈ S(α,x) , so kerf ⋂(⋃ i=1
n (xiS × xiS)) = kerα⋂(⋃ i=1

n (xiS × xi S)) ,  but  

kerα⋂(⋃ i=1
n (xiS × xiS)) = Ixi S  ,  hence  kerf ⋂ (⋃ i=1

n (xiS × xiS) = Ixi S , which implies f ∈ Bx . Thus , S(α,x) = Bx 

, so by proposition (2.6)Bx = Bαxα⋃ℓT(xiS × xiS) . 

 

⇐) Assume that Bx = Bαxα⋃ℓT(xiS × xiS) and  α ∈ T , α ∉ Bx  .  Then , we have kerα⋂ (⋃ i=1
n (xi S × xi S) ≠ Ixi S , 

so there exists (xs, xt) ∈ kerα⋂ (⋃ i=1
n (xiS × xiS)  with xs ≠ xt , then α(xs) = α(xt) . Since1M ∈ Bm  , so 

kerIM⋂ (⋃ i=1
n (xiS × xiS) = Ixi S  . But , since S(α,x) = Bx = Bαxα⋃ℓT(xiS × xiS) , hence IM ∈ S(α,x) , and then 

kerα⋂(⋃ i=1
n (xiS × xiS)) = kerIM⋂(⋃ i=1

n (xiS × xiS)) . Thus , kerα⋂(⋃ i=1
n (xiS × xiS) = Ixi S  which  implies xs = xt 

and this is a contradiction with xs ≠ xt . This means that α ∉ Bx  implies a contradiction .  Thus  , α ∈ Bx . 

 

Proposition(2.8): Let Msbe a PFQ-injective  S-system with  T =End(Ms) and   S(α,x) = Bαxα⋃ℓT(xiS × xiS) for all α 

∈ T and all x ∈ Mn . If Aαx = Aβx , then  β ∈ Bαxα⋃ℓT(xiS × xi S) . 

 

Proof : Let  Aαx = Aβx , then γ
sn
 αx = γ

sn
(βx) . Let (xs,xt) ∈ kerα , so α(xs) = α(xt) where x ∈Mn and s,t∈ Sn . 

Then , α(x)s = α(x)t  , so  s, t ∈ γ
sn
 α x  = γ

sn
(β x ) . This implies β(x)s= β(x)t  and then  β(xs)  = β(xt) , this 

means  (xs,xt) ∈ kerβ . Thus kerα ⊆ kerβ . Similarly for the other direction.  Thus, kerα = kerβ . So , 

kerβ⋂(⋃ i=1
n (xiS × xiS))  = kerα⋂(⋃ i=1

n (xiS × xiS)) which implies S(α,x) = S(β,x) , so by hypothesis , we have 

Bαxα⋃ℓT(xiS × xi S)   = Bβxβ⋃ℓT (xiS × xi S) . Since 1M∈ Bβ(x) . This means β = 1M • β ∈ Bβxβ , so  β ∈

Bβxβ⋃ℓT(xiS × xiS) = Bαxα⋃ℓT(xiS × xiS) , this implies  β ∈ Bαxα⋃ℓT(xiS × xi S) .  

 

The following proposition gives a condition under which subsystem of PFQ-injective inherit this property . Before 

this , we need the following concept : 

 

Recall that a subsystem N of S-system Ms is fully invariant of  Ms if f(N) ⊆ N , for all f ∈ Ends(Ms) [3] . An S-
system is called duo if each subsystem of it is fully invariant .  

 

 

Proposition(2.9) : Every fully invariant subsystem of  PFQ-injective system  is PFQ-injective . 
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Proof : Let Ms be PFQ-injective system and N be a fully invariant subsystem of Ms . Let X be any finitely generated 

subsystem of N and f be S-monomorphism from X into N . Since Ms is PFQ-injective system , so there exists an S-

endomorphism g of Ms such that gοiNοiX = iNοf  , where iX and iN are the inclusion maps of X into N and N into Ms 

respectively . As N is fully invariant in Ms , so g(N) ⊆ N . Put g│N = h , then , ∀ x ∈ X , we have (hοiX)(x) = g(x) = 

(gοiNοiX)(x) = ( iNοf )(x) = f(x) . Therefore N is PFQ-injective system . 
 

Recall that an S-system Ms is called multiplication if every subsystem of Ms is of the form MI for some right ideal I 

of S . It is clear that every subsystem of multiplication system is fully invariant [3] . 

 

Corollary(2.10)  : If Ms is PFQ-injective duo ( multiplication ) S-system , then every subsystem of Ms is PFQ-

injective .  

