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Abstract 

 
Virtual screening is a high through put technique which provides useful 
information towards drug designing and discovery process in a timely 
manner. In our case of study, we used in silico prediction methods (structure-
based and ligand-based) to identify drug-like candidates using our in-house 
data-base against α-chymotrypsin enzyme. Over expression of α-
chymotrypsin is associated with various gastro intestinal tract (GIT) 
disorders such as intestinal bowel syndrome (IBS), gastro esophageal reflux 
disease (GERD) and Crohn's disease. Chymostatin is the most commonly 
available drug used for the treatment, but due to its hepatic toxicity and 
protein degradation of skeletal muscles, there is a strong need to develop 
new α-chymotrypsin inhibitors with improved potency and reduce toxic 
effects. From our current study we identified nineteen hits which were 
further subjected for in-vitro screening. Experimentally eight compounds 
showed inhibition against α-chymotrypsin receptor; while three compounds 

considered as good inhibitors with an IC50 value of 319.8, 474.8 and 481.3 
μM, respectively. 

 
Copy Right, IJAR, 2016,. All rights reserved. 

 

 

Introduction  
α- Chymotrypsin known as serine endopeptidase, a specific digestive enzyme belongs to the serine proteases family, 
involved in proteolysis. The inactive form of α-chymotrypsin is known as chymotrypsinogen, which is cleaved by  
trypsin enzyme into two portions that remain connected via disulphide bond, and cleave the chymotrypsinogen 
molecules, which subsequently activate each other by eliminating two small peptides in a trans-proteolysis manner. 
It enhances the cleavage of peptide bonds through  hydrolysis reaction, The major substrates of α-chymotrypsin 
includes  tryptophan,  tyrosine,  phenylalanine,  leucine, and  methionine, which hydrolyze at their carboxyl terminal 
[1]. α-chymotrypsin inhibitors have been used for the treatment of various disorders, including intestinal bowel 
syndrome (IBS), gastro esophageal reflux disease (GERD) and Crohn's disease. In literature natural synthetic and 
semisynthetic inhibitors of α-chymotrypsin have been reported such as, coumarins, aryl substituted enol lactones, 
benzohydroxamic acid derivatives [2-5]. 

 
In drug discovery process computational methods are successfully aiding in a number of ways such as target 
receptor identification, structure determination and prediction of drug-likeness of compounds. Virtual screening is 
progressing rapidly in the recent years for lead identification in the pharmaceutical industry. In computational 
techniques, various filters have been used at the time of compounds selection, to avoid unstable, toxic and metal-
complexes, based on Lipinski's rule of five which provides a simple and logical criteria regarding the bioavailability 
of compounds, which is mainly based on molecular weight, [in terms of octanol / water partition coefficient log P], 
hydrophilicity [presence of hydrogen donor and hydrogen acceptor [6]. Initial careful filtering of data-set reduce the 
risk of false positive, downstream ADME / Tox failures, and subsequently increases the probability of true positive 
hit rates [7].VS strategies can be divided into two categories, Structure-based VS [SBVS] [8] and Ligand-based VS 
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[LBVS] [9, 10] depends upon the availability of receptor / protein bound-ligand information. SBVS and LBVS have 
been considered almost mutually exclusive, suggesting SBVS to be used when the 3D structure of the target receptor 
/ protein with high atomic resolution is available [11]. While LBVS is the choice of method in the absence of target 
receptor structure. Furthermore, some current studies showed that LBVS offers a strong suitable alternative towards 

SBVS even in the presence of protein structural information. It is successfully being used generally through 
expansions of available chemical libraries, published bioassay data of compound, and the search of techniques of 
new molecular features and similarity of pharmacophore. This approach helps to reduce biologically non-active 
molecules, therefore increases the chances of sensible and biologically targeted compounds synthesis [12]. 

Pharmacophore based virtual screening is an alternative strategy in the absence of required protein information. 
Ligand-based pharmacophore can be classified into two main classes, first, common features based pharmachophore 
model, while second is based on the biological activity and chemical structure of molecule used for pharmacophore 
model generation [13]. It focuses on specific protein-ligand binding to disclose binding pattern. Therefore, it has 
great importance to use methods that make optimal use of both docking as well as pharmacophore and improve the 

selection of active molecules by calculating enrichment factors. 
 
