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1. Introduction

The concept of S-act has been introduced as follows: if S is a semigroup, a nonempty set M is called a left ~ S-act if
there is a mapping from SxM into M and the following condition is satisfied : s;(s,m) = (s1s,)m for all 51,5, € S and
m € M [1]. Every semigroup can be consider as act over itself. By a similar way we define right S-act .The S-act
theory is a generalization of R-module theory .

The concept of I'-semigroup has been introduced by M.K. Sen in 1981 as follows: if S and I" are nonempty sets, S
is called a I"'-semigroup if there is a mapping from SxI'xS into S and the following condition is satisfied :(s;as,)ps3
= 510, (spPs3) for all s1,55,53 € S and o, p € ' [2]. A nonempty subset A of a I'-semigroup S is called right ideal of S
if ATS € Awhere AT'S={aos|a€A,a€Tl and s€ S} Anditiscalled a left ideal of S if STA € A, Ais called
ideal of S if it is both a left and a right ideal of S.

Let S and T be I'-semigroups under the same I" . A mapping f: S — T is called a I -homomorphism if
f(s10s,) = f(s1)af(s,) for all s;,5, € Sand 0w €T .

2. Gamma acts
In this section we introduce and study the concepts of gamma act over a fixed I'-semigroup .

Definition 2.1 Let S be a I'-semigroup, A nonempty set M is called left Sr-act (denoted by SyM ) if there is a
mapping from SxI'xM into M written (s;,a,S;) by s;as, such that the following condition is satisfied

(s1as)pm = s;a(spm) foralls;,$,€S,a,peETandmeM

Similarity one can define a right gamma acts .
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Definition 2.2 A left Sy-act M is called unitary if there exist 1€ S, o € I" such that lam=m forallm € M. We
denote the element 1o by 14 i.e Il.m=mforallm e M.

Definition 2.3 Let M be left Sy-act . An element © € M is called a zero of M if sa© =0 foralls€ Sanda €T .

Note. An Sr-act M can have more than one zero elements, see example 2.6 (A) . And Every Sr-act M can be
extended to an Sp-act with zero by taking the disjoint union M J { © } ,where { © } is a one-element Sr-act with
sa®@ =0 forallseSanda €T.

Definition 2.4 Let S and T be I'-semigroups. A nonempty set M is called gamma biact denoted by (T-S)r-biact if
1. Mis a left Tr-act

2. Misaright Sr-act

3. to(mPs) = (tam)Ps forallt e T, o, €', me Mand s€S.

Definition 2.5 Let M be (T-S)r-biact. Then M is called unitary (T-S)r-biact if
1. Mis unitary left Tr-act , i.e there exist 1 € T and oyt € T such that m = 11 oprm for allm € M
2. M is unitary right Sr-act , , i.e there exist 15 € S and ays € T" such that m = moayg1g for allm e M

Note . All Sy-act in following , consider unitary left Sr-act unless otherwise we stated

In the following by many examples we illustrate the notion of gamma acts and show that the class of gamma acts is
very wide.

Examples 2.6

A.LetS=7Z,I'=N, Then S is '-semigroup (z1,n,z;) — z;.n.z, with usual multiplication of integer numbers. Let
M be a nonempty set .Then M is an Sr-act under the mapping from SxI'xM into M which define by (z,n,m) —» m
forall seS,0€l’',meM.

B. If S is a I'-semigroup and M a nonempty set. Any fixed element m_ in M gives rise on Sr-act structure of M
by the mapping SXI'xM — M define by (s,a,m) > m_ forall sES,0c €, meM

example (B) shows that any nonempty set can be concider as Sr-act for any I'-semigroup S . In particular every
singleton set is a one-element Sr-act.

C. Let S= { 5nt4 | n is a positive integer } , I'= { 5n+1 | n is a positive integer } .Then S is a I'-semigroup where
sjas; = S;+ ot s;. Now let M = { 5n | n is a positive integer } . Then M is an Sp-act where sam =s + o+ m , where +
is the usual addition .

