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The object of the present paper is finding the best estimator for the scale 

parameter of Inverse Gamma distribution using Linex loss function and 

Squared error loss function with non-informative  prior, and compared with 

Bayes estimators under quadratic loss function with the same  prior. The 

comparison was made on the performance of these estimators with respect to 

the mean square error (MSE) and the mean percentage error (MPE). The 

results showed that the Bayes' estimator under Linex loss function is the best. 
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INTRODUCTION 
In Bayesian estimation, we consider two types of loss functions. The first is squared error loss function which 

classified as a symmetric function and associates equal importance to the losses for overestimation and 

underestimation of equal magnitude. The second is the Linexloss function (exponential where the name LINEX is 

justified by the fact that is, this loss function rises approximately linearly on one side of zero and approximately 

exponentially on the other side) loss function which is asymmetric.  

 

LINEX Loss Function and its Properties  

Thompson and Basu (1996) identified a family of loss functions L(Δ), where Δ is either the estimation error 

(𝜃 − θ) or the relative estimation error (𝜃 − θ) / θ, such that 

• L(0) = 0 

• L(Δ) >(<) L(−Δ) >0 for all Δ >0 

• L(⋅) is twice differentiable with L′(0) = 0 and L′′(Δ) >0 for all Δ ≠ 0. 

• 0 <L′(Δ) >(<) − L′(−Δ) >0 for all Δ >0. 

Such loss function is useful whenever the actual losses are nonnegative, increases with estimation error, 

overestimation is more (less) serious than under estimation of the same magnitude and losses increase at a faster 

(slower) rate with overestimation error. 

Considering the loss function: 

L∗(Δ) ∝b exp(aΔ) + cΔ + d 

and with the restriction L∗(0)=0, (L∗)′(0)=0, we get d=−b and c=−ab, see Thompson and Basu (1996). The resulting 

loss function is: 

L∗(Δ) ∝b[exp(aΔ) − aΔ −1]       
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Which is considered as a function of θ and 𝜃 , is called the Linex loss function, a and b are constants with b >0 so 

that, the loss function is nonnegative. [2] 

In Bayesian analysis the unknown parameter is regarded as being the value of a random variable from a given 

probability distribution, with the knowledge of some information about the value of parameter prior to observing the 

data x1, x2…xn. 

The object of the present paper is to obtain Bayesian estimates of the scale parameter for Inverse Gamma 

distribution using Linexloss function with non-informative prior. The comparison was based on a Monte Carlo 

study. The efficiency for the estimators was compared with respect to the mean square error (MSE) and the mean 

percentage error (MPE). 

 

Bayes' Estimators 

Let x1, x2, …,xn be a random sample of size n, the n items have an independent and identically Inverse Gamma 

distribution, with probability density 

𝑓 𝑥, λ, θ =
θ

λ

Γλ
𝑥−λ−1  e−θ x , 𝑥 ≥ 0                             (1) 

Where 𝝀 is the location parameter and 𝜽 is the scale parameter. 

Bayes' estimators for the scale parameter 𝜽 was considered with Linex loss function and quadratic loss function with 

non-Informative prior, which represented by Jeffreys prior distribution of (θ) where: 

 

𝑝 𝜃 ∝  𝐼(𝜃)                  (2) 

 

𝑝 𝜃 = 𝑘 𝐼 𝜃  , I() is a Fisher information [5] 

 

𝑝 𝜃 = 𝑘 −𝑛𝐸(
𝜕2𝑙𝑛𝑓

𝜕𝜃2
)

𝜕2

∂θ
2 

 

𝑙𝑛𝑓 𝑥, 𝜆, 𝜃 =
−𝜆

𝜃2
 

𝑙𝑛𝑓 𝑥, 𝜆, 𝜃 = 𝜆𝑙𝑛𝜃 − 𝑙𝑛𝛤𝜆 −  𝜆 + 1 𝑙𝑛𝑥 −
𝜃

𝑥

𝜕

∂θ
𝑙𝑛𝑓 𝑥, 𝜆, 𝜃 =

𝜆

𝜃
−

1

x
 

Hence: 

𝑝 𝜃 =
𝑘

𝜃
 

The posterior distribution for θ given random sample X=(x1,x2,…,xn) is: 

 

h λ, θ x1, x2, … , xn =

𝜃𝑛𝜆

 𝛤𝜆  
𝑛  𝑥−𝜆−1𝑒−𝜃𝑛

𝑖=1  1 𝑥𝑖 𝑛
𝑖=1 

 
θnλ

 Γλ 
n

∞

0  𝑥−𝜆−1𝑒
−𝜃  1 𝑥𝑖𝑑𝜃 𝑛

𝑖=1𝑛
𝑖=1

   (3) 

ℎ 𝜆, 𝜃 𝑥1, 𝑥2, … , 𝑥𝑛 =
  

1

𝑥𝑖

𝑛
𝑖=1  

𝑛𝜆
𝜃𝑛𝜆 −1    𝑒−𝜃  1 𝑥𝑖 𝑛

𝑖=1 

𝛤 𝑛𝜆  
                  (4) 

We notice that: 

𝜃~𝛤
 𝑛𝜆 ,   

1

 1 𝑥𝑖 𝑛
𝑖=1 

 
 

 

i-Bayes Estimation of θ under Squared Error Loss Function 

 
The squared error loss function is: 

𝑙1 𝜃 , 𝜃 =  𝜃 − 𝜃 
2
        (5) 

 

We drive the corresponding Bayes estimator for  using risk function where 

 

R 1 𝜃 , θ =   𝜃 − 𝜃 
2

  h λ, θ x  dθ
∞

0
                    (6) 
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                 = θ 
2
− 2𝜃 E(𝜃 𝑥 + 𝐸(𝜃2|𝑥) 