Docking of in-house data-base against α-chymotrypsin:- 
 
Experimental methodology:- 
 
Target Selection:-  
The 3D structure of bovine α-chymotrypsin bound with benzohydroxy vanadium metal complex ligand retrieved 

from Brook Haven Protein Data Bank PDB I.D: 2P8O with 1.50 Å resolution, it was selected for molecular docking. 
 
 
Data-Set preparation:-  
95 known inhibitors of α-chymotrypsin from diverse classes of compounds like, lactones, coumrins, oxazolone and 
easter type of coumarin’s were retrieved from literature. [15-17]. Structure preparation was done by ChemDraw 
further converted into 3D format using OpenEye Babel. MOE was used to correct the atom type, Hydrogen atoms, 
minimization and partial charge MMFF94 assigned for each ligand. 
 
In-house decoy set of compounds:-  
9,303 compounds which comprises of synthetic, semi-synthetic and natural product-based compounds retrieved 
from In-house database of International Center for Chemical and Biological Sciences [ICCBS] compound bank were 
used to conduct pharmacophore based virtual screening; ninety five known active inhibitors from literature against 
α-chymotrypsin were also added in the decoy set of molecules. Filtration was applied by using OpenEye Filter 
Program. Minimization and MMF94 Charges were employed to the whole dataset. 
 
Docking with FRED [Fast Rigid Exhaustive Docking] software:-  
Molecular docking of 8,262 filtered compounds was performed by using FRED docking software. Initially software 
was validated with the co-crystallize structure of ligand bound receptor complex and root mean square deviation 
(RMSD) was calculated, which comes less than 1Å. The software comprises of eight scoring functions. During 
molecular docking unfortunately fourteen molecules were failed. Therefore, 8,248 molecules were successfully 

docked on the active site with different binding affinities. Docked results were analyzed for each scoring function, 
and then enrichment factor was calculated. PLP scoring function was found to be the most enriched in the whole in-
house data set. However, for 5% of the data-base shape gauss scoring function was the dominant one. After 
completion of docking experiment various scoring functions were used to calculate the enrichment factor by using 

known actives. We did not get appreciable enrichment factor value, so we changed the protein X-ray structure, and 
used Apo form without ligand bound protein structure. By using FRED with cluster machine we conducted docking 
experiment. Similarly, we calculated enrichment factor. At this time, although the enrichment factor value increased 
comparative to docking with GOLD, but again not appreciable. The maximum value of PLP [Piecewise Linear 
Potential] scoring function was obtained and found to be as 1.05. Therefore, we performed an experiment on entirely 

different strategy. New strategy was based on the ligand-based Pharmacophore mapping and virtual screening 
through similarity search [20]. 
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Pharmacophore Model Generation:-  
Pharmacophore model was generated by Ligand Scout version 3.0. For this purpose a reference drug chymostatin 

was selected on the basis of its IC50, 8.24 ± 0.11 µM, [22]. While the biotin was aligned over it, which generates 
common feature between these molecules. Pharmacophore structural features are usually explained in terms of 
lipophilic centers, hydrophobic region, proton donor, proton acceptor, aromatic ring centroids and so on [23]. 
 
Molecules Selection for Pharmacophore Generation:-  
The major goal of drug designing is to identify and develop new ligands with more therapeutic potential with its 
high affinity towards the binding site of receptor / protein. One of the effective and useful methods for achieving this 
goal is a pharmacophore modeling [24]. The most important step for pharmacophore model generation is the 
selection of training set of compounds [25]. For this purpose we selected two drug molecules chymostatin and biotin 

on the basis of their potent biological activitiy having IC50 value, 7.8µ M, which is the more potent drug reported 

against α-chymotrypsin uptill now, to obtain the best shared-feature pharmacophore base VS results. Pharmacophore 
models are computationally efficient due to simplicity, and suitable for virtual screening, during pharmacophore 
generation some steps require such as [a] identification of ligands [b] interpretation of ligands [c] creation of 
pharmacophore [d] visualization and export for virtual screening. For the generation of a good and effective / high 
quality pharmacophore model several criteria need to be considered, such as structural similarity, structural 
flexibility, biological activity and chemical properties. Ligand Scout generates the following common feature 
Pharmacophore model [Fig.1]. 
 