D. Let S be a I'-semigroup. A polynomial in one indeterminate X with coefficients in S respect to I is to be an
expression P(X) =spX,s € S, B € ', where X is a any symbol . The set S[X] of all polynomials is a nonempty set
becomes to an Sr-act under the mapping from SxI'xS[X] into S[X] define by (r,0,P[X]) — (ras)pX

E. Every T'-semigroup S is an Sp-act with s;.a.s, being the I'-semigroup structure in S .

F.LetS=[0,1], T'={ %| n is a positive integer }and M =S, Then Misan Sp-act under usual multiplication of
real numbers.

x 0

G. Consider the following two sets S = {[E (1)] |a,b € R }and r= { 0 1

M is an Sr-act under the usual product of the matrices .

]|xe ]R{} and let M =S .Then

H.Let S={2, {a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}},={a,{a} {a,b,c}}andM=S.Then Misan Sr-
act where ABC=ANBNC .forallA,CeSandCEeT .

l. Let R be an T'-ring and M is an Rr-module [3]. It is clear that any Rr-module is Rp-act .
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J. Let M be an R-module , define a mapping . : RxRxM — M | By (r,s,m) — (rs)m being the R-module structure
of M , Then M is an Rg-act.

K. Let S be a I'-semigroup and | be a left ideal of S. Then 1 is a left Sp-act under the mapping . :SXI'xI — I define
by (s,a,r) > s.a.r,forall sES,a€land rel

L. Let M be an arbitrary semigroup and S an arbitrary nonempty subset of Z, Then M is Zs-act under the mapping
ZxSxM — M define by (n,n';m) — (n.n")m .

M. let R be set of of all real numbers. R" is an Rg-act . by the mapping from Rx Rx R" into R" define
(rur2,(6),2,) — (rirxi), 2, forall ryr, € Rand (x;),”, € R,

N. Let S be I'-semigroup. Then SXZ = {(s,z) | s € S, z € Z} is an Sr-act by the mapping from SxI'x(SxZ) into
SXZ define by (s,0,(s',z)) — (sas',z) .

O. Let G be a group , A1, Ay two index sets and I the collection of some A; XA, matrices over G = GU{0} ,the
group with zero .Let S =T .Then it is easy to see S is a I-semgroup . M= { (a);| i € A1 ,j € A, and (a;) the
Aq XA, matrix over G’ with a;; = a and 0 otherwise } .For any (a);j ,(b)j,(C)kv € M and o = (p;i) , B = (q;) € I we
define (a)jo(b) = (apjb)ik- Then it is easy verified that [(a)je(b)iIB(C)w = (@)ije[(B)iB(C)] - Thus M is Sr-act .

P.LetS={a,b,c,d, e}, [={a,p } and M = SxS . Put the binary operations in the tables below

D| Q| O|T| |
D O|O|T| 2 D
| D QO T| T
oT|l®| Dol OO
O|TO| |0l Q| O
oO|O|T| 2 @ @
DOl 0| T ™
D O] O| T| D
ol | ol O T
O|lT|®| 0|l Q| O
ol 0| T| 2 O
Dol O|O| T| | @

And consider the mapping from SxI'xM into M by (s,a,(s1,52) — (sa81,508;). Since ($1a8,)pm = s;a(s,pm) for all
51,5 €S,a,peElandm e M. Misan Sr-act .

The following proposition gives a new example of old ones .

Proposition 2.7 Let M be an Sr-act , and P(M) the power set of M ,Then P(M) is an Sr-act .

proof : Consider the mapping SXxI'xP(M) — P(M) define by (s,0,X) = saX where saX = {sax |[ X EX ,SE S ,0 €
I'}. Thenforalls;,s; €S, a,p €T and X € P(M) we have sjo(sofX) =s10{ s;px | X EXSES, 0 €T } =
{s10(s2Bx) | x EX SES, €l } ={(5108)Px) | x EX,SES,a €T }=(s;0a8)pX m]

Example 2.8 It is well-known that both Z and @ is an N-semigroups under the usual multiplication .Then R is an
(Z — Q)N — biact . As well as (Q — Z)N — biact.

