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Floating-point support has become a mandatory feature of new 

micro processors due to the prevalence of business, technical, and 

recreational applications that use these operations.  In these operations 

Floating-point division is generally regarded as a low frequency, high latency 

operation in typical floating-point applications. So due to this not much 

development had taken place in this field. But nowadays floating point 

divider has become indispensable and increasingly important in many 

scientific and signal processing applications.  

In this paper we implement floating point reciprocator for both single 

precision and double precision floating point numbers using FPGA. Here the 

implementation is based on the binomial expansion method. By comparing 

with previous works the modules occupy less area with a higher performance 

and less latency. The designs trade off  either 1 unit in last-place (ulp) or 2 

ulp of accuracy (for double or single precision respectively), without 

rounding, to obtain a better implementation. 

 

                  
                   Copy Right, IJAR, 2013,. All rights reserved.

 
I.INTRODUCTION 

 Floating point arithmetic is widely used in many scientific and signal processing applications. Modern 

applications comprise several floating point operations like addition, multiplication, division, and square root etc. 

Among the arithmetic operations division is generally the most difficult to implement in hardware. Division is a 

most common operation in many scientific and signal processing applications, so there is a need for efficient 

hardware implementations for division. Given the logic density of modern FPGAs, it is feasible to use FPGAs for 

floating-point applications. The IEEE standard for floating point (IEEE-754) defines the format of the numbers, 

and also specifies various rounding modes that determine the accuracy of the result. For many signal processing, 

and graphics applications, it is acceptable to trade off some accuracy  (in the least significant bit positions) for 

faster and better implementations. A lot of work has been done on obtaining efficient implementations for this 

operation 

 

Generally, this operation can be done into two parts, first take the inverse of divisor and then multiply with 

dividend. Because of this, many hard-ware dividers focus on efficiently obtaining the reciprocal of floating-point 

number. Many algorithms were developed for divider which includes subtractive method, functional iterations 

which uses multipliers and algorithms for faster computation of division like high radix algorithm. But most of 

these algorithms namely Newton raphson method, high radix algorithm and digit recurrence algorithm required 

huge look-up tables, along-with wider multipliers which affect the area and performance. But large area for 

division alone is not desirable. So we use binomial expansion method for computation. Our approach focuses on 

finding the reciprocal. It is based on the well known binomial-expansion, contains small look-up table, and uses 

partial block-multipliers, resulting in less area, less delay, and correct up to required level (accuracy trade off). 

We have restricted ourselves only to normalized numbers. All the exceptional cases are detected, and indicated as 
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invalid input/output. Comparisons of our implementation with previous works mentioned in the literature show 

that we are able to obtain small look-up tables and overall very efficient hardware. We have used Xilinx ISE-10.1 

synthesis tool, ModelSim SE 6.3f simulation tool 

 

II Technical Approach: 

The format of a floating-point number is as follows:   

For Single Precision  

  1-bit                 8-bits              23-bits 

 

Sign bit          exponent          mantissa 

 

For Double Precision 

 

 1-bit                11-bits             52-bits 

 

Sign bit          exponent           mantissa 

 

In this paper, we do not discuss the exponent manipulation as it is a standard process. The benefits of our 

implementation are in the computation of the inverse of the mantissa. Let y be the inverse of the mantissa a. Then,   

y=1/(1.a), where in 1.a, 1 is hidden bit of mantissa. We have divided the mantissa in two parts, a1 and a2. a1 is used 

to fetch some pre-calculated data from a look-up table. Now, since 

y=1/(a1+a2) 

   = (a1+a2)
-1 

    
= a1

-1 
- a1

-2
.a2 + a1

-3
.a2

2 
- a1

-4
.a2

3 
+ .....   (1) 

 The content of each term of equation (1) is as follows 

                 Full significant bits 

 

a1
-1 

= 0.           xxxxxxxx 

                   m-zero bits    significant bits 

 

a1
-2

.a2 = 0.     00....00              xx...xx 

 

                  2m-zero bits    significant bits 

 

a1
-3

.a2
2 

= 0.     00....00              xx...xx 

 

                   3m-zero bits    significant bits 

 

a1
-4

.a2
3 

= 0.     00....00              xx...xx 

and so on.... 

where m is the number of bits of a1. 

