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Let S be a Г-semigroup . We introduce the notion of gamma act over  

Г-semigroup S and study some important properties of such  acts,  with this 

respect , we study gamma subacts , congruences and  homomorphisms, of 
gamma acts further ,we give related basic results of gamma acts .And we will 

show the class of gamma acts is a generalization of S-acts and Г-semigroups.   
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1. Introduction  

 

The concept of S-act has been introduced as follows: if S is a semigroup, a nonempty set M is called a left     S-act if 

there is a mapping from S×M into M and the following condition is satisfied  : s1(s2m) = (s1s2)m for all s1,s2 ∈ S and 

m ∈ M [1]. Every semigroup can be consider as  act over itself. By a similar way we define right S-act .The S-act 

theory is a generalization of R-module theory . 
     

The concept of  Г-semigroup  has been introduced by M.K. Sen in 1981  as follows: if S and Г are  nonempty sets, S 

is called a Г-semigroup  if there is a mapping from S×Г×S into S and the following condition is satisfied :(s1αs2)βs3 

= s1α (s2βs3) for all s1,s2,s3 ∈ S and α, β ∈ Г [2]. A  nonempty subset A of a Г-semigroup  S is called right ideal of S 

if AΓS ⊆ A where AΓS = { aαs | a ∈ A , α ∈ Г and  s ∈ S }.  And it is called a left ideal of S if SΓA ⊆ A, A is called 

ideal of S if it is both a left and a right ideal of S. 

 

         Let S and T be Г-semigroups under the same Г . A mapping f : S → T is called a Г –homomorphism if 

 f(s1αs2) = f(s1)αf(s2) for all s1,s2 ∈ S and α ∈ Г .  
 

2. Gamma acts 
In this section we introduce and study the concepts of gamma act over a fixed Γ-semigroup . 

   

Definition 2.1  Let S be a Γ-semigroup, A nonempty set M is called left SГ-act (denoted by SΓM ) if there is a 

mapping from S×Г×M into M written (s1,⍺,s2) by s1⍺s2 such that the following condition is satisfied   
 

(s1⍺s2)βm = s1⍺(s2βm)  for all s1 ,s2 ∈ S , ⍺ ,β ∈ Г and m ∈ M 

 

Similarity  one can define a right gamma acts . 

 

http://www.journalijar.com/
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Definition 2.2 A left SГ-act M  is called unitary if there exist 1∈ S , ⍺˳∈ Г such that 1⍺˳m = m  for all m ∈ M . We 

denote the element 1⍺˳ by 1⍺˳ i.e 1⍺˳m = m for all m ∈ M . 

 

Definition 2.3 Let M be left SГ-act  . An element Ѳ ∈ M  is called a zero of M  if  sαѲ = Ѳ for all s ∈ S and α ∈ Г .  

 

Note. An SГ-act M can have more than one zero elements, see example 2.6 (A) . And Every SГ-act  M can be 

extended to an SГ-act  with zero by taking the disjoint union M ⨃ { Ѳ } ,where { Ѳ }  is a one-element SГ-act with 

sαѲ = Ѳ for all s ∈ S and α ∈ Г. 

 

Definition 2.4 Let S and T be Γ-semigroups. A nonempty set M  is called gamma biact denoted by (T-S)Г-biact  if  

1. M is a left TГ-act 

2. M is a right SГ-act 

3. tα(mβs) = (tαm)βs for all t ∈ T , α ,β ∈ Г , m ∈ M and  s ∈ S. 
 

Definition 2.5 Let M be (T-S)Г-biact. Then M is called unitary (T-S)Г-biact if 

1. M is unitary left TГ-act , i.e there exist 1T  ∈ T and ⍺0T  ∈ Г such that m = 1T⍺0Tm  for all m ∈ M  

2. M is unitary right SГ-act , , i.e there exist 1S  ∈ S and ⍺0S  ∈ Г such that  m = m⍺0S1S  for all m ∈ M 

 

Note . All SГ-act in following , consider unitary left  SГ-act unless otherwise we stated  

 

In the following by many examples we illustrate the notion of gamma acts and show that the class of gamma acts is 

very wide. 

 

Examples 2.6  

A. Let S = ℤ , Г = ℕ , Then S is Γ-semigroup (z1,n,z2) → z1.n.z2 with  usual multiplication of integer numbers. Let 

M be a nonempty set .Then M is an SГ-act under the mapping  from S×Г×M into M which define by (z,n,m) → m 

for all  s ∈ S , α ∈ Г , m ∈ M. 

 

B. If S is a Γ-semigroup  and  M a nonempty set. Any  fixed element   m˳ in M gives rise on SГ-act structure of M  

by the mapping S×Г×M → M define by (s,α,m) → m˳ for all  s ∈ S , α ∈ Г , m ∈ M 

 

example (B) shows that any nonempty set can be concider as SГ-act for any Γ-semigroup S . In particular every 
singleton set is a one-element SΓ-act.        

 

C. Let S = { 5n+4 | n is a positive integer } , Γ = { 5n+1 | n is a positive integer } .Then S is a Γ-semigroup   where 

s1αs2 = s1+ α+ s2 . Now let M = { 5n | n is a positive integer } . Then M is an SΓ-act where sαm = s + α + m , where + 

is the usual addition . 