The following example shows that if M is an S-act, then M is an Sp-act for every nonempty set I" .

Examples 2.9 Let M be right S-act and I' be any nonempty set. Define SXI'xS — S by (s,0,s') = ss' forall s ,s'€ S
and o € ' .Then

1. Sis'-semgroup indeed (S;0s,)Bs3 = S1a(syPss) forall s;,8, ,S3€Sanda ,pET .

2. M is Sr-act, in fact (mas)Ps' = mo(sps’) foralls,s' €S, a,fETandm EM.

In the following example. We show that the converse of Examples 2.9 may not be true in general and hence Sr-acts
are a proper generalization of S-acts.
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Examples 2.10
1. Let M be a set of all negative rational numbers .1t is clear that M is not M-act under usual product of rational

numbers . Let I' = { —% | pisprime} .Let a,b,c € Manda,p € .Now ifaab is equal to the usual product of
rational numbers then aab € M and (aab)Bc = aa(bfc) .hence M is Mr-act .

2. LetM={i,0,1}and S=T =M. Then M is Sr-act under the multiplication over complex numbers while M is
not S-act under the multiplication .

Note. The class of gamma acts is very wide .In the following example we see that a nonempty set to be a gamma
act depends on the mapping of multiplication. as in the following example.

Example 2.11 Let M be the set of all odd integer numbers . then M is not Zz-act under the usual multiplication of
integer numbers .

3. Gamma subacts and congruences
In this section we study gamma subacts, congruences of gamma act and investigate their properties .

Definition 3.1 Let M be an Sr-act , A nonempty subset N of M is called Sp-subact if STN € N, Where
SIN={san|s€S,a€l,n€e€N} .In this case we write N <M .

Note . clearly M be a trivial gamma subact on M and if M with zero element © ,then { © } be also trivial gamma
subact ,and any left ideal of I'-semgroup S is an Sy-subact on S .

Example 3.2 Clearly that Z is Zy-act , and Z, is the set of all even integers. Then Z, isan Zy-subact .
Example 3.3 LetS=7Z,T =N, Then S isa I'-semigroup by the mapping (z;,h,z;) — z1.n.Z, be usual multiplication
.LetM={1,2 3 4,5,6 }, Then M is Sr-act by the mapping SxXI'xM — M define by (z,n,m) — 2 . Then any

nonempty subset of M that contains 2 is Sp-subact of M .

Example 3.4 consider the gamma act in Examples (2.6) (m) , wheren =2 .Then if N = { (x,0) | x € R} and
M={(@©Qy)|yeR} then Mand N are Sr-subact .

Proposition 3.5 Let M be Sr-act , let { Ni | i € | } be collection of Sr-subact in M . Then.

1. If N;¢; Niis anonempty, then N, Ni<M.

2.U;gg Ni<M.

Proof 1. Since Ni<Mforall i €I ,then Ni#2 forall i €1, then we get N;; Ni#2 .Now Let X € N;¢; N;, SES
anda €I'. We getx € N;forall i €1 .Since sax € N; for all i € 1. Then sax € N;¢; N;. we get N;; Ni<M

2. Ni<Mforalli €1 ,then Ni# @ for all i€, then we get U;; Ni#z@ . Now letx elU;¢; Ni,SESanda €T .
Then there is some i° € | such that x € Ni°, implies sax € U;¢; Ni. Then we get U;; Ni<M DO

Proposition 3.6 Let M be an Sr-act, X is a nonempty subset from M. Then the set define by
[X]y = N{B| X S B,B<M},is the smallest Sr-subact of M contains X.

Proof . This clearly by proposition(3.5), that [X],; <M . Now let N <M and X € N, by definition of [X],, we get
[X]y € N.Then [X],, is smallest Sp-subact of M which contains X. m|

Let M be an Sr-act,N<M . Define N:M={s€S |som€ENforalla E[TandmeM}.