 
 
 
 
Fig 1: Illustrating a four point shared-feature pharmacophore model derived by using Ligand Scout software, 
depicting the shared features of two drug molecules Chymostatin and Biotin, the observed features include 
one H-donor of amide Nitrogen atom , two H-acceptor features of Carbonyl oxygen atom and a hydrophobic 
aromatic ring centroid . 
 
Ligand-based Pharmacophore model can be used as an important tool for virtual screening, when the 3D structure of 
receptor / protein is unknown or the docking techniques are not successfully applicable. Ligand-based VS depends 
on the pharmacophore based information of known active compounds. These molecules are used to derive a 
pharmacophore model which high lights the important basic structural features of molecules that are necessary for 
biological activity, such as hydrogen-bonding, hydrophobic region, proton donor, proton acceptor which a molecule 
should possess to bind with target receptor / protein, appropriately [26]. This pharmacophore model can be used as a 
template to search and identify the most promising candidates from the chemical library. In this regard simple 
selection and considerations of a set of active molecules may greatly reduce the search space. The strength of 
pharmacphore-based screening in comparison with other similarity search screening approaches is more successful 
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to treat a diverse data set of putative active compounds with totally different chemical scaffolds. The advantage of 
this approach lies in the fact that in the worst case, when there is no clues on the binding conformation of any of the 
ligand is available, for a set of conformation a pivot ligand can be enough to computed [27-29], although a 
pharmacophore is an abstract concept of functional groups assemble at a particular distance [r] in space, that 
accounts for the compounds towards biological activity against their target receptor / protein. Pharmacophore-based 
Virtual screening of in-house data-base was carried out by using MOE software. Ligand-based virtual screening is 
based on similarity search. 

 
To conduct the ligand-based virtual screening, at first a shared-feature four point Pharmacophore model was derived 
by using chymostatin and biotin, the model Pharmacophore fit score value was 86.0, it was the training set, and we 
used this training set to find out the Pharmacophore fit score of our virtually screened hits of test sets. More near fit 
score value to the training set means best fit with the test model therefore, more potent inhibitor. In our case all the 
hits showed less than 86.0 Pharmacophore fit score value of training set [Table 3]. 
 
In-Vitro Screening of Compounds:-  
Identified hits of thirty three 33 drug-like molecules were selected for bioassay screening. However, nineteen 
compounds 19 were subjected for in-vitro screening and eight showed some extent of inhibitory potential while 
three were found to be as moderately actives [Table 2]. 
 
Bio- assay Screening Protocol:-  
The inhibitory activity IC50 of selected ligands were checked against α-chymotrypsin enzyme by using 50 mM Tris-

HCl buffer of pH 7.6 with 10 mM CaCl2. while α-chymotrypsin [12 units / mL was prepared in the same above 
mentioned buffer] along with different concentration of test compounds prepared in DMSO, then it was allowed to 

incubate at 30 
°
C for 25 min. The reaction was started by the substrate, N-succinyl-L-phenylalanine-p-nitroanilide] 

[SPpNA] addition with 0.4 mM prepared buffer mentioned as above]. As p-nitro aniline was released, variation in 
absorbance was observed which was continuously monitored at 410 nm. All the reactions were carried out in 
triplicate with the final volume of 200 L, and using a micro plate reader [Spectra Max M2, Molecular Devices, CA, 
and USA]. 
 
Structure Activity Relationship  [SAR]:-  
The three active compounds [Table 2 (6-8)] were found to be moderately actives against α-chymotrypsin, and it is 
clearly observed that these all three molecules contain polyhydroxy phenols, while two belongs to flavonoid class of 
natural product, comprises of benzopyrane ring, docked poses shows [Fig. 2- 4] that this inhibitory potential comes 
due to the presence of H-bonding b/w flavonoid with the active site amino acid residues. Before that some 
compounds have already been reported as active serine protease inhibitors from flavonoid class of natural product. 
 

 
 
Figure 2: In the above docked pose of the ligand with receptor binding in proximity contour within 5 Å 
region. It is clear that the proximity contour is surrounded by some other amino acids apart from catalytic 
traid, this includes Aspartic acid194, Cysteine191 and Serine214. 
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Figure 3: In the above docked pose of ligand with receptor binding within 5 Å regions. Its clear that the lone 
pair of oxygen atom of hydroxyl group of flavonoid ring making H-bonding with SH group of the cysteine 
amino acid resides at position 42 which furthermore in contacts with water molecules. The keto group of ring 
is also in solvent contact as well as with water molecule. 
 

