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A new algorithm that can extract clusters in single-step based on a new 
information-theoretic notion is described. New method employs similarity-
based sample entropy and probability descriptions to express scatter in a 
given dataset. Based on these quantities, a new information-theoretic 
association measure called mutual irrelevance metric is defined to model a 
(dis)-connectivity rule between samples. This metric is utilized for 
determining candidate cluster representative samples coined cluster 
indicators. Possible clusters are established based on an association quantity 
between samples and cluster indicators in a single iteration. Clustering 
capability of new approach is demonstrated for a non-convex dataset, which 
is hard to cluster by using most well known counterparts. It is also tested and 
compared to major algorithms for publicly available real datasets. 
Experimental results reveal that the proposed approach outperforms 
predecessors it is compared to. 
 

Copy Right, IJAR, 2015. All rights reserved. 

 
 
Introduction 
 
Given a dataset, a clustering algorithm is judged in terms of its capability in identifying most representative clusters 
as a means of compact groupings with optimal fit to sample scatter, which can be validated in varying ways, [1]. 
Prominent clustering methods seek certain regularities in scatter of possible cluster samples which can be attributed 
to by statistical models: Partitioning methods search for an optimal partition with k clusters to which N data points in 
dataset in feature space are to be assigned based on a criterion as a separation quality between clusters against 
compactness within clusters. They are of iterative nature to obtain such a factor of variation in 
distortion/compactness measure versus the a priori number for clusters. For example, k-means, [2], and mixture of 
varying densities/distributions, [3], generally run with complexity of O(kNI) where k is the a priori number of 
clusters assumed and I is the number of iterations which heavily relies upon a prespecified termination rule. As a 
different group of partitioning algorithms, spectral methods can successfully extract non-convex clusters in dataset 
with reduced dimensions by using k largest eigenvectors corresponding to Laplacian of the similarity or adjacency 
matrix, [4]. They operate with complexity of O(N3/2+kNI) or higher where initialisation and/or post processing steps 
may benefit from some fast partitioning methods, such as k-means. Hierarchical methods form clusters by 
merging/dividing sample subgroupings recursively till no more connected group is possible, which yields a 
connectivity pattern called dendogram. Due to intensive recursions, their time complexity is high, e.g. O(N3) while 
time complexity of some speed-up agglomerative hierarchical algorithms reduces to O(N2), [5]-[6]. Although they 
are generally not good competent at identifying overlapping densities as well as sensitive to outliers, most 
hierarchical algorithms do not require the a priori knowledge for the number of clusters. Density-based clustering 
algorithms determine clusters as sample groups where they are densely localized. DBSCAN, [7], similar to  
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connectivity in hierarchical clustering algorithms, assumes clusters from those connected samples which reside at a  
distance smaller than a pre-specified threshold as well as subject to a minimum number of samples which satisfy the 
former criterion. In mean-shift clustering, individual samples are (virtually) relocated or replicated to the possibly 
densest neighbourhood based on estimated maxima of kernel density, [8]. A sample that resides at a (local) 
maximum of density after samples have moved is considered as a centroid/mean. Both density-based methods do not 
involve the knowledge for the number of clusters a priori, and impose no constraint on the shape of the clusters. 
Since mean-shift algorithm highly relies on estimating the neighboring samples to which mean vectors are to be 
shifted at each successive step, it is computationally expensive with complexity of O(N2I) where I was cited 
previously compared to DBSCAN which usually has complexity of O(NlogN).  

Information-theoretic entropy and mutual-information descriptions are invariant to modelling data 
representation besides capturing higher-order statistics involved, [9]. Since they also model sample scatter properties 
well where entropy and mutual information are considered as intuitive association measures, these have been 
employed in clustering, e.g. kernel-based hierarchical clustering with use of optimized quadratic mutual-information 
in [10], and clustering algorithm based on Renyi’s entropy in [11]. A recent study in [12] describes a method to 
estimate the number of clusters in single-step by identifying samples at possible cluster boundaries in a dataset based 
on information-theoretic sample entropy and probability descriptions. However, to our knowledge, there is no 
algorithm that gives both the number of clusters and forms the respective groupings in single-step or one-pass. 