If N: M isanonempty subset of S, then it is easy to see that N: M is a left ideal of a I'-semgroup S .

The proof of the following proposition follows from the definition .

Proposition 3.7 Let M be an Sr-act, N and L be two Sp-subacts and A, B are two nonempty subsets of M . Then
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LifAcBimpliesthat (N: B)S (N:A).
2.(NNL:A)=(N:A)N(N:A).

Definition 3.8 Let M be an Sr-act. An equivalence relation p on M is called a congruence on M, if (m;,m,) € p,
implies that (somy,samy)€ p forall s €S, a € I" and my, m, € M.

Example 3.9 Let M be an Sr-act, Then Iy, = { (mym) | m € M } is a trivial congruence , MxM is a universal
congruence on M .

Example 3.10 consider the gamma act in Examples(2.6)(a) , with M={a,b,c},put p={(a,a), (b,b), (c,c),
(a,b), (b,a) } € MxM, then pisan congruence on M .

Proposition 3.11 Let M be Sr-act , p be congruence on M . Then the set denoted by M/p of xp where xp the
equivalent class contains x isan Sr-act .

Proof. Define the mapping SxI'x M/p — M/p by (s,a,mp) — (som)p, let s;,5, € S, a ,p € I' . First to show the
mapping be well define , let xp=x'p then (x ,x') € p and (sox ,sox') € p , implies (sox)p = (sax")p . and
(S1082)Bxp = (( s1082)Px)p = ( s10(s2Bx))p = s1a(szpx)p = s1a(s2fxp) . Then M/p is Sr-act m]

Note. M/p is called quotient gamma act under congruence pon M .

Proposition 3.12 Let M be Sr-act, { p, | & € 2 } be a family of congruences on M, then Np, is the largest
congruence on M contained in p, for allo. € 2 .

Proof Clearly that Np, is equivalent relation on M . Now let (x,y) € Np, ,S € Sand o € ', then (x,y) € p, for all a
€ 0 and (sax,soy) € p, for all a € 2, then (sax,say) € Np, . we get Np, be congruence on M . Now let o be a
congruence on M contained in p, for all o € 2. Let (X,y) € o then (x,y) € Np, , We get Np, is largest congruence
on M contained in p, for all o € 0 ]
Let M be Sr-act, and H be a nonempty subset of M . Define

ts(H) = { (s,t) € SxS |sah=toh forallo e Tandh € H }
it is clear that £g(H) is a congruence on Sr-act S and if M with zero element © ,then £5(0) = SxS .
Proposition 3.13 Let M be an Sp-act , and A , B are two nonempty subsets of M . Then
1.if A € B implies that £s(B) < (¢s(A) .
2. Es(AUB) = Es(A) U Ks(B) .

Definitoin 3.14 Let M be (S-T)r-biact. An equivalence relation p on M is called a congruence on M if
(mg,my) € p, implies (tam;as,tamyas) € p ,foralls €S, 0 €T,m;,meMandteT.

4. Homomorphisms gamma acts.

In this section we study the homomorphisms of gamma acts. In particular we investigate the behavior of gamma
subacts and congruences under their homomorphisms.

Definition 4.1 Let M and N be two Sr-acts . A mapping f : M—N is called Sr-homomorphism if f(sam) = saf(m) .
forallse S, o €T and m € M. A homomorphism f: M—N is called

1. monomorphism if f is injective mapping .

2. epimorphism if f is surjective mapping
3. isomorphism if f is bijective mapping .
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If f: M — Nis an Sr-isomorphism, then we called M isomorphic to N denoted by M = N. The set of all
Sr-homomorphisms from M into N denote by Homg (M,N). If M = N, then Homg (M,N) denote by Endg (M) .

Definition 4.2 Let f: M — N be Spr-Homomorphism . Then we define the kernel and the image of f as follows .
1. ker(f) = { (my,mz) € MxM [ f(my) = f(m;) } .
2. Im(f) = {n € N|there ism € M such that f(m) =n }.