 

D. Let S be a Γ-semigroup. A polynomial in one indeterminate X with coefficients in S respect to Γ is to be an 

expression P(X) = sβX, s ∈ S, β ∈ Γ , where  X is a any symbol . The set S[X] of all polynomials is a nonempty set 

becomes to an SΓ-act under the mapping  from S×Γ×S[X] into S[X] define by  (r,α,P[X])  → (rαs)βX  

 

E. Every   Γ-semigroup S  is an SГ-act with s1.α.s2 being the Γ-semigroup structure in S  . 

 

F. Let S = [ 0 , 1 ] ,  Γ = {  
1

n
 | n is a positive integer } and  M = S , Then M is an  SΓ-act under usual multiplication of 

real numbers.   

 

G. Consider the following two sets  S =     
a 0
b 1

  | a , b ∈  ℝ     and  Γ =     
x 0
0 1

  |  x ∈  ℝ     and let  M = S .Then 

M is an SΓ-act   under the usual product of the matrices . 

 

H. Let  S = { ⌀ , {a} ,{b} ,{c} ,{a ,b} ,{b ,c} ,{a ,c} ,{a ,b ,c}} , Г={⌀ , {a} ,{a ,b ,c} } and M = S .Then M is an  SΓ-

act  where  ABC = A⋂B⋂C . for all A ,C ∈ S and C ∈ Γ . 

 

I. Let R be an Γ-ring and M is an RΓ-module [3]. It is clear that any RΓ-module is RΓ-act .  
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J. Let M be an R-module , define a mapping   . : R×R×M → M  , By (r,s,m) → (rs)m being the  R-module structure 

of  M  , Then M is an RR-act.  

 

K. Let S be a Γ-semigroup  and I be a left ideal of S . Then I is a left SГ-act under the mapping  . :S×Г×I → I define 

by (s,α,r) → s.α.r , for all  s ∈ S , α ∈ Г and  r ∈ I 
   

L. Let M  be an arbitrary semigroup and S an arbitrary nonempty subset of ℤ, Then M is ℤS-act under the mapping  

ℤ×S×M → M define by (n,n',m) → (n.n')m . 

 

M. let ℝ be set of of all real numbers. ℝn is an ℝℝ-act . by the mapping from ℝ× ℝ× ℝn  into ℝn  define  

(r1,r2,(xi)
n

i=1
) → ( r1r2xi)

n
i=1

 for all  r1 ,r2 ∈ ℝ and (xi)
n

i=1
 ∈ ℝn .  

 

N. Let S be Γ-semigroup. Then  S×ℤ  =  {(s,z) | s ∈ S , z ∈ ℤ} is an SГ-act by the mapping  from S×Г×(S×ℤ) into  

S×ℤ define by  (s,α,(s',z)) → (sαs',z) .  

 

O. Let G be a group , Λ1 , Λ2 two index sets and Г the collection of some Λ1 ×Λ2 matrices over Gᵒ  = G∪{0} ,the 

group with zero .Let S  = Г .Then it is easy to see S is a Г-semgroup  . M =  { (a)ij | i ∈ Λ1  ,j ∈ Λ2 and (aij) the       

Λ1 ×Λ2 matrix over Gᵒ with aij = a and 0 otherwise } .For any (a)ij ,(b)jk ,(c)kv  ∈ M and α = (pji) , β = ( qji) ∈ Г we  

define (a)ijα(b)jk  = (apjkb)ik . Then it is easy verified that  [(a)ijα(b)jk]β(c)kv =   (a)ijα[(b)jkβ(c)kv] .Thus M is SГ-act .  

 

P. Let S = { a, b, c, d, e} , Γ={α , β } and M = S×S . Put the binary operations in the tables below                                    

 

α a b c d e 

a a b c d e 

b b c d e a 

c c d e a b 

d d e a b c 

e e a b c d 

      

And consider the mapping from S×Γ×M into M by (s,α,(s1,s2) → (sαs1,sαs2). Since (s1⍺s2)βm = s1⍺(s2βm)  for all  

s1 ,s2 ∈ S , ⍺ ,β ∈ Г and m ∈ M . M is an SΓ-act .  

 

The following proposition gives a new example of old  ones . 
 

Proposition 2.7 Let M be an SГ-act , and P(M) the power set of  M  ,Then P(M) is an SГ-act .  

 

proof : Consider the mapping S×Г×P(M) → P(M) define by (s,α,X) = sαX where sαX = { sαx | x ∈ X  , s ∈ S ,α ∈ 

Г}. Then for all s1 ,s2 ∈ S , α ,β ∈ Г and  X ∈ P(M) we have  s1α(s2βX) = s1α{ s2βx | x ∈ X s ∈ S ,α ∈ Г  } = 

 { s1α(s2βx) | x ∈ X  ,s ∈ S ,α ∈ Г  } = { (s1αs2)βx) | x ∈ X, s ∈ S ,α ∈ Г  } = (s1αs2)βX                   ⧠ 

 

Example 2.8  It is well-known that both ℤ and ℚ is an ℕ-semigroups  under the usual multiplication .Then ℝ is an 

(ℤ − ℚ)ℕ− biact  . As well  as (ℚ− ℤ)ℕ − biact .  
 