This study presents a new, single-step information-theoretic algorithm based on a quantity called irrelevance 
metric between samples with use of similarity-based sample entropy and probability descriptions. Simulations show 
that new algorithm is highly successful in clustering even non-convex datasets for which major clustering algorithm 
fail in extracting actual cluster shapes. Furthermore, it is tested and compared to major algorithms for publicly 
available real datasets. Experimental results reveal that the proposed approach outperforms predecessors it is 
compared to in statistical terms. 

Proximity-based Sample Density and Entropy Definitions 
 
A definition of similarity, sij, which is also used in this study, between D-dimensional data samples (or feature 
vectors) xi and xj is commonly defined as 

sij = e
−βdij

2
 (1) 

The distance metric is Euclidean-squared distance between xi and xj given by 𝑑!"! = 𝐱! − 𝐱! 𝐱! − 𝐱!
!
. The 

parameter β is the kernel size or resolution parameter and it is usually taken 1. Then, given a dataset of N samples, 
we can define a similarity-based (experimental) probabilistic (SBP) term, to which xi is at the center of respective 
kernel density, as 

pi = sij
∀j≠i
∑   (2) 

The parameter γi is chosen such that, 𝛾! = 1∀!!! , which will be disregarded in this study. It is possible to express 
differential variation in similarity as 

∂sij = −2β isij (x i − x j )•∂(x i − x j ) =∇sij •∂(x i − x j )   (3) 

where ∇sij refers to the gradient vector of similarity between xi and xi with respect to difference vector xi - xj and ‘•’ 
is the dot-product operator. It should be noted that valley-seeking and mean-shift clustering algorithms seek a 
sample point xi that meets the following condition 

∇sij •∂(x i − x j )
j≠i
∑ = 0   (4) 

It is seen that as other samples are brought closer to xi respective SBD reaches a local maximum. In this manner, 
SBD is not a suitable quantity to assess sample scatter properties merely in uncertain or uniformly distributed  
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regions, which can be considered as boundaries between clusters. For example, in overlapping regions, due to 
superposition of similarities, SBD will not be able to adequately represent scatter of samples around xi. Similar to 
stochastic entropy definition, an experimental counterpart can be devised to express data scatter for this purpose, 
which we call similarity-based sample entropy (SBE). Thereby, it would be desirable to situate regions where 
samples are difficult to infer for membership to candidate clusters. It is possible to introduce a similarity-based 
entropy for sample xi as 

Hi = − sij∀j≠i∑ log sij   (5) 

From above descriptions, it is straightforward to observe close resemblance between information-theoretic 
probabilistic, i.e. stochastic, entropy and its experimental similarity-based counterpart: Given a particular sample xi 
its SBE decreases to a minimum as other samples are moved either very close to or far from it. It reaches a 
maximum as they are brought at a distance irregularly or randomly, which makes it difficult to assert on closeness. 

Proposed Clustering Algorithm 
 
For a dataset of N samples (or feature vectors), xi and xj in a D-dimensional data hyperspace, the similarity-based 
probability (SBP) for xi defined in (2) can be regarded as a marginal probability term where 𝑠!" = 𝑝!" = 𝑝(𝐱! , 𝐱𝐣) is 
the joint probability between xi and xj. Similarly, having defined the sample SBP as per, it is convenient to introduce 
similarity-based sample marginal entropy (SBE) as  

Hi = H (x i ) = − sij∀j≠i∑ log sij  (6) 

However, as suggested by [12], although SBP and SBE are capable of identifying samples that reside at boundaries 
of clusters in single-step, they fail in representing association to possible groupings. In order to associate samples to 
representative cluster identifiers, for a possible grouping or clustering, an association metric in terms of proximities 
between samples needs to be derived. Then, the conditional entropy between samples xi and xj can be given by 

Hi| j = H (x i | x j ) = pijlog(p j / pij ) = −sij log sij + sij log p j  (7) 

With conditional entropy definition in (7), it is possible to express how two samples can be interrelated in terms of a 
metric since Hi|j≠Hj|i. For this purpose we define a quantity called mutual irrelevance metric as a difference  

Ψ(x i,x j ) = Hi| j −H j|i = sij log(p j / pi )   (8) 