Definition 4.3 Let M and N be (T-S)r-biact . A homomorphism f: M — N is called (T-S)r-homomorphism , if
1. f: M — N be Tr-homomorphism

2. f: M — N be Sp-homomorphism

3. f(tam)Ps = taf(mPs), foralls€eS,a,pEl, mEMand teT.

Example 4.4 Let M be an Sr-act . and N <M . Then the mapping i : N — M define by i(n) =n for alln € N, isan
Sr-monomorphism .

Proposition 4.5 Let f :M—N be Sr-Homomorphism. Then
1. Ker(f) is a congruence on M.
2. If G<M, then f(G) = { f(m) | m € G } <N. In particular f (M) <N.

Proof. 1. It is clear that Ker(f) is equivalent relation on M . Now let (m;,m,) € Ker(f) , s € S and o € T" . implies
f(sam;) = saf(m;) = saf(m,) = f(sam,) , thus Ker(f) is a congruence on M

2. clearly f(G)isanonempty subset of N. Now lets € S, a € T and n € f(G) . Then there is m € G such that

f(m) = n, then san = saf(m) = f(sam) € f(G). m]

The following example shows the converse of proposition(4.5) 1. is also true .

Example 4.6 Let M be Sr-act, p be a congruence on M . Then the mapping Tp : M — M/p define by Tp(m) = mp
for allm € M is called canonical map , and clearly that Tp is an Sp-epimorphism and ker(Tp) =p

Proposition 4.7 Let M be an Sr-act, and p a congruence on M . Then
1.if N <M ,then N/py <M/p .
2. if W< M/p, then there exist L <M such that W = L/p , where p. = p N (LXL)

Proof. 1. Itisclear .
2. clearly T, *(W) <M, and let T '(W) =L .Then byl, we get L/p. < M/p and it is clear to see that L/p.=W . DO

Proposition 4.8 Let f:M—N be Sr-homomorpohism , and p be congruence on M then pr={ (f(x),f(y)) | (X,y) €Ep }
isa congruence on f(M) .

Proof . It is straightforward to check that pr is an equivalent relation on f(M). Now let (f(x),f(y)) €pr,SE€S,a €T.
Since (X,y) € p we get (sox,say) € p , (f(sax),f(say) = ( saf(x), saf(y)) € pr. Then pris a congruence on (M) . O
Proposition 4.9 Let f:M—N be Sr-homomorphism , p a congrunce on M , and p* on f(M) with pf & p* .Then
there exsits a homomorphism from M/p to f(M)/p* and f(M)/p* is an epimorphic image of M/p.

Proof. Let f*:M/p—f(M)/p* define by xp — f(x)p*. If xp = yp then (x,y) € p and (f(X),f(y)) € pr Sp*, then
(f(x),f(y)) € p* and f(x)p* = f(y)p* , f* is well define . Let xpEM/p ,s€S a€l. Then f*(sa(x)p) = f*((sax)p) =
(sox)p* = sa(x)p* = saf*(xp), Then f* is Sp-homomorphism act from M/p to f(M)/p* )

Lemma 4.10 Let S and R be I'-semigroups and let ® : R—S be I'-homomorphism. If M is Sy-act, then M is Rp-act.

Proof . Define a mapping RxXI'xM — M by (r,a,m) — ®(r)am .Then (riorp)ofem = O(rior)pm = (P(ry)o P(r2))pm
= O(ry)o (O(rp)pm) = D(ry)o r20Bom) = ryea rofem) forallry, r, ER,a,pET , MM
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Proposition 4.11 Let M, N be Sr-acts . Then Homg (M,N) is an Sr-act.