 
 
 
Figure 4: In the above docked pose of the ligand with receptor binding in proximity contour within 5 Å 
regions. It’s clear that the lone pair of oxygen atom of hydroxyl group of flavonoid ring making Hydrogen 
bonds with the backbone SH group of cysteine amino acid residue resides at position 42. 
 
Results and Discussion:- 

 
Computational techniques have great scope in rational drug designing and discovery process, therefore successfully 
applying to increase research and development [R&D] productivity of pharmaceutical industry, specifically for 
speeding up the identification of targets hits, and reduce the cost and time. α-chymotrypsin is an important serine 
protease enzyme. To evaluate the therapeutic potential of in-house data-base for treating GERD, IBS and 
pancreatitis, we conducted structure-based virtual screening of in-house data-base against α-chymotrypsin by using 
two docking softwares GOLD [genetic algorithm for ligand-protein docking ] and FRED [fast rigid exhaustive 
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docking], GOLD has already been reported to use for the docking against the same target enzyme and its scoring 
functions are not supportive for it [GOLD software manual] while, FRED was used due to its large scoring functions 
range and fastest speed, FRED docked results against α-chymotrypsin of PDB I.D 2P8O was used to calculate the 
enrichment factor of 5%, 10%, and 20% of decoy set of in-house data-base, for 5% of data-base shape gauss 
scoring function was dominant 1.26, which deals with the shape of a molecule, while for rest of the, 10%, 15% and 
20 %. PLP scoring function was dominant one, which deals with the information about, H-donor, H-acceptor, 
hydrophobic region and metal ion presence if it is present in the molecule. The value of an enrichment factor for 5%, 
10%, 15% and 20% was found to be, 1.26, 0.07, 1.05 and 0.89 respectively [Table 1a-1d]. The maximum value 
obtained 1.26, which is not sufficient to validate the docked results, because docking gives the best fit pose of a 
ligand to its binding receptor / protein, which is estimated by various scoring functions of a particular docking 
software, and calculated by an enrichment factor, if the enrichment factor value is low, it clearly indicates that 
ligands are not appropriately bound with the provided active site of receptor during docking, however, it is binding 
with some other sites due to allosteric interactions. Docking is usually used to locate or explain the binding affinity 
pattern of ligand molecules to the provided protein-ligand binding site [active-site], and used to explain the binding 
pattern of interactions of ligand with amino acid residues of receptor active site, and other non-covalent allosteric 
interactions. The calculated low [decrease] enrichment factor value for individual scoring function of FRED docking 
software raised a question that why does molecular-docking can’t always give or predict good and successful 
enriched docking results ?. It could be explained through the Molecular docking result’s description which are not 
successful for all kinds of receptor-ligand interactions, the reason behind is, it could be due to non-efficient selection 
and performance of docking software. Non-availability of well resolved ligand-protein co-crystallizes structure. 

Role of H2O molecule, in ligand-protein binding, presence of allosterric interactions in which ligands are not 

efficiently and tightly bind with the provided active site, instead of that it binds with some other amino acid residues 
apart from active site residues. Molecular dynamics effect of ligand also plays a very important role, which is not 
present in rigid docking, in which the interaction of ligand with protein active site is restricted up to certain 
conformers. However, in the real system [in-vitro] molecules are continuously in dynamics mode and try to attain 
best fit-binding pose with receptor active site, because of a low enrichment factor, we adopted a new approach to hit 
the leads by ligand-based Pharmacophore modeling and virtual screening. 

 
A Ligand-base pharmacophore model is a very important tool in the absence of 3D protein-ligand co-crystallize 
structure or in case of non-successful docking with low enrichment factor result, it can be helpful towards drug-like 
discovery by virtual screening, In this case study we developed a four point [tetrahedral] shared-feature ligand-based 
pharmacophore model from two potent drug molecules, chymostatin and biotin which includes four pharmacophore 
features, such as one hydrophobic aromatic centroid feature, one [H-donor] and two [H-acceptors]. Pharmacophore 
fit score value of the model was obtained as 86.00, it was the training set, and we used this training set to find out 
the Pharmacophore fit score of our virtually screened hits of test sets. More near to the training set ligand 
Pharmacophore fit values means best fit with the test model therefore, more potent inhibitor. The generated or 

developed pharmacphore model was used to search the 3D [SYBYL Mol2 format] of the in-house data-base 

[ICCBS-2012 data-base], which comprises of synthetic, semi-synthetic, naturally isolated and biotransformed 
compounds. 