It should be noted that Ψ(x i,x j )  in (8) refers to a measure of net uncertainty reduction due to neighbourhood 
between these two samples. Total net uncertainty as distinctive characteristics for sample xi to be a representative 
sample within a grouping can be expressed as 

IΔ (x i ) = Ψ(x i,x j )∀j≠i∑ = −pi log pi + sij log p j∀j≠i∑   (9) 

which is a non-negative quantity for any i with 0 as a global minimum. For a simplified explanation of new 
descriptions above, we assume that xi is within a fixed distance to other samples such that sij =δ, with j≠ i, i.e. pi =(N-
1)δ and sjk =γ, for k≠j, i.e. pj = (N-1)γ, then 𝐼∆ ≈ −(𝑁 − 1)𝛿log (𝛾/𝛿) . If we regard xi being within a region of 
samples closely localized with respect to each other and xi, i.e.δ≈γ≈1, then we should expect 𝐼∆(xi) to decay to a local 
minimum. If other samples are moved further away from xi, then δ gets smaller, which may result in increase in 
𝐼∆(xi). However, depending on scatter properties of other samples such that δ >γ, 𝐼∆(xi) may decrease. Thus, we 
conclude that xi is a possible cluster indicator with pi, which goes to a locally maximum and enforces 𝐼∆(xi) to a 
locally minimum, e.g. 0. Similar to the definition of cluster boundary indicator function proposed in [12], an 
indicator function such as 𝜑 𝑖 = 𝑒! !∆(𝐱!) !can be exploited to identify such representative samples. It is observed 
that 𝜑 𝑖 may be exploited to refer to availability of a cluster when it is greater than a suitably chosen threshold ϕth,  
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i.e. xi is a cluster indicator c if ϕ(i) >ϕth. Each candidate cluster is initialised with respective indicator found as per. 
Other samples can be assigned to corresponding clusters by using a similar approach to mutual-information. Given a  
set of N samples X={xi}i=1…N and a set of K cluster indicators C={ck}k=1…K, a sample xm∈X can be assigned to 
clusters on the basis  

         
argmin

k
Ψ(c k,xm )+ IΔ (c k )

              
(10) 

The computational complexity of new algorithm is mainly due to calculation of similarity and similarity-based 
sample marginal probability terms in forming (1), (6) - (8), which easily facilitates forming the indicator function to 
determine possible cluster indicators. Once these terms have been obtained, (10) will provide a straightforward rule 
to cluster samples in kN steps once the indicator function has been formed to identify indicators. However, since 
these samples can be identified a priori without further iteration, the algorithm can be considered single-step. 

It is appropriate to visualize the capabilities of new algorithm and compare it against a popular partitioning 
algorithm, e.g. k-means. For this purpose, we consider the problem of clustering a dataset with two non-convex ring-
shaped inner-clusters shown in Fig. 1(a). A variant of k-means algorithm called k-means*, [13], which adopts weight 
adjustment of clusters is chosen. The k-means* algorithm is required to be fed with the number of clusters available. 
For this purpose, the number of cluster indicators found by the new algorithm based on ϕ(i) >ϕth with ϕth = 0.95 was 
used. A set of 2000 vectors x = [x1  x2] was generated from uniformly distributed 2D (bivariate) random density 
within region 𝑥!,! ≤ 2.5 and then the respective circular regions were defined as clusters. As an illustrative 
example, Fig. 1(a) shows two such clusters while Fig. 1(b) and (c) visualize simulation results for k-means* and new 
algorithms, respectively. From the plots, it is seen that new method successfully extracts the original non-convex 
clusters without distortion while k-means* counterpart fails even in regenerating shape of the clusters.  