 The following example shows that if M is an S-act, then M is an SГ-act for every nonempty set Г . 

 

Examples 2.9 Let M be right  S-act and Г be any nonempty set. Define S×Г×S → S by  (s,α,s') ↦ ss' for all s ,s' ∈ S 

and α ∈ Г .Then  

1. S is Г-semgroup  indeed (s1αs2)βs3 = s1α(s2βs3) for all s1 ,s2 ,s3 ∈ S and α ,β ∈ Г . 

2. M is SГ-act, in fact (mαs)βs' = mα(sβs') for all s ,s' ∈ S , α ,β ∈ Г and m ∈ M . 
 

In the following example. We show that the converse of Examples 2.9  may not be true in general and hence SГ-acts 

are a proper generalization of S-acts.  

β    a b c d e 

a b c d e a 

b c d e a b 

c d e a b c 

d e a b c d 

e a b c d e 
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Examples 2.10  

1. Let M be a set of all negative rational numbers .It is clear that M is not M-act under usual product of rational 

numbers . Let Г = { −
1

p
  | p is prime } .Let  a ,b ,c ∈ M and α ,β ∈ Г .Now if aαb is equal to the  usual product of 

rational numbers then aαb ∈ M and (aαb)βc = aα(bβc) .hence M is MГ-act . 
 

2. Let M = { i ,0 ,-i } and S = Г = M . Then M is SГ-act under the multiplication over complex numbers while M is 

not S-act under  the multiplication .  

 

Note. The  class of gamma acts is very wide .In the following example we see that a nonempty set to be a gamma 

act depends on the mapping of multiplication. as in the following example.   

 

Example 2.11 Let M  be the set of all odd integer numbers . then M is not ℤℤ-act under the usual multiplication of 

integer numbers . 

 

3. Gamma subacts and congruences 
In this section we study gamma subacts, congruences of gamma act and investigate their properties .  

 

Definition 3.1 Let M be an SГ-act , A nonempty subset N of M is called SГ-subact if SГN ⊆ N , Where  

SГN = { sαn | s ∈ S , α ∈ Г, n ∈ N }  . In this case we write N ≤ M . 

 
Note . clearly M be a trivial gamma subact on M and if M with zero element  Ѳ ,then { Ѳ } be also trivial gamma 

subact ,and any left ideal of Г-semgroup S is an SГ-subact  on S . 

 

Example 3.2 Clearly  that ℤ is ℤℕ-act , and ℤe  is  the set of all even integers. Then ℤe  is an  ℤℕ-subact .  

  

Example 3.3 Let S = ℤ , Г = ℕ , Then S is a  Γ-semigroup by the mapping (z1,n,z2) → z1.n.z2 be usual multiplication 

. Let M = { 1, 2, 3, 4, 5, 6 }, Then M is SГ-act by the mapping S×Г×M → M define by (z,n,m) → 2 . Then any 

nonempty subset of M that contains 2 is SГ-subact of M . 

 

Example 3.4 consider the gamma act in Examples (2.6) (m) , where n = 2 .Then if N = { (x,0) | x ∈ ℝ} and 

 M = { (0,y) | y ∈ ℝ }, then  M and  N are SΓ-subact . 

 

Proposition 3.5 Let M be SГ-act , let { Nᵢ | i ∈ I } be collection of SГ-subact in M . Then. 

1. If ⋂  𝑁ᵢ 𝑖∈𝐼 is a nonempty, then  ⋂ 𝑖∈𝐼  Nᵢ ≤ M. 

2.  𝑁ᵢ𝑖∈𝐼  ≤ M . 

 

Proof  1.  Since Nᵢ ≤ M for all  i ∈ I  ,then Nᵢ ≠ ⌀ for all  i ∈ I , then we get ⋂  𝑁ᵢ 𝑖∈𝐼 ≠ ⌀ .Now Let x ∈ ⋂  𝑁ᵢ 𝑖∈𝐼 ,  s ∈ S 

and α ∈ Г . We get x ∈ Nᵢ for all  i ∈ I  .Since sαx ∈ Nᵢ for all  i ∈ I . Then sαx ∈ ⋂  𝑁ᵢ 𝑖∈𝐼 . we get ⋂ 𝑁ᵢ 𝑖∈𝐼 ≤ M 

2.  Nᵢ ≤ M for all i ∈ I  ,then Nᵢ ≠ ⌀ for all  i ∈ I , then we get  𝑁ᵢ𝑖∈𝐼 ≠ ⌀ . Now let x ∈  𝑁ᵢ𝑖∈𝐼  , s ∈ S and α ∈ Г  . 

Then there is some  i° ∈ I such that x ∈ Ni° , implies sαx ∈  𝑁ᵢ𝑖∈𝐼 .Then we get  𝑁ᵢ𝑖∈𝐼  ≤ M      ⧠                                                                                                                                                                                                          

 

Proposition 3.6 Let M be an SГ-act ,  X is a nonempty subset from M. Then the set define by 

 [X]𝑀  ≔  ⋂{B | X ⊆ B , B ≤ M} , is the  smallest SГ-subact of M contains X. 