 

Proposition(2.11) : Let Msand Ns be two S-systems and N/ a subsystem of Ns . If Ms is PFNs-injective  

(respectively FNs-injective) , then : 

 

(1) Every retract of Ms is PFN-injective (respectively FN-injective ) . 

(2) Ms is PFN/-injective (respectively FN/-injective ). 

 

Proof :(1) Let Ms = M1⨁ M2,and  K befinitely generated subsystem ofN and f be S-monomorphism (resp. 

homomorphism) ofK into M1 . Since Ms is PF-Ns-injective (resp. FNs-injective ) , so (j1οf ) where j1 is injection of 

M1 into Ms extends to S-homomorphism g of Ns into Ms such that gοiK =j1οf. Put g/ (= 𝜋1g) : Ns → M1,  where 𝜋1be 

the projection map of Ms into M1 , then g/οiK = 𝜋1οgοiK = 𝜋1οj1οf  = IM1
οf = f. Thus f extends to S-homomorphism 

g/ and M1 is PF-Ns-injective system . 

 

(2) It is obvious . 

 

The following corollaries is immediately from above proposition : 

 
Corollary(2.12):  Retract of PFQ-injective system is PFQ-injective .  

 

Corollary(2.13) : Let N be any subsystem of S-system Ms . If N is PF-Ms-injective , then N is pseudo finitely 

injective . 

 

Proposition(2.14) : Let Ms = M1⨁M2be the direct sum of subsystems M1 , M2 . If M2 is PF-M1-injective  , then for 

each finitely generated subsystem N of Ms with N⋂M1 = Θ , N ⋂ M2 = Θ , there exists a subsystem M/ of Ms such 

that Ms = M/⨁ M2and N is subsystem of M/ .  

 

Proof : Let 𝜋𝑖 : Ms → Mi  , where i = 1,2  denoted the projection mapping and α = π1│N  , β = π2│N . Then , α and β 

are two S-monomorphisms . By assumption , there exists an S-homomorphism φ : M1 → M2 such that φοα = β . Let 

M/ = { (x, φ(x)) │ x ∈ M1} . It is easy to check that Ms = M/⨁ M2  and N is a subsystem of M/ . 

 

Proposition(2.15) : Let Msand Ns be two S-systems . Let Nsbe finitely generated subsystem of  S-system Ms . Then 
Nsis PF-Ms-injective if and only if every monomorphism f : Ns → Ms split . 

 

Proof : Assume that Ns is PF-Ms-injective system and f : Ns → Ms be monomorphism  , then by PF-Ms-injective of 

Ns , there exists an S-homomorphism g : Ms → Ns such that gοf = IN . Since Ns≅ f(Ns) , so f(Ns) is a retract of Ms. 

Conversely , assume that A is finitely generated subsystem of Ms . Then , by assumption the monomorphism 

(inclusion map ) iA of A into Ms split ,  this means there exists 𝜔 : Ms → A such that 𝜔οiA = IA.  Now , for S-

monomorphism f : A → Ns , set set g (= fο𝜔) : Ms → Ns which implies that gοiA = f ο𝜔οiA = f οIA = f  . Thus Ns is 

PF-M-injective system .  

 
Corollary(2.16) : Let Ns be a finitely generated subsystem of an S-system Ms . If Ns is PF-Ms-injective system , 

then Ns is a retract of Ms .  
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Corollary(2.17) : Let Ms be PFQ-injective S-system . Then , every finitely generated subsystem of Ms which is 

isomorphic to Ms is a retract of  Ms .  

 

Definition(2.18) : An S-system Ms is called FC2 if every finitely generated subsystem of Ms that is isomorphic to a 

retract of Msis itself a retract of Ms .  

 
Theorem(2.19) : Every PFQ-injective system satisfies FC2 .  

 

Proof : Let Ms be PFQ-injective S-system and A be a retract of Ms with A ≅ B , where B is finitely generated 

subsystem ofMs . Let f be S-isomorphism from B into A, then f is S-monomorphism from B into Ms . Since A is a 

retract of Ms, so by proposition (2.11)(1) A is PF-Ms-injective system . By example and remarks (2-2)(2) , since A ≅ 

B , so B is PF-Ms-injective system . Then , by proposition (2.15) f is split and by corollary (2.16) B is a retract of Ms 

and so Ms satisfies FC2 – condition .   

 

Proposition(2.20) : Let Ms be an S-system and {Ni}i∈I be a family of S-systems , where I is finite index set . Then 

,Πi∈INi is pseudo finitely M-injective if and only if for each i ∈ I , Ni is pseudo finitely M-injective system .  
 