Proof. Consider the mapping SxI'<x Homg (M,N)— Homg (M,N) which define by (s,0,®) = sa®, where sad®(m) =
sa®(m) , m € M. Since M be Sr-act, clearly that Homg (M,N)is Sr-act m]

Proposition 4.12 Let f: M — N be an Sp-homomorphism, and p a congruence on M such that p € Ker(f) . Then
there exists unique Sp-homomorphismf: M/p — N, fp = f and fis Sy-epimorphism if and only if f Srepimorphism .
Proof. First we must show f is well define . Let xp, yp € M/p such that xp = yp, then (x,y) € p € Ker(f) then f(x) =
f(y). Then f (xp) =f (yp), this shows that f is well defined. f (soxp) = f ((sox)p) = f(sox) = saf(x) = saf (xp), then f
is Sp-homomorphism and clearly Im(f) = Im(f). Let x € M, the (fTp)(x) = (Tp (X)) = f (xp) = f(X)

for all x €M then fTp = fand clearly f is a unige and f Sp-epimorphism if and only if f Sy-epimorphism . m]

From proposition(4.12) , if f: M — N is an S;-homomorphism , then M/ker(f) = Im(f)
Theorem 4.13 Let p; and p, be two congruences on Sr-act M. with p; € p,. Define

p2/p1 = { (XpL,yp1) € M/p)*(M/p1) | (X,y) € p2}. Then

1. po/p1 is a congruence on M/p;.
2. (M/p)/(p2/p1) = M/p,.

Proof. 1. First we show that py/p; is an equivalent relation on M/p; , let xp;€ M/p; , implies (xp1,xp1)€E p2/p1 - If
(xpl,ypl)€ M/p; then (x,y) € p, and (y,X) € p, therefore (yp1,xp1) € po/p1. Next if (xp1,yp1) and (yp1,zp:1) then
(X,¥),(y,2) € p, we get (X,z) € p, ,then (xp1,zp1) € pa/p1. Finallylet s € S, o € T, (xp1,yp1) € p2/p1 , then (Xy) €p,
and (sox,say) €p, implies that (saxpi,s0yp:1) € p/p1 -

2 . Define ®: (M/p1)/(p2/p1)—M/p, by @((xp1)( p2/p1)) = xp, for all x € M. If (xp1)( p2/p1) = (yp1)( p2/p1) then
(xpL,yp1) € pp1 and (X)) € p, implies xp, = ypa. let xp,EM/p; then X € M, xp1€ M/py, (xp1)( p2/p1) €
(M/p1)/(p2/p1) such that D((xp1)( p2/p1)) = xp2 and hence @ is onto ,let D((xp1)( p2/p1)) = P((yp1)( p2/p1)) , implies
that xp, = yp2, (X,Y) € p2 then (xp1,yp1) € p2/p1and (xp1)( p2/p1) = (yp1)( p2/p1) this shows @ is injective. Finally, let
s€S,a €l and (xp)( p2/p1) € (M/p1)/(p2/p1), then @(sa(xp1)( p2/p1)) = P((sax)p1)( p2/p1)) = (sax)p2 = sa(x)p2 =
sa®( (xp1) p2/p1))-Then (M/p1)/(p2/p1) = M/p, 0

5. Finite generated, cyclic and simple gamma acts.

Let M be an Sr-act and X a nonempty subset of M we have proved that [X],, is the smallest Sp-subact of M which
contains X .Note that [X]y = N{B | X € B, B <M } is the Sp-subact generated by X . In the following
proposition we describe [X]y in terms of their elements .

Proposition 5.1 Let M be an an Sr-act and X a nonempty subset of M . Then [X]y= Uyex STu where
STu={sou|s€Sanda €l }.

Proof. Let W=U,exSTu. , XEW ,SE€S anda €T . Thereis s' €S, a' €T, u. € X such that x = s'a'u. , then
sox = sa( 8'a'ts) = (sos)o'u. € STu.S W, we have W<M. Since forallx € X, x=1ax € STx S W then X S W
. By definition of [X]ywe get [X]yE W . Now if Xx € W, then x =sau'€ [X]ywheres€ S, a € T and u'eX , then
W € [X]y. we get W = [X]y.