 
This model was used to similarity search in the decoy set of filtered molecules by using MOE which search and 
identified 33 molecules. Out of the 33 virtually screened hits, nineteen compounds were made available to subject 

for in-vitro screening, eight molecules showed inhibitory potential, while three showed moderate activity, with IC50  
319.8 ± 1.80 μ M, 474.8 ± 5.08 μ M and 481.3 ± 9.10 μ M respectively. Out of the eight molecules five belongs to 

benzopyran derivatives, in which two are good actives with % inhibition 54.1%, 65% and IC50= 319.89±1.8 μ M, 
474.88±5.08 μ M respectively [Table 2]. Eight compounds showed inhibitory activity against the enzyme α-
chymotrypsin [Table 3]. 
 
We used Molecular Operating Environment [MOE] software to observe the binding interaction pattern of the active 
ligands with the receptor. In our case study all the hits showed less than 86.0 Pharmacophore fit score values which 
has proved that these are not closely related with the drug Pharmacophore models. And this has been further 
evaluated by in-vitro bio-assay screening results which didn’t show any remarkable activity. 
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Enrichment factor of FRED scoring functions [for 5% of data-base]:- 

Table 1a: Showing the scoring function shape gauss is dominant in 5% EF of data-base  
Scoring functions No of actives in 5% Enrichment factor % E.F value 

    

Chemgauss-2 2 2/415*87.36 0.42 
    

Chemgauss-3 1 1/415*87.36 0.20 
    

Chem-score 1 1/415*87.36 0.20 
    

Oechmscore 1 1/415*87.36 0.20  
Shape gauss 6 6/415*87.36 1.26 

    

PLP 2 2/415*87.36 0.42 
    

Screen score 0 0 0.00 
    

Consensus score 0 0 0.00 
 

Enrichment factor for 10%:-  
Table 1b: Showing that the scoring function PLP is dominant for 10% EF of data-base.  

Scoring functions No of actives in 10% Enrichment factor % E.F value 
Chemgauss-2 5 5/8300*87.36 0.05 
Chemgauss-3 5 5/8300*87.36 0.05 
Chem-score 5 5/8300*87.36 0.05 
Oechmscore 4 4/8300*87.36 0.04 
Shape gauss 6 6/8300*87.36 0.06  

PLP 7 7/8300*87.36 0.07 
Screen score 4 4/8300*87.36 0.04 

Consensus score 4 4/8300*87.36 0.04 
 

Enrichment factor for 15%:-  
Table 1c: Showing that the scoring function PLP is dominant for 15% EF of data-base  

Scoring functions No of actives in 15% Enrichment factor % E.F value 
Chemgauss-2 6 6/1245*87.36 0.42 
Chemgauss-3 10 10/1245*87.36 0.70 
Chem-score 7 7/1245*87.36 0.49 
Oechmscore 3 3/1245*87.36 0.20 
Shape gauss 9 9/1245*87.36 0.63  

PLP 15 15/1245*87.36 1.05 
Screen score 8 8/1245*87.36 0.56 

Consensus score 4 4/1245*87.36 0.28 
 

Enrichment factor for 20%:-  
Table 1d: Showing that the scoring function PLP is dominant for 20% EF of data-base  

Scoring functions No of actives in 20% Enrichment factor % E.F value  

Chemgauss-2 9 9/1660*87.36 0.47  

Chemgauss-3 15 15/1660*87.36 0.78  

Chem-score 11 11/1660*87.36 0.57  

Oechmscore 4 4/1660*87.36 0.20  

Shapegauss 10 10/1660*87.36 0.52   
PLP 17 17/1660*87.36 0.89 

Screen score 9 9/1660*87.36 0.47 
Consensus score 8 8/1660* 87.36 0.42 

 
 
 
 

 

631 



ISSN 2320-5407 International Journal of Advanced Research (2016), Volume 4, Issue 2, 625-635 
 