 

Proof . This clearly by proposition(3.5), that [X]𝑀  ≤ M . Now let N ≤ M and X ⊆ N , by definition of   [X]𝑀  we get  

[X]𝑀  ⊆ N .Then  [X]𝑀   is smallest SГ-subact of M which contains X.                                                                          ⧠                                                                                                                                                            

 

Let M be an SГ-act , N ≤ M . Define  N : M = { s ∈ S  | sαm ∈ N for all α ∈ Г and m ∈ M } . 

 

If  N : M is a nonempty subset of  S , then it is easy to see that N : M  is a left ideal of a Г-semgroup S . 

 

The proof of the following proposition follows from the definition . 

 

Proposition 3.7 Let M be an SГ-act , N and L be two  SГ-subacts and A , B are two nonempty subsets of M . Then 
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1. if A ⊆ B implies that ( N :  B ) ⊆ ( N : A ) . 

2. ( N⋂L : A ) = ( N : A ) ⋂ ( N : A ) . 

 

Definition 3.8 Let M be an SГ-act. An equivalence relation ρ on M is called a congruence on M, if  (m1,m2) ∈ ρ, 

implies that (sαm1,sαm2)∈ ρ for all s ∈ S , α ∈ Г and m1, m2 ∈ M. 

 

Example 3.9 Let M be an SΓ-act , Then IM = { (m,m) | m ∈ M } is a trivial congruence , M×M  is a universal 

congruence on M .  

 

Example 3.10 consider the gamma act in Examples(2.6)(a) , with  M={ a , b , c } , put     ρ = { (a ,a) , (b ,b) , (c ,c), 

(a ,b) , (b ,a) } ⊆ M×M , then  ρ is an  congruence on M .  

 

Proposition 3.11 Let M be SГ-act , ρ be congruence on M . Then the set denoted by M/ρ of  xρ where xρ the 
equivalent class contains  x  is an SГ-act . 

 

Proof.  Define  the mapping  S×Г× M/ρ → M/ρ  by (s,α,mρ) → (sαm)ρ, let s1 ,s2 ∈ S , α ,β ∈ Г .  First to show the 

mapping be well define , let  xρ = x'ρ  then (x ,x') ∈ ρ and (sαx ,sαx') ∈ ρ , implies (sαx)ρ = (sαx')ρ . and   

(s1αs2)βxρ = (( s1αs2)βx)ρ = ( s1α(s2βx))ρ = s1α(s2βx)ρ = s1α(s2βxρ) . Then M/ρ is SГ-act                                       ⧠ 
 
Note. M/ρ is called quotient gamma act under congruence ρ on M . 

 

Proposition 3.12 Let M be SГ-act, { ρα | α ∈ 𝛺 } be a family of congruences  on M, then ⋂ρα is the largest 

congruence on M contained  in ρα for all α ∈ 𝛺 . 

 

Proof  Clearly that ⋂ρα  is equivalent relation on M . Now let (x,y) ∈ ⋂ρα , s ∈ S and  α ∈ Г , then (x,y) ∈ ρα for all α 

∈ 𝛺 and (sαx,sαy) ∈ ρα for all  α ∈ 𝛺 , then (sαx,sαy) ∈ ⋂ρα  . we get  ⋂ρα be congruence on M . Now let 𝜎 be a 

congruence on M contained  in ρα for all  α ∈ 𝛺 . Let (x,y) ∈ 𝜎 then (x,y) ∈ ⋂ρα , we get ⋂ρα  is largest congruence 

on M contained  in ρα for all  α ∈ 𝛺                                                                                                                         ⧠ 
 

Let M be SГ-act , and H be a nonempty subset of M . Define  

 

ℓS(H) = { (s,t) ∈ S×S | sαh = tαh for all α ∈ Г and h ∈ H } 

 

it is clear that ℓS(H) is a congruence on SГ-act S and if M with zero element Ѳ ,then ℓS(Ѳ) = S×S . 

 

Proposition 3.13 Let M be an SГ-act , and A , B are two nonempty subsets of M . Then 

1. if A ⊆ B implies that ℓS(B) ⊆ (ℓS(A)  . 

2. ℓS(A∪B) = ℓS(A) ∪ ℓS(B)  . 

 

Definitoin 3.14  Let M be (S-T)Г-biact. An equivalence relation ρ on M is called a congruence  on M if 

 (m1,m2) ∈ ρ, implies (tαm1αs,tαm2αs) ∈ ρ ,for all s ∈ S, α ∈ Г,m1 ,m2 ∈ M and t ∈ T . 

 

4. Homomorphisms gamma  acts.  
 

In this section we study the homomorphisms of  gamma acts. In particular we investigate the  behavior  of  gamma 

subacts and congruences under their  homomorphisms. 

 

Definition 4.1 Let M and N be two SГ-acts . A mapping f : M→N is called SГ-homomorphism if f(sαm) = sαf(m) . 

for all s ∈ S , α ∈ Г and m ∈ M . A homomorphism f : M→N  is called 

 

1. monomorphism if f is injective  mapping . 

2. epimorphism if f is surjective mapping 

3. isomorphism if f is bijective  mapping . 
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If f : M → N is an  SГ-isomorphism, then we called M isomorphic to N  denoted  by M ≅ N. The set of all               

SГ-homomorphisms  from M into N denote by HomSГ
(M,N). If M = N, then HomSГ

(M,N) denote by EndSГ
(M) .   