Proposition 5.2 Let M be an Sr-act and A, B nonempty subsets of M .Then

1. [ANB] < [A]N[B]

2. [AUB] = [A]U[B]

3.iff: M — Nis an Sp-homomorphism , then f([A]w) = [f(A)In

4.iff: M — Nis an Sp-epimorphism and 2# C € N , then [f*(C)]w S f*([C]n)

Proof. 1. Let x € [ANB] then thereiss € S ,a € T', x' € ANB such that x = sox', then x = sax'€ [A] , x =sax' €
[B] . Then x =sox' € [A]N[B], we get [ANB]S[AIN[B] .
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2. [AUBJ=Uyeays STu=(Uyea STu)U(Uy ep STu)=[AJU[B] .We get [AUB]=[A]U[B] .

3. Clearly that (A) is nonempty and since [A]lu <M, then f(JA]m) <N by proposition 4.5 and

f([XIm) = { f(sax) | sax € [X]u }» [f(X)In = { saf(X) | x € X } and since f is Sr-homomorphism we get
f(IAIM)=[F(A) ]y

4. itis clear £(C) is a nonempty subset of N, [f*(C)]u={ sux| s€S , a €andx € f}(C)},

fY([CIn)={x € M| f(x) € [C]n }. If x € [f'(C)]m then there exist s € S, a € " and x'€f*(C) such that x = sox', then
f(x) = f(sox") = saf(x") € [C] - m]

Definitoin 5.3 A nonempty subset U of Sy-act M is said to a set of generating elements or generating set of M if
M =[U] . We say that M is finitely generated if [U] = M for some subset U of M which |U|< co. And M is a cyclic
if M = [{u}] for some u € M. In particular M = [M] .

Proposition 5.4 Let f:M—N be Sr-homomorphism .Then
1. If M is finitely generating (cyclic), then (M) is finitely generating (cyclic) .
2. If M = [U] and ®@:M—N be Sr-homomorphism , then if f(u) = ®(u) for allu € U implies f=® .

Proof. 1. Follows from Proposition (5.2).
2. For m e M, f(m) = f(sah) = saf(h) = sa®(h) = (soh) = ®(m) for somes €S, a0 €', he U . ]

Note . Let M be an Sr-act and let m°eM . Then <m°>=SI'm°= {sam®| s€S,a € }isa cyclic Sr-subact of
M generated by m° .

Example 5.5 Consider the gamma act in example(2.6)(m) where n =2 .Then [(1,0)]={ (s0,0) |[s€S,a €T } and
[(0,D]={(0s0)|s€S,a€el}.

Example 5.6 Consider the gamma act in example(2.4) (H) .Then [{a}]={ AB{a} |A€S,BeT }= {=,{a} }and
[{ab,c}]={AB{ab,c}|A€eS,BeTl } =S. We get Sr-act S be cyclic Sp-act generated by {a ,b ,c}.

Example 5.7 It is well-known that Z is Zy-act . A Zy-subact Z, is cyclic.

Definition 5.8 Let M be an Sy-act . Then

1. Mis asimple Sr-act , if it contain no gamma subact other than M .

2. Misa 1-simple Sr-act, if it contain no gamma subact other than M and 1-element gamma subacts .
Examples 5.9 clearly one element Sp-act is simple

Clearly every simple is a 1-simple ,but the converse may not true as in the following example .

LetS=Q,I'=Z ,M=Q. Then M isaT -semigroup by usual multiplication of numbers . i.e (r1,z,r;) — r1.z.r, be
usual multiplication of numbers . Let N = {0} is clear that N < M but N # M then M is not simple Sr-act but 1-

simple since. let N be non singleton Sy-subact of M. Let 0 #x € N, then ie Sand i.l.x =1 € N. Now to show
N=Mletye M=Stheny.l.1=ye N.weget N=M.

Proposition 5.10 Let M be an Sp-act.If M is simple. Then M = SI'm for everym € M .
Now we give condition under which cyclic gamma acts are simple .

Proposition 5.11 Let M be cyclic Sr-act generated by u, and p be a congruence on M . Then the cyclic gamma act
M/p is simple if and only if up N STm # @ foranym € M .