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 1. Sample scatter of two inner-clusters: (a) raw dataset, (b) clustered with k-means* [13], (c) clustered with new 
algorithm. 
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Experiments 
 
Further to justification above, two sets of 100 experiments were conducted with publicly available real datasets for 
comparing new method and its hierarchical splitting, [5], k-means*, [13], kernel spectral with k-means, [14], 
DBSCAN, [7], and information-theoretic hierarchical (normal-density) model-based [10] counterparts. The kernel 
width for spectral method and other relevant methods was taken 1. For k-means*, spectral and information-theoretic 
model-based algorithms, the initial number of clusters was taken twice the (actual) number of clusters (or classes) 
and iteratively decremented to 1 with randomly selected training samples. The number of clusters was estimated 
based on Davies–Bouldin index, [15], as a compactness factor. Densities for DBSCAN and the clusters for splitting 
methods were formed with samples having similarity larger than 0.5 instead of conditional constraint of minimum 
number of samples to initiate density formation. For the information-theoretic algorithm, kernels utilized unity 
width. In evaluation, a pre-specified quadratic mutual-information function for inclusion and exclusion of samples 
and randomly initialized clusters were constructed. Those samples that contributed to incremental variation were 
included for the respective cluster otherwise excluded for considering to other available clusters. Clustering 
performance of algorithms were evaluated in statistical measures in (number of successfully classified samples)/N 
and (number of iterations)/N once number of classes/clusters has been found successfully.  

For the first set of 100 experiments, the Character Trajectories Dataset at (http://archive.ics.uci.edu/ml/machine-
learning-databases/character-trajectories/) was used. Dataset consists of 3-dimensional 2858 labelled samples of pen 
tip segment trajectories for the 20 single pen-down characters, e.g. ‘a’, ’e’, ‘w’. The feature vectors are composed of 
respective coordinates x, y, and pen tip force. At each experiment, 50 random samples from each of randomly 
selected 5 characters were drawn, i.e. N = 250. Minimum number of samples for DBSCAN algorithm to initiate 
density formation was taken 25. Performances of the algorithms studied are summarized in Table I.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table I. Statistical performance measures for the proposed (New) and some other clustering algorithms with 
Character Trajectory Dataset, D = 3. 

 
 

The second set of experiments was carried out with use of Musk (Version 2) Dataset at 
https://archive.ics.uci.edu/ml/datasets/Musk+%28Version+2%29. This dataset describes a set of 102 molecules of 
which 39 are judged by human experts to be musks and the remaining 63 molecules are judged to be non-musks. 
However, the D = 166 features that describe these molecules depend upon the exact shape, or conformation, of the 
molecule. Because bonds can rotate, a single molecule can have different shapes. To generate this data set, all the 
low-energy conformations of the molecules were generated to produce 6598 conformations. At each experiment, 
100 random samples were drawn from each class, i.e. N = 200. Each feature was normalized to respective maximum 
to allow straightforward computation of distances and avoid prohibitive matrix inversion operation. Table II 
summarizes performances of the algorithms studied. 

Algorithm 
Classification 

success, % 
Number of 

clusters found 
(Number of 
iterations)/N 

Avg. / Std. dev. Avg. / Std. dev. Avg. / Std. dev. 
New 68.3 / 2.8 4.8 / 0.7 1.4 / < 0.2 
Splitting, [5] 49.7 / 3.5 4.4 / 1.3 302.5 / 11.7 
k-means*, [13] 53.6 / 3.2 5.3 / 1.5 92.1 / 7.8 
Kernel spectral, [14] 44.2 / 4.1 4.5 / 1.5 295.3 / 11.2 
DBSCAN, [7] 57.5 / 3.2 4.2 / 1.6 73.6 / 7.5 
Information theoretic  
kernel density, [10] 43.3 / 4.6 5.7 / 1.9 414.3 / 15.2 
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Table II. Statistical performance measures for the proposed (New) and some other clustering algorithms with Musk 
(Version 2) Dataset, D =166. 

 

Conclusions 
 
A new information-theoretic algorithm that can identify clusters in single-step is introduced based on similarity-
based sample entropy and probability descriptions. Based on these quantities, a new information-theoretic notion 
called mutual irrelevance metric is defined to model mutual neighborhood association between samples. This metric 
is further employed in identifying candidate cluster representative samples coined cluster indicators. Candidate 
clusters are formed based on an association quantity between samples and cluster indicators in a single iteration. 
New approach is justified for a non-convex dataset, which is hard to cluster by using most counterparts.  Proposed 
and some major algorithms are tested and compared to major algorithms for publicly available real datasets. 
Experimental results show that the new algorithm excels the predecessors it is compared to. 
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