 

Definition 4.2 Let f: M → N be SГ-Homomorphism . Then we define the kernel and the image of f as follows .    

1. ker(f) = { (m1,m2) ∈ M×M | f(m1) = f(m2) } . 

2. Im(f) = { n ∈ N | there is m ∈ M such that f(m) = n }. 

 

Definition 4.3 Let M and N be (T-S)Г-biact . A homomorphism f : M → N is called (T-S)Г-homomorphism , if   

1. f : M → N be TГ-homomorphism  

2. f : M → N be SГ-homomorphism 

3. f(tαm)βs =  tαf(mβs) , for all s ∈ S , α ,β ∈Г , m ∈ M and  t ∈ T . 

 

Example 4.4 Let M be an SΓ-act . and N ≤ M . Then the mapping i : N → M define by  i(n) = n for all n ∈ N, is an 
SΓ-monomorphism . 

 

Proposition 4.5 Let f :M→N be SГ-Homomorphism. Then 

1. Ker(f) is  a congruence on M. 

2. If G ≤ M , then f(G) = { f(m) | m ∈ G } ≤ N. In particular f (M) ≤ N .  

 

Proof. 1. It is clear that  Ker(f) is equivalent relation on M . Now let (m1,m2) ∈ Ker(f) , s ∈ S and α ∈ Г . implies  

f(sαm1) = sαf(m1) = sαf(m2) = f(sαm2) ,  thus   Ker(f) is  a congruence on M                        

2.   clearly  f(G) is a nonempty subset of N . Now let s ∈ S , α ∈ Г and n ∈ f(G) . Then there is  m ∈ G such that 

 f(m) = n , then sαn = sαf(m) = f(sαm) ∈ f(G).                                                                                                       ⧠  

                                         

The following example shows the converse of proposition(4.5) 1. is also true . 

   

Example 4.6  Let M be SГ-act , ρ be a congruence on M . Then the mapping  ⫪ρ : M → M/ρ define by ⫪ρ(m) = mρ 

for all m ∈ M  is called canonical map , and clearly that  ⫪ρ is an SГ-epimorphism and ker(⫪ρ) = ρ  

   
Proposition 4.7  Let M be an SГ-act, and  ρ a congruence on M . Then  

1. if N ≤ M ,then N/ρN ≤ M/ρ . 

2. if W≤ M/ρ , then there exist L ≤ M such that W = L/ρL , where ρL = ρ ⋂ (L×L) 

 

Proof.  1. It is clear . 

2. clearly ⫪ρ
−1(W) ≤ M, and let  ⫪ρ

−1(W) = L .Then by1, we get L/ρL ≤ M/ρ and it is  clear to see that L/ρL = W .  ⧠           

 

Proposition 4.8   Let f:M→N be SГ-homomorpohism , and ρ be congruence on M then  ρf ={ (f(x),f(y)) | (x,y) ∈ ρ }  

is a  congruence on f(M) .  

 

Proof . It is straightforward to check that ρf is an equivalent relation on f(M). Now let  (f(x),f(y)) ∈ ρf  , s ∈ S , α ∈ Г. 

Since  (x,y) ∈ ρ we get (sαx,sαy) ∈ ρ , (f(sαx),f(sαy) = ( sαf(x), sαf(y)) ∈ ρf. Then ρf is a congruence on (M) . ⧠                                                       

     

 

Proposition 4.9  Let f:M→N be SГ-homomorphism , ρ a congrunce on M , and  ρ* on f(M) with  ρf  ⊆  ρ*  .Then 

there exsits a homomorphism from M/ρ  to f(M)/ρ* and f(M)/ρ* is an epimorphic image of M/ρ. 

 

Proof.  Let f*:M/ρ→f(M)/ρ* define by xρ → f(x)ρ*. If  xρ = yρ  then (x,y) ∈ ρ and (f(x),f(y)) ∈ ρf ⊆ρ*, then 

(f(x),f(y)) ∈ ρ* and f(x)ρ* = f(y)ρ* , f* is well define . Let xρ∈M/ρ ,s∈S α∈Г. Then f*(sα(x)ρ) = f*((sαx)ρ) = 

(sαx)ρ* = sα(x)ρ* = sαf*(xρ), Then f* is SГ-homomorphism act from M/ρ to f(M)/ρ*           ⧠                                            

 

Lemma 4.10 Let S and R be Γ-semigroups and let Φ : R→S be Γ-homomorphism. If  M is SГ-act, then M is RГ-act.  

 

Proof . Define a mapping R×Γ×M → M by (r,α,m) → Φ(r)αm .Then (r1αr2)∘β∘m = Φ(r1αr2)βm = (Φ(r1)α Φ(r2))βm 

= Φ(r1)α (Φ(r2)βm) = Φ(r1)α( r2∘β∘m) = r1∘α( r2∘β∘m) for all r1 , r2 ∈ R , α ,β ∈ Г  , m ∈ M        .                                                                                                             
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Proposition 4.11  Let M , N be SГ-acts . Then HomSГ
(M,N) is an SГ-act.   