Let: 
𝜕

𝜕𝜃
𝑅 1(𝜃 , 𝜃) =0  𝜃 1 =𝐸(𝜃|𝑥 ) 

 

Hence: 

𝜃 1=
𝑛𝜆

 1 𝑥𝑖 𝑛
𝑖=1

                     (7) 

 

ii- Bayes Estimation of θ under Linex Function 

 

Zellner (1968) proposed the Linex loss function[6] 

 

𝑙2(𝜃 , 𝜃) =𝑏 𝑒𝑎(𝜃 −𝜃) − 𝑎(𝜃 − 𝜃) − 1  
 

Where, b>0 , a≠0. Then, the risk function is 

 

𝑅 2 𝜃, 𝜃 =  𝑏 𝑒𝑎 𝜃 −𝜃 − 𝑎 𝜃 − 𝜃 − 1 
∞

0
ℎ 𝜆, 𝜃 𝑥 𝑑𝜃                         (8) 

 

= beaθ E e−aθ − abθ + abE θ − 𝑏 

𝜕R 2

∂θ 
= ab eaθ E e−aθ − ab 

 

Let: 
𝜕𝑅 2

𝜕𝜃 
= 0 

On simplification, we get: 

 

𝜃 =
−1

a
  Ln 𝐸(𝑒−𝑎𝜃 ) (9) 

 
 

E e−aθ =  e−aθ∞

0
ℎ 𝜆, 𝜃 𝑥 𝑑𝜃   

 

=  𝑒−𝑎𝜃∞

0

  
1

𝑥𝑖

𝑛
𝑖=1  

𝑛𝜆
𝜃𝑛𝜆 −1    𝑒−𝜃  1 𝑥𝑖 𝑛

𝑖=1 

𝛤 𝑛𝜆  
𝑑𝜃  

 

=  
 1 𝑥𝑖 𝑛

𝑖=1

𝑎 +  1 𝑥𝑖 𝑛
𝑖=1

 

𝑛𝜆

 

 

After substitution on (9), we find that: 

 

𝜃 2 =
−1

a
  Ln 

 1 𝑥𝑖 𝑛
𝑖=1

𝑎+ 1 𝑥𝑖 𝑛
𝑖=1

 
𝑛𝜆

                                  (10) 

 

Simulation and Results 

In this section, Monte–Carlo simulation study is performed to compare the methods of estimation by using 

mean square Errors (MSE’s) and the mean percentage errors (MPE’s), as follows: 

 

𝑀𝑆𝐸 𝜃  =  
  θ i−𝜃 

2𝑅
𝑖=1

𝑅
and𝑀𝑃𝐸 𝜃  =  

  θ i−𝜃  𝑅
𝑖=1

𝜃

𝑅
 

 

Where R is the number of replications. 
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We generated R= 2000 samples of size n = 20, 50 and 100, to represent small, moderate and large sample sizes from 

Inverse Gamma distribution with θ = 1.5, 3 

We chose the values of a; (a = -2, 0.5, 1, 3). The results were summarized and tabulated in the following tables for 

each estimator and for all sample sizes. 

 

From tables (1) and (2), it appears that, 𝜃 2 which represented Bayes estimator under Linex loss function, is better 

than 𝜃 1which represented Bayes estimator under Squared error loss function, when (a > 0). 

We can see clearly that, when (= 1.5) 𝜃 2became the best when (a=3) with all sample sizes, While with (= 3), 𝜃 2 

became the best when (a=1) with all sample sizes. 

In general, we can say that, the Bayes' estimator under Linex loss function when (a > 0) is the better than 

Bayes estimator under Squared error loss function with all sample sizes and we reach to the estimator become better 

when a = 1 with a large values of   while it was better with large value of of a (a=3) with small values of  . 

 

 

Table 1: MSE’s and MPE’s of estimated the scale parameter ofInverse Gamma distribution with =1.5. 

 

n Criteria 𝜃 1 
𝜃 2 

a = -2 a=0.5 a = 1 a = 3 

20 

EXP. 1.5260 1.5665 1.5158 1.5060 1.4690 

MSE 0.0419 0.0504 0.0405 0.0392 0.0364 

MPE 0.1059 0.1146 0.1045 0.1034 0.1014 

50 

EXP. 1.5103 1.5258 1.5065 1.5027 1.4878 

MSE 0.0157 0.0169 0.0155 0.0153 0.0148 

MPE 0.0663 0.0687 0.0659 0.0655 0.0647 

100 

EXP. 1.5060 1.5136 1.5041 1.5022 1.4947 

MSE 0.0075 0.0078 0.0075 0.0074 0.0073 

MPE 0.0457 0.0465 0.0456 0.0454 0.0450 

 

Table 2: MSE’s and MPE’s of estimated the scale parameter ofInverse Gamma distribution with  = 3. 

n Criteria 𝜃 1 
𝜃 2 

a = -2 a= 0.5 a = 1 a = 3 

20 

EXP. 3.0512 3.2212 3.0124 2.9749 2.8367 

MSE 0.1677 0.2554 0.1569 0.1496 0.1499 

MPE 0.1059 0.1283 0.1034 0.1019 0.1051 

50 

EXP. 3.0206 3.0836 3.0054 2.9904 2.9323 

MSE 0.0629 0.0748 0.0612 0.0601 0.0600 

MPE 0.0663 0.0721 0.0655 0.0650 0.0655 

100 

EXP. 3.0120 3.0427 3.0044 2.9969 2.9673 

MSE 0.0301 0.0330 0.0296 0.0293 0.0292 

MPE 0.0457 0.0477 0.0454 0.0452 0.0454 
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