Proof:⇒)Put Ns = Πi∈INi  , assume that Ns is PF-M-injective S-system and A is a finitely generated subsystem of 

Ms. Let f be an S-monomorphism of  A into Ni. Since N is PF-Ms-injective , so there exists S-homomorphism 

g : Ms→Ns such that gοiA = jiοf, where ji is the injection map of Ni into Ns and iA is the inclusion map of A into Ms . 

Now , let  𝜋𝑖  be the projection map of  N onto Ni . Put h(= 𝜋𝑖οg): Ms → Ni , then ∀a ∈ A  , (hοiA)(a) = (𝜋𝑖οgοiA)(a) = 

(𝜋𝑖οjiοf)(a) = f(a). Thus Ni is PF-M-injective system.  

 

⇐) Assume that Ni is PF-Ms-injective for each i ∈ I . Let A be finitely generated  subsystem of Ms and f be an S-
monomorphism of A into Ns . Since Ni is PF-Ms-injective S-system, so there exists S-homomorphism βi : Ms → 

Nisuch that βiοiA = 𝜋𝑖οf, where iA be the inclusion map of A into Ms . Now, define an S-homomorphism β (=jiοβi) : 

Ms → Ns, then βοiA = jiοβiοiA = ji ο𝜋𝑖οf = f  . Therefore, Ns is PFMs-injective system .  

 

Corollary (2.21) : Let Ms and Ni be S-systems , where i ∈ I and I is finite index set . If  ⨁i∈INi is PF-Ms-injective 

for all i ∈ I , then Ni is PF-Ms-injective .  

 

Proposition(2.22) : If Ms is pseudo finitely injective  S-system  and T = End(Ms) , then TA = TB for each 
isomorphic subsystems A and B of Ms . 

 

Proof : By assumption there exists an S-isomorphism α : A → B , let b ∈ B so there exists a ∈ A such that α(a) = b . 

For s,t∈ S , if as = at  , so bs = bt  , which implies that  γ
s
(a) ⊆ γ

s
(b) . Since Msis pseudo finitely injective (or PFQ-

injective ) , then by theorem (2.3)  , Tb  ⊆ Ta and hence Tb  ⊆ TA ∀ b ∈ B . Thus TB  ⊆ TA . Similarly , we can 

prove TA  ⊆ TB . Therefore TA = TB . 
 

As an immediate consequence of above proposition , we have the following result : 

 

Corollary(2.23): If S is pseudo finitely injective monoid and A , B are two isomorphic ideal of S , then A = B . 

 

Recall that two S-systems Ms and Ns are mutually finitely injective (respectively PF-injective ) if Ms is finitely Ns-

injective (respectively PF-Ns-injective ) and Ns is finitely M-injective (resp. PF-Ms-injective ) [6] . 

 

Theorem(2.24) : If M1⨁ M2 is PFQ-injective system , then M1 and M2 are mutually F-injective system . In 

particular , if  Ms is S-system such that M ⨁ M is PFQ-injective , then Ms is FQ-injective . 

 

Proof : Let M1⨁ M2  be  PFQ-injective system . Let X be any finitely generated subsystem of M2 and f be S-

homomorphism from X into M1 . Define α:X → M1⨁ M2  by α(x) = (f(x),x) , ∀ x ∈ X , then it is clear that α is 

monomorphism ( in fact for α(x1) = α(x2) , then we have (f(x1),x1) = (f(x2),x2) , so f(x1) = f(x2) with x1 = x2 ) . By 

proposition (2.11)(2) , M1⨁ M2  is PF-M2-injective , so α extends to S-homomorphism g : M2 → M1⨁ M2. If  𝜋1 : 

M1⨁ M2  → M1 is the natural projection , then h(= 𝜋1g): M2 → M1 is S-homomorphism extending f . Consequently 

, M1 is F-M2-injective system .  
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The proof of the following corollary is immediately from above theorem and proposition (2.11) :   

 

Corollary(2.25): If ⨁i∈IMi is PFQ-injective system , then Mj is F-MK-injective for all distinct j , k ∈ I . 

 

 

Relation among Pseudo FQ-Injective S-systems with other Classes of Injectivity : 

 

The following proposition explain under which condition on pseudo finitely Ns-injective for each S-system Nsto be 

injective : 

 

Proposition(3.1) : Let Ms be a finitely generated S-system . Then Ms is injective system if and only if Ms is pseudo 

finitely Ns-injective  for each S-system Ns.  

 

Proof : ⇒) It is obvious . 