 

Proof. Consider the mapping S×Г× HomSГ
(M,N)→ HomsГ

(M,N) which  define by (s,α,Φ) = sαΦ, where sαΦ(m) = 

sαΦ(m) , m ∈ M. Since M be SГ-act, clearly that HomSГ
(M,N)is SГ-act                                                                      ⧠       

 

Proposition 4.12  Let f : M → N be an SГ-homomorphism, and  ρ a congruence on M such that ρ ⊆ Ker(f) . Then 

there exists unique SГ-homomorphismf  : M/ρ → N, f ⫪ρ = f and f  is SΓ-epimorphism if and only if f SΓepimorphism . 

Proof.  First we must show f   is  well define . Let xρ, yρ ∈ M/ρ such that xρ = yρ, then (x,y) ∈ ρ ⊆ Ker(f) then f(x) = 

f(y). Then f  (xρ) = f   (yρ), this shows that f  is well defined. f  (sαxρ) = f  ((sαx)ρ) = f(sαx) = sαf(x) = sαf  (xρ), then  f   
is SГ-homomorphism and clearly  Im(f) = Im(f ). Let x ∈ M , the (f ⫪ρ)(x) = f  (⫪ρ (x)) = f  (xρ) = f(x) 

for all  x ∈M then f ⫪ρ = f and clearly f   is a uniqe  and f  SΓ-epimorphism if and only if f SΓ-epimorphism .       ⧠                        
 

From proposition(4.12) , if  f : M → N is an SΓ-homomorphism , then  M/ker(f) ≅  Im(f) 
 

Theorem 4.13 Let ρ1 and ρ2 be two congruences on SГ-act  M. with ρ1 ⊆ ρ2. Define  
 

ρ2/ρ1 = { (xρ1,yρ1) ∈ (M/ρ1)×(M/ρ1) |  (x,y) ∈ ρ2}. Then 

 

1. ρ2/ρ1 is a congruence on M/ρ1. 

2. (M/ρ1)/(ρ2/ρ1) ≅ M/ρ2. 

 

Proof.  1. First we show that ρ2/ρ1 is an equivalent relation on M/ρ1 , let xρ1∈ M/ρ1 , implies (xρ1,xρ1)∈ ρ2/ρ1 . If 

(xρ1,yρ1)∈ M/ρ1 then (x,y) ∈ ρ2 and (y,x) ∈ ρ2 therefore (yρ1,xρ1) ∈ ρ2/ρ1. Next if (xρ1,yρ1) and (yρ1,zρ1) then 

(x,y),(y,z) ∈ ρ2 we get (x,z) ∈ ρ2 ,then (xρ1,zρ1) ∈ ρ2/ρ1 . Finally let s ∈ S , α ∈ Г , (xρ1,yρ1) ∈ ρ2/ρ1 , then (x,y) ∈ρ2 

and (sαx,sαy) ∈ρ2 implies that  (sαxρ1,sαyρ1) ∈ ρ2/ρ1  . 

2 . Define Φ: (M/ρ1)/(ρ2/ρ1)→M/ρ2 by Φ((xρ1)( ρ2/ρ1)) = xρ2 for all x ∈ M. If (xρ1)( ρ2/ρ1) = (yρ1)( ρ2/ρ1) then 

(xρ1,yρ1) ∈ ρ2/ρ1 and (x,y) ∈ ρ2 implies xρ2 = yρ2. let  xρ2∈M/ρ2 then x ∈ M , xρ1∈ M/ρ1, (xρ1)( ρ2/ρ1) ∈ 

(M/ρ1)/(ρ2/ρ1) such that Φ((xρ1)( ρ2/ρ1)) = xρ2 and hence Φ is onto ,let  Φ((xρ1)( ρ2/ρ1)) = Φ((yρ1)( ρ2/ρ1)) , implies 

that xρ2 = yρ2, (x,y) ∈ ρ2  then  (xρ1,yρ1) ∈ ρ2/ρ1 and (xρ1)( ρ2/ρ1) = (yρ1)( ρ2/ρ1) this shows Φ is injective. Finally, let 

s ∈S , α ∈ Г and  (xρ)( ρ2/ρ1) ∈ (M/ρ1)/(ρ2/ρ1), then Φ(sα(xρ1)( ρ2/ρ1)) = Φ((sαx)ρ1)( ρ2/ρ1)) = (sαx)ρ2 = sα(x)ρ2 =  

sαΦ( (xρ1) ρ2/ρ1)).Then (M/ρ1)/(ρ2/ρ1) ≅ M/ρ2          ⧠ 
 

 

5. Finite generated, cyclic and simple gamma acts. 
Let M be an SГ-act and X a nonempty subset of M we have proved that [X]M  is the smallest SГ-subact of M which 

contains X .Note that  [X]M  ≔ ⋂{B | X ⊆ B , B ≤ M } is the SГ-subact generated by X . In the following  

proposition we describe [X]M  in terms of  their elements . 
  

Proposition 5.1 Let M be an an SГ-act and X a nonempty subset of M . Then [X]M =   SГuu∈X   where 

 SГu = { sαu | s ∈ S and α ∈ Г  } . 