 
 
 

 
Table 2: Bio-assay screening results of identified hits against enzyme α-chymotrypsin: 

 
Compounds no % inhibition IC50 [µ M] 

1 19.6 - 
   

2 20.1 - 
   

3 21 - 
   

4 22.6 - 
   

5 36 - 
   

6 52.1 481.3 ± 9.10 
   

7 54.6 474.8 ± 5.08 
   

8 65 319.8 ± 1.80 
Standard inhibitor Chymostatin IC50 7.5 µM  

Table 2: Showing the bio-assay screening results against α-chymotrypsin enzyme, compound [6-8] were 
identified and evaluated as new actives. 

 
Table 3: Showing the Pharmacophore fit score values of actives:  
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Table 3: Showing the Pharmacophore fit score values of actives: 

 

Compounds Pharmacophore 

Fit Score 

%Inhibitio

n 

IC50 value 

µM  

 

(1S,3R,4R)-1-((R)-(2,4-dihydroxyphenyl)(4-

hydroxyphenyl)methyl)-3-(3-

hydroxyphenyl)-4-methylisochroman-5,7-

diol 

 

 

29.6500 

 

 

19.6 

 

 

- 

 

2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-

one 

 

 

 

46.4900 

 

 

20.1 

 

 

- 



 

(3R,4R)-1-(4-hydroxyphenyl)-2,5-

dioxopyrrolidine-3,4-diyl diacetate 

 

 

36.4500 

 

 

21 

 

 

- 

 

 

2-((3,4-dihydroxyphenyl)(phenyl)methyl)-N-

phenylhydrazinecarbothioamide 

 

 

35.9200 

 

 

22.6 

 

 

- 

 

(1'S,2'R)-1'-(3,5-dihydroxy-4-(3-methylbut-

2-enyl)benzoyl)-6-(2,4-dihydroxyphenyl)-

1,3,5',7' -tetrahydroxy-4'-methyl-1',2'-

dihydro-2,2'-binaphthyl-8(5H)-one 

 

 

 

60.4400 

 

 

36 

 

 

(S)-methyl 3-hydroxy-2-(4-hydroxyphenyl)-

1-(4-methyl-3-(3-methylbut-2-enyl)benzyl)-

4-oxocyclopent-2-enecarboxylate 

 

 

66.0100 

 

 

52.1 

 

 

481.3 ± 9.10 



 

 

7-((4R,6R)-6-(3,5-dihydroxy-4-((Z)-4-

hydroxy-3-methylbut-2-enyl)benzoyl)-4-(3,5-

dihydroxyphenyl)-3-methylcyclohex-2-enyl)-

3-(2,4-dihydroxyphenyl)-6,8-

dihydroxynaphthalen-1(4H)-one 

 

 

 

65.4400 

 

 

54.6 

 

 

474.8 ± 5.08 

 

 

(R,Z)-7-(2-(5-(3,5-dihydroxy-4-(4-

hydroxyvmethylbut-2 enyl)benzoyl)- 2,4-

dihydroxyphenyl)-6-hydroxy-3,4-dihydro-

2H-pyran-5-yl)-v3-(2,4-dihydroxyphenyl)-

6,8-dihydroxynaphthalen-1(4H)-one 

 

 

66.4400 

 

 

 

65 

 

 

319.8 ± 1.80 

Standard inhibitor chymostatin   7.5 µM 
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Table 3: Showing the Pharmacophore fit score values of active inhibitors. 

 
Conclusion:-  
A ligand-base pharmacophore model is a very important tool in the absence of 3D protein-ligand co-crystallize 
structure or in case of non-successful docking with low enrichment factor result, it can be helpful towards drug-like 
discovery by virtual screening, In our study the bio-assay screening results revealed that eight molecules showed 

inhibitory potential, while three showed moderate activity, with IC50 319.8 ± 1.80 μ M, 474.8 ± 5.08 μ M and 481.3  
± 9.10 μ M respectively. Out of the eight molecules five belongs to benzopyran derivatives, in which two are good 

actives with % inhibition 54.1%, 65% and IC50= 319.89±1.8 μ M, 474.88±5.08 μ M respectively.  
These compounds can be furthermore used for lead optimization to improve the therapeutic potential of these 

compounds for further drug designing steps of the inhibitors. 
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