 

⇐) Let  E = E(Ms)be the injective hull of S-system Ms . Then Ms is a finitely generated subsystem in Ms⨁E(Ms) .  

Let i : Ms  → E(Ms) be the inclusion mapping , j : E(Ms) → Ms⨁ E(Ms)  the natural injection and IM : Ms → Ms the 

identity mapping  .  Since Ms is PF-Ms⨁E(Ms) – injective , so this implies that IM can be extended to S-

homomorphism f : Ms⨁ E(Ms) → Ms .This meansMs is a retract of E(Ms) and since E(Ms) is injective , so Ms is 

injective . 

 

As a particular case of above proposition , we have the following corollary : 

 

Corollary(3.2) : A monoid S is self-injective if and only if S is pseudo finitely S-injective S-system . 

 
The following proposition explain under which condition on pseudo finitely quasi injective to be injective , but 

before this we need the following concept : 

 

Definition(3.3) : An S-system  Ms is said to be weakly injective if for every finitely generated subsystem N of  

E(Ms)  , we have  N ⊆ X ⊆ E(Ms)  for some X ≅ Ms .  

 

Proposition(3.4) : Let Ms be a finitely generated system . Then  Ms is injective system  if and only if Ms is weakly 

injective and PFQ-injective . 

 

Proof : ⟹)It is obvious . 

 

⟸) It is enough to prove that Ms = E(Ms) . Let x ∈ E(Ms), so Ms⋃ xS is finitely generated . As Ms is weakly 

injective , so there exists subsystem X of E(Ms) such that Ms⋃ xS ⊆ X ≅ Ms . Since Ms is PFQ-injective system , so 

X is also PFQ-injective by Example and Remarks (2.2)(2) . By theorem(2.19) X is satisfy FC2 and since Ms is 

finitely generated subsystem of X , soMs is a retract of X . But Ms is ∩-large subsystem of E(Ms) , so Ms is ∩-large 

in X . Therefore Ms = X , and x ∈ Ms.  

 

It is clear that every finitely quasi injective system (FQ-injective) is pseudo finitely quasi injective system (PFQ-

injective ) , but the converse is not true in general , the following proposition give under which condition for PFQ-
injective system to being FQ-injective , but we need the following concept and theorem : 

 

Recall that a congruence  𝜌on an S-system Ms is called large congruence  , if for every congruence α on Ms with 

α ≠ IM ( the trivial congruence) , we have α⋂𝜌 ≠ IM [2]. Then , an S-system  Ms  is called cog-reversible if each 

congruence  ρ on Mswith ρ ≠ IM is large on Ms, where IM is the trivial congruence on Ms[2] . 

 

Theorem(3.5) [2]:Let Ms be a cog-reversible nonsingular S-system with  ℓM(s) = Θ for each s ∈ S .Then Ms is 

pseudo injective system if and only if  Ms is quasi injective .  

 

Proposition(3.6) : Let Ms be a cog-reversible nonsingular S-system with  ℓM(s) = Θ for each s ∈ S . Then Ms is FQ-

injective system if and only if  Ms is PFQ-injective. 
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Proof : Assume that an S-system Ms is PFQ-injective . Let N be finitely generated subsystem of Ms and f  be S-

homomorphism from N into Ms. If f is S-monomorphism, then there is nothing to prove . Let f is not S-

monomorphism , then by the proof of theorem(3.5) , we get that f is zero map . Then , Ms is FQ-injective system . 

 

The following proposition give a condition for PFQ-injective system to bepseudo injective , but we need the 

following concept :  
 

Recall that an S-system Ms is Noetherian if every subsystem of Ms is finitely generated . A monoid S is right 

Noetherian if Ss is Noetherian . Equivalently , S is right Noetherian if and only if S satisfies the ascending chain 

condition for right ideals. 

 

The proof of the following proposition is immediately : 

 

Proposition(3.7) : Let Ms be Noetherian S-system . Then  Ms is pseudo injective system if and only if Ms is PFQ-

injective .  

 

Recall that an S-system As is called regular acts if and only if for any a ∈ As the cyclic subsystem (S-cyclic) is 
projective(corollary19.3 ) [4 , p.301] . 

 

Definition(3.8) : An S-system As is called pseudo regular if every finitely generated subsystem of As is a retract of 

As .  

 

The following theorem is a generalization of theorem(10) in [8] and the proof is immediately by theorem(2.19) : 

 

Theorem(3.9) : An S-system Ms is pseudo regular if and only if Ms is PFQ-injective and every finitely generated 

subsystem of Ms isomorphic to a retract of Ms . 
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