  

Proof.  Let W =  SГuu∈X . , x ∈ W , s ∈ S  and α ∈ Г .  There is  s' ∈ S , α' ∈ Г , u∘ ∈ X such that x = s'α'u∘ , then  

sαx = sα( s'α'u∘) = (sαs')α'u∘ ∈ SГu ∘⊆ W , we have  W ≤ M . Since for all x ∈ X ,  x = 1α˳x ∈ SГx ⊆ W  then X ⊆ W  

. By definition of  [X]M we get  [X]M⊆ W . Now if  x ∈ W , then x = sαu'∈ [X]M where s ∈ S , α ∈ Γ and u'∈X   , then 

W ⊆ [X]M . we get W = [X]M . 

 
Proposition 5.2 Let M be an SГ-act  and A, B nonempty subsets of M .Then 

1. [A⋂B] ⊆ [A]⋂[B] 

2. [A B] = [A] [B] 

3. if f : M → N is an SГ-homomorphism , then f([A]M) = [f(A)]N 

4. if f : M → N is an SГ-epimorphism and ⌀≠ C ⊆ N , then [f-1(C)]M ⊆ f-1
([C]N) 

 

Proof.  1. Let x ∈ [A⋂B] then there is s ∈ S ,α ∈ Г , x' ∈ A⋂B such that x = sαx' , then  x = sαx'∈ [A] , x = sαx' ∈ 

[B] . Then x = sαx' ∈ [A]⋂[B] , we get [A⋂B]⊆[A]⋂[B]  .  



ISSN 2320-5407                           International Journal of Advanced Research (2016), Volume 4, Issue 6, 1592-1600 

1599 

 

2.  [A B]= SГuu∈A B =( SГuu∈A ) ( SГuu∈B )=[A] [B] .We get [A B]=[A] [B] . 

3. Clearly that (A) is nonempty and since [A]M ≤ M , then  f([A]M) ≤ N by proposition 4.5 and 

f([X]M) = { f(sαx) | sαx ∈ [x]M }, [f(X)]N = { sαf(x) | x ∈ X } and since f is SГ-homomorphism we get 

f([A]M)=[f(A)]N 
4.  it is clear  f-1

(C) is a nonempty subset of N, [f-1
(C)]M = { sαx |  s ∈ S  ,  α ∈ Г and x ∈ f-1

(C)} ,  

f-1([C]N)= { x ∈ M | f(x) ∈ [C]N }. If x ∈ [f-1(C)]M then there exist  s ∈ S , α ∈ Г and x'∈f-1(C) such that x = sαx' , then 

f(x) = f(sαx') = sαf(x') ∈ [C]N  .                                                                                                                       ⧠ 

     

Definitoin 5.3  A nonempty subset U of SГ-act M is said to a set of generating elements or generating set of M if  

M = [U] .  We say that M is finitely generated if [U] = M for some subset U of M which  |U|< ∞. And M is a cyclic 

if M = [{u}] for some u ∈ M . In particular M = [M] . 

 

Proposition 5.4 Let f:M→N be SГ-homomorphism .Then 

1. If M is finitely generating (cyclic), then (M) is finitely generating (cyclic) . 

2. If M = [U] and Φ:M→N be SГ-homomorphism , then if f(u) = Φ(u) for all u ∈ U implies f = Φ . 

 

Proof.  1. Follows from Proposition (5.2). 

2 . For  m ∈ M , f(m) = f(sαh) = sαf(h) = sαΦ(h) = (sαh) = Φ(m) for some s ∈ S, α ∈ Г , h ∈ U  .                 ⧠                                                                                                        

 

Note . Let M be an  SΓ-act and let m°∈M . Then  <m°> = SГm° = { sαm° |  s ∈ S , α ∈ Г  } is a  cyclic  SΓ-subact of 
M generated by m° . 

  

Example 5.5 Consider the gamma act in example(2.6)(m) where n = 2 .Then [(1,0)]={ (sα,0) | s ∈ S , α ∈ Г  }  and  

[(0,1)] = { (0,sα) | s ∈ S , α ∈ Г } .  

 

Example 5.6 Consider the gamma act in example(2.4) (H) .Then [{a}]={ AB{a} | A ∈ S , B ∈ Г  } =  {⌀ , {a} } and  

 [{a,b,c} ] = { AB{a,b,c} | A ∈ S , B ∈ Г } = S . We get SГ-act S be cyclic SГ-act   generated by {a ,b ,c} . 

 

Example 5.7 It is well-known that ℤ is ℤℕ-act . A ℤℕ-subact ℤe  is cyclic. 

  .  

Definition 5.8 Let M be an SΓ-act . Then  

1. M is a simple SГ-act , if it contain no gamma subact  other than M . 

2. M is a 1-simple SГ-act , if it contain no gamma subact other than M and 1-element  gamma subacts . 

 

Examples 5.9  clearly one element SГ-act  is simple  

 

Clearly every simple is a 1-simple ,but the converse may not true as in the following example . 

 

Let S = ℚ , Г = ℤ  , M = ℚ . Then M is a Γ -semigroup by usual multiplication of numbers . i.e (r1,z,r2) → r1.z.r2 be 

usual multiplication of numbers . Let N = {0} is clear that N ≤ M but N ≠ M then M is not simple  SГ-act but 1-

simple  since .  let N be non singleton SГ-subact of M. Let 0 ≠ x ∈ N,  then  
1

x
 ∈ S and  

1

x
.1.x = 1 ∈ N . Now to show 

N = M let y ∈ M = S then y.1.1 = y ∈ N .we get N = M. 