We can see that as we move towards higher terms their contributions to main result are decreasing. Thus, 

depending upon our precision choice we can take suitable number of terms from equation (1) for calculating inverse, 

based on value of m. For our implementation, based on experiments over a large number of random test cases, we 

have chosen the number of terms as described below. In case of single-precision we have taken the first three terms, 

while for the case of double- precision 7 terms have been taken. The value of m we have chosen is 8 for both cases. 

These values were selected based on available FPGA resources, as will be shown soon. We have simplified the 

desired terms in such a way so that we can use less hardware with low latency and good accuracy.  

For single-precision we have taken all the three terms as available, like 

y = a1
-1 

- a1
-2

.a2 + a1
-3

.a2
2
                   ......(2) 

For double precision, simplified form will be as, 

y = a1
-1 

- a1
-1

[(a1
-1

a2- a1
-2

 a2
2
) (1+ a1

-2
 a2

2
+a1

-4
a2

4
)]                        ......(3) 

  

Though we can simplify above equations a little more, it will affect the area, latency and accuracy. The accuracy 

is affected due to the fact that floating-point operations are not completely associative, i.e. u(v + w) may not be 

exactly equal to (uv +uw). This is due to the finite number of bits used to represent the numbers. 
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III. Implementation 

  

We have shown the implementations for single precision and double precision separately as different issues 

arise in each case. Some of the design decisions are based on the fact that multipliers of size  18×18 are readily 

available as hard IP cores on many common FPGA families. We have based our computations on the Xilinx Virtex 

II platform. However, the basic ideas of saving some of the block  

multiplications hold even if a different sized multiplier core is used, although the exact numbers would change.  

 

A. Single-precision Floating-point 

 The architecture of single-precision floating-point divisor is shown in Fig. 1.It includes a Block-Memory 

(BRAM) which contains pre-calculated values of a
−

1
1
(24 − bits), a

−
1
2
(17 − bits), and a

−
1
3
(17 − bits) in a single data- 

word(58-bits), with 8-bit (content of a1) as address bits. The contents of the BRAM have been calculated using a 

separate program written in C, with float data type for the numbers. The content of a
−

1
1
 has been extended to 30-bits 

(by appending 6-bits”111111” at least significant bit (LSB’s)) for addition/subtraction purpose 

 

Here we can also do above operation with only value of a
−

1
1
, but it will increase the total operation latency and size 

of multipliers. In both cases we will use only a single BRAM on FPGA, so we prefer the first approach. The 

architecture has latency of four, though we can include the BRAM access in the first stage with a slight loss in 

maximum operating frequency. By using pipelined multiplier we can approximately double the overall frequency. 

We have shown the result with the latency four. Our aim here is to only show the use of less necessary hardware. 

We can do pipelining in the given architecture very easily. 

. Double-precision Floating-point 

 The architecture of double-precision floating-point divisor is shown in Fig. 2. It also includes a single 

BRAM which contains pre-calculated values of only a
−

1
1
(54 − bits) with 8-bit (content of a1) as address bits. The 

content of BRAM has been calculated using a C-program, with double as data-type of floating-point numbers. The 

content of a
−

1
1
 has been extended to 60-bits (by appending 6-Bits ”111111” at LSB’s) for addition/ subtraction 

purpose. Here we have a huge saving on block-memory compared to other methods discussed later. 

There are three type of multiplier (based on Xilinx MULT18x18 block) that have been used. Second, third and 

seventh stage has 51-bit partial multiplier. It uses only six-MULT18x18 block instead of nine, to produce more than 

52-bit (MSB) of correct result, which is all that we need. Stage six is also a 51-bit partial multiplier, but due to its 

specific input nature (17-bits of first input is 0x10000 in hex), it contains only three-MULT18x18 block. The fourth 

stage multiplier is a 34-bit full multiplier, but instead of using IP-core for it we have designed it using four 

MULT18x18 block which is taking less (about 2/3) glue logic and is faster than the IP-core available from Xilinx. 

Overall latency of module is eight, which we can increase further using pipelining as discussed in the case of single 

precision, for better performance 

 

IV. Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Architecture  

for single-precision floating-point reciprocator 
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The Hardware utilization and performance of both the single-precision and double-precision is shown in 

Table-I. Since our implementation neglects some of the lower order bits in the computation, it is important to 

estimate the impact of this on the overall accuracy of results. 