Proof. Assume that M/p be simple, Tp : M — M/p be the canonical epimorphism and m € M . Then Tp(SI'm) is a
gamma subact of M/p .Since M/p is a simple we have Tp(SI'm) = M/p .Hence there exist x € SI'm such that Tp(x) =
up . Thusx Eupandup N STm #= Q@ .

Conversely. Let N <M/p and t € T, *(N) .By hypothesis there exist s € S, o € I such that sat € up . Now

up = Tp(sat) = saTp(t) € N . This implies M/p = ST'up <N. Hence N=M/p . m]
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Definition 5.12 Let M be an Sp-act and N <M .A Rees congruence py is a congruence on M define by a pyb if and
onlyifa, bin Nora=b.We denote the resulting factor by M/N and call it the Rees factor of M by the gamma
subact N. Clearly M/N has a zero element which is the class consisting of N, all other class are one-element sets

The following statement is a corollary of the previous proposition. And can also be obtained straightforward from
definition of a simple act.

Proposition 5.13 Let N be a gamma subact of M . The Rees factor M/N is a simple if and only if N=M

Definition 5.14 Let M be Sr-act. M is called decomposable, if there are two sub act B, C of M such that
M =AU B, AN B =g, otherwise M is call indecomposable.

Proposition 5.15 Every cyclic Sr-act is indecomposable .

Proof. let M =[{u}] and let M = AUB (A ,.B<M)u e M =AUB then either a€ AoraeB.Ifae€ Athen
M=[{a}] S A. ThenM=A ora e BimpliesM=B m]

Lemma 5.16 Let M be Sr-act, | be nonempty set, A; be indecomposable Sr-subact of M for all i € I, and
Nier Ai#z. ThenU;¢; Ai is indecomposable Sr-subact .

Proof. Clearly Ui Aiis an Sp-subact from M . Assume there exists A decomposition U, Ai= BUC, let x
€ Nie AiCU;¢ Ai= BUC with BNC =@ . Then either x € U, AiNB or X € U;¢ AiNC . And since
A=ANBUC)=AUB)N(AUC)=2, a contradiction! DO

Definition 5.17 Let M be (T-S)r-biact . A nonempty subset N of M is called

1. Aright (T-S)r-subbiact , if Nis Sp-subact on M, i.e. NI'S S N .

2. A left (T-S)r-subbiact if N is Tr-subacton M, i.e TTN € N .

3. (T-S)r-subbiact, if itis right and left (T-S)r-subbiact ,i.e TTN € N and NI'N €N

Definition 5.18 . Let M be (T-S)r-biact . Then M is called

1. Right simple (T-S)r-biact . If it has not right (T-S)-subbiact other than M

2. Left simple (T-S)r-biact . If it has not left (T-S)r-subbiact other than M

3. Simple (T-S)r-biact . If it has not neither left nor right (T-S)r-subbiact other than M

Theorem 5.19 Let M be (T-S)-biact . If M is a left or right simple (T-S)r-biact , then M is a simple (T-S)r-biact .

Proof. consider M is right simple (T-S)r-biact , Let N be (T-S)-subbiact on M .Then N is left and right
(T-S)r-subbiact on M, and since M is a right simple , N is a right (T-S)-subbiact implies that N = M . M .By the
same we proof if M is a left simple (T-S)r-biact .

Theorem 5.20 Let M be (T-S)r-biact . Then
1. M is aright simple if and only if mI'S =M for allm € M .
2. Misaleft simpleifandonly if TTm=M forallm € M.

Theorem 5.22 Let M be (T-S)r-biact . Then M is a simple (T-S)r-biact if and only if TTmI'S =M for allm € M .

Proof. = itisclear
Conversely let N be (T-S)r-subbiact ,and n € N ,implies TI'nI'S = M . Now let
MmeM=TInI'S,thenm=tanfs €N ,t €T, a,p ETands € S. Impliesthat M= N.
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