 

Proposition 5.10  Let M be an SΓ-act.If M  is simple. Then M = SΓm  for every m ∈ M .   

 

Now we give condition under which cyclic gamma acts are simple . 
 

Proposition 5.11 Let M be cyclic SГ-act generated by u , and ρ be a congruence on M . Then the cyclic gamma act 

M∕ρ is simple if and only if uρ ⋂ SГm ≠ ∅ for any m ∈ M . 

 

Proof.  Assume that M∕ρ be simple, ⫪ρ : M → M/ρ be  the canonical epimorphism and m ∈ M . Then ⫪ρ(SГm) is a 

gamma subact of M/ρ .Since M/ρ is a simple we have ⫪ρ(SГm) = M/ρ .Hence there exist x ∈ SГm such that ⫪ρ(x) = 

uρ .Thus x ∈ uρ and uρ ⋂ SГm ≠ ∅  . 
Conversely. Let N ≤ M/ρ and t ∈ ⫪ρ

−1(N) .By hypothesis there exist s ∈ S , α ∈ Г such that sαt ∈ uρ . Now 

 uρ = ⫪ρ(sαt) = sα⫪ρ(t) ∈ N . This implies M/ρ = SГuρ ≤ N. Hence N = M/ρ .    ⧠   
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Definition 5.12 Let M be an SГ-act and N ≤ M .A Rees congruence ρN  is a congruence on M define by a ρN b if  and 

only if a , b in N or a = b . We denote the resulting factor by M/N and call it the Rees factor of M by the gamma 

subact N.  Clearly M/N has a zero element which is the class consisting of N, all other class are one-element sets  

 

The following statement is a corollary of the previous proposition. And can also be obtained straightforward from 
definition of a simple act. 

 

Proposition 5.13 Let N be a gamma subact of M . The Rees factor M/N is a simple if and only if  N = M  

 

Definition 5.14  Let M be SГ-act. M is called decomposable, if there are two sub act B, C of M  such that 

 M = A   B, A ⋂ B = ⌀, otherwise M is call indecomposable. 

 

Proposition 5.15  Every cyclic SГ-act is indecomposable . 

 

Proof.  let M = [{u}] and let M = A B (A ,B ≤ M) u ∈ M = A B then either  a ∈ A or a ∈ B . If a ∈ A then  

M = [{a}] ⊆ A. Then M = A, or a ∈ B implies M = B                                                                              ⧠                   

 

Lemma 5.16 Let M be SГ-act,  I be nonempty set, Ai be indecomposable  SГ-subact of M for all i ∈ I, and  

⋂ Aii∈I ≠⌀. Then Aii∈I   is indecomposable SГ-subact  . 

 

Proof.  Clearly  Ai i∈I is an  SГ-subact from M  . Assume there exists A decomposition  Aii∈I = B C,  let x 

∈ ⋂ Aii∈I ⊆ Aii∈I = B C with B⋂C = ⌀ . Then either x ∈  Aii∈I ⋂B or x ∈  Aii∈I ⋂C . And since  

 Ai  =  Ai ⋂ (B   C) = (Ai   B ) ⋂ ( Ai   C ) = ⌀  ,  a  contradiction!    ⧠  
 

Definition 5.17 Let M be (T-S)Г-biact  . A nonempty subset N  of M is called  

1. A right (T-S)Г-subbiact  , if N is  SГ-subact on M , i.e. NГS ⊆ N . 

2. A left (T-S)Г-subbiact  , if N is TГ-subact on M , i.e TГN ⊆ N . 

3. (T-S)Г-subbiact, if  it is right and left (T-S)Г-subbiact ,i.e TГN ⊆ N and NГN ⊆N     

 

Definition 5.18  . Let M be (T-S)Г-biact . Then M is called  

1. Right simple (T-S)Г-biact . If it has not right (T-S)Г-subbiact  other than M  

2. Left simple (T-S)Г-biact . If it has not left  (T-S)Г-subbiact  other than M  
3. Simple (T-S)Г-biact  . If it has not neither left nor right (T-S)Г-subbiact other than M                                                  

 

Theorem 5.19 Let M be (T-S)Г-biact . If M is a left or right simple (T-S)Г-biact , then M is a simple (T-S)Г-biact  . 

 

Proof.  consider M is right simple (T-S)Г-biact  , Let N be (T-S)Г-subbiact on M .Then N is left and right  

(T-S)Г-subbiact on M , and since M is a right simple , N is a right (T-S)Г-subbiact  implies that N = M . M .By the 

same we proof if M is a left simple (T-S)Г-biact  . 

 

Theorem 5.20 Let M be (T-S)Г-biact . Then  

1. M is a right simple if and only if mГS = M for all m ∈ M . 

2. M is a left  simple if and only if TГm = M  for all m ∈ M . 

 

Theorem 5.22  Let M be (T-S)Г-biact . Then M is a simple (T-S)Г-biact if and only if TГmГS = M for all m ∈ M . 

  

Proof.  ⇒      it is clear 

Conversely let N be (T-S)Г-subbiact ,and n ∈ N ,implies TГnГS = M . Now let  

m ∈ M = TГnГS , then m = tαnβs ∈ N  , t ∈ T , α ,β ∈ Г and s ∈ S. Implies that M = N .    
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