 

TABLE-I 

Parameters 
Single 

Precision 

Double 

Precision 

Mul 18X 18 3 55 

Slices 95 760 

BRAM 1 1 

Latency 4 8 

 

Single Precision 

 

 
 

Fig.3 Simulation Results of Single- Precision floating point numbers 
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Double Precision 

 

 
 

Fig.4 Simulation Results of Double- Precision floating point numbers 

 

 

V. Comparison 

The basis of our implementation is a well known technique of using look-up tables and multipliers. The main 

benefits are in the optimizations of the resource usage. In this section, we compare our implementation against many 

previous approaches mentioned in the literature. 

Our comparisons are based around the Xilinx hardware resources. Even on this platform, many different multiplier 

implementations are available with differing speed-area-latency tradeoffs. By using different instances, we can 

obtain suitable tradeoffs. Similarly, on a different platform with different basic resources, the main ideas developed 

in this paper will still hold. Only the details of the hardware usage will differ. For many of the comparisons, direct 

FPGA implementations of the methods are not available. In such cases, we have estimated the resource usage based 

on the components in the design. The number of block RAM cores required to implement a given look-up table and 

number of MULT18x18 block required to implement a given multiplication has been estimated from the Xilinx core 

generator software. 

One of the most popular methods used for computing reciprocals is the Newton Raphson iterative procedure [2]. 

The Newton-Raphson iteration for reciprocal of A is given by, xi+1 = xi(2 − xi.A). For each iteration it requires two 

multiplications and one subtraction. The value of x0 is usually taken from a look-up table. Thus for two iterations 

(results are based on [2]), in the case of single precision it requires one look-up table in 8-bit address space, two 

8×16 multiplication and two 16×32 multiplication (equivalently 1 BRAM and 6 MULT18x18). For double-

precision it requires one look-up table in 15-bit address space, two 15×30 multiplication and two 30×60 

multiplication (equivalently 28 BRAM and 20 MULT18x18).  

                                                                                                                                                                                                                                  

In Trade offs of designing floating point division and set square root on virtex FPGA’s [5], the authors have reported 

the floating –point division and square-root using SRT 1 division method on FPGA. In 

terms of performance, the pipelined approach is closest to our proposed implementation, but requires significantly  

212 number of slices and 14 clock cycles. The maximum frequency is approximately 66MHz.  

 

Digit Recurrence Divider [4] presents another SRT based implementation that has similar area to ours but 

considerably less throughput and speed with 520 number of slices for single precision and 1400 slices for double 

precision. 

 

The method Advanced Component in the variable precision Floating Point [3] presented a library for floating-point 

operations. In the case of single precision it requires 7 BRAMS and 8 MULTI 18x18 at a maximum frequency of 

operation 129MHz and 361 slices. For double precision it requires 62 BRAMS at a maximum frequency of 108MHz 

and 1145 slices. 
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In A Combined Interval and Floating Point Reciprocal Unit [6], the gates are 50,762 and latency time of 11 cycles 

and Time period of  5.62ns for double pre cision. 

 

By the Reciprocation, Square root, Inverse Square Root using small multipliers [2], six 18x18 multipliers are used in 

single precision and twenty 18x18 multipliers are used in double precision. 

 

With A Parameterizable Handle IC divider Generator for FPGA’s with Embedded H/w Multiplier [7] there is a 

reduction in Latency to 4 with a Time Period of 33.03ns. The no of slices are 226 for single precision. 

 

 In terms of performance, the floating point library from Sandia Labs (Open Source High Performance Floating 

Point Modules) [10] is the best. The Sandia implementation reported here obtain high frequency of operation equal 

to 262MHz for single precision and 223MHz for double precision. The latency is nearly 38 cycles for single 

precision and for the double precision it is 67 cycles. The Number of slices used is 1174 for single precision and 

4173 for double precision. 

 

VI. Conclusions 

 We have implemented an efficient reciprocal unit on FPGA for both single and double precision floating-

point numbers. The method uses the idea of neglecting higher order terms in the partial block multiplication to 

reduce the number of multipliers. At the same time, the look-up table requirements are kept to a minimum, and are 

the least reported in the literature for double precision implementation. Initial latency for our module is also less (4 

for single and 8 for double-precision), that too with promising frequency, which we can improve by pipelining them 

very easily. The implementation can thus form a useful core for use in hardware dividers, especially for applications 

like signal processing that could be more tolerant of inaccuracies in the least significant bits. 
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