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In this Paper we present the analysis of the data considered for the study on 

1240 tuberculosis patients admitted into the randomized control trial. 

Survival techniques such as Kaplan Meier estimator and accelerated failure 

time models have been used to study about the sputum conversion (positive 

to negative) times. The effects of different treatment regimen are also tested. 

The analysis is done in SPSS and STATA.  

In Section 3.1 Kaplan Meier estimates and survival curves for 

gender of patients are presented and in the following Section 3.2 Kaplan 

Meier analysis and survival curves for treatment groups are presented and 

log-rank test is used to test the equality of the survival distributions in both 

cases. In Section 4 we present the STATA outputs of the applications of 

Accelerated failure time models of the results are discussed. In section 5 the 

overall results are discussed. 
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1.INTRODUCTION  
Survival analysis is an area of Statistics that was developed to analyze data representing times from a time 

origin until the occurrence of the event of interest.  In medical research, the time origin is often the time of recruitment 

into a clinical trial or study.  Although, the event of interest can be the death of the patient, recurrence of symptoms or 

any other particular event, the event of interest is usually named death and the time since the time origin until the event 

of interest is named survival time.  

Let T be the nonnegative random variable representing the failure time of an arbitrary individual.  We 

assume that the probability distribution of T  is described by a density function )(tf .  We shall introduce the Survival 

function )(tS  and the hazard function )(t  which characterize the distribution of T  as well.  

The survival function )(tS  is defined by 

)()( tTPtS   

and is equal to )(1 tF , where )(tF  is the cumulative distribution function of  T . (Note 0)(  tXP  for each 

number t  in case of a density function.)  

Since the cumulative distribution function )(tF  specifies the distribution ofT , the distribution of T  is specified as 

well by the survival function )(1)( tFtS  . 

The hazard function )(t  specifies the instantaneous rate of failure at tT   conditional upon survival to 

time t  and is defined by the limit for 0  of the following ratio: 
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Note that the derivative of the survival function )(tS  is equal to )(tf . The distribution of T  is specified by its 

hazard function as well because the survivor function is determined by the hazard function: 
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2 Accelerated Failure Time model 
For many decades the Cox proportional hazard model has been used to examine the covariate effects on the 

hazard function for the failure time variable. An alternative method to Cox PH is Accelerated Failure Time. It is one of 

the very important regression models in survival analysis where censoring is present. The Accelerated Failure Time 

model which regresses the logarithm of the survival time over the covariates, the Accelerated Failure Time model is 

applied in the field of Reliability, Industry, etc. If the Cox PH assumptions does not hold good then Accelerated Failure 

Time model can be used (Miller 1981, Cox and Oakes 1984 , Collet 1994 , Everitt 1998, Lee and Wang 2003).  

 

The Accelerated Failure Time model is a linear regression model in which the response variable is the 

logarithm or a known monotone transformation of a failure time (Kalbfleisch and Prentice, 1980). Semi-Parametric 

estimation in the Accelerated Failure Time model with an unspecified error distribution has been studied extensively 

for the right censored data. The Accelerated Failure Time models can be used to describe the influence of unobserved 

heterogeneity in a non- parametric and parametric PH models. The under lying assumption of Accelerated Failure Time 

models is that the effect of covariates is multiplicative (proportional) with respect to the hazard. The acceleration factor 

is the key measure of association obtained in an Accelerated Failure Time model. These models allow evaluating the 

effect of predictor variable on survival time just as the hazard ratio allows the evaluation of predictor variable on the 

hazard.  

 

3. Kaplan-Meier Analysis 
 

The Kaplan–Meier estimator, also known as the product limit estimator, is an estimator for estimating the 

survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a 

certain amount of time after treatment. In economics, it can be used to measure the length of time people remain 

unemployed after a job loss. In engineering, it can be used to measure the time until failure of machine parts. In 

ecology, it can be used to estimate how long fleshy fruits remain on plants before they are removed by frugivor 

 

3.1 Kaplan-Meier Analysis for the sex of the patients 
 

In this section we perform Kaplan Meier analysis for the sex of the patients included in the study and obtain 

their means and median survival times and the survival curve for the sex of the patients is also obtained. The equality of 

survival distributions is tested using the log-rank test. 

In the table below the significance values based on different tests for equality of the survival distributions of 

gender of patients is given. 
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Table 3.1.1 

Test for equality of survival distributions for sex of the patients. 

 

 Chi-Square Df Sig. 

Log Rank 

(Mantel-Cox) 

16.892 1 0.000 

Breslow 

(Generalized 

Wilcoxon) 

24.524 1 0.000 

Tarone-Ware 22.282 1 0.000 

 

The above Table 3.1.1 shows that all the three tests for the equality of survival distributions are highly 

significant, which means that there is a significant difference in survival between the male and female. From the 

survival curve we can also infer that males have better survival than females. 

  

 Having tested for the survival distributions we now present the survival curve for the gender of the patients in 

the figure below.  

 

Figure 3.1.1 Survival curve for sex of patients 

 
The survival curve for the gender of patients shown above figure 3.1.1 tells that the survival for males is 

higher than the survival for females. Kaplan Meier method is a paradigm for nonparametric type; it has no assumption 

about the shape of hazard function. Hazard function is estimated based on empirical data, showing change over time 

and the Kaplan-Meier method in survival analysis is the best example. From the above Kaplan-Meier curves, we note 

that a substantial difference between the sex exists. From the graph we see that the survival function for each group of 

sex are not perfectly parallel but separate except at the  beginning and  The overlap at the middle will not cause too 

much concern because it is determined by only a very few number of censored subjects out of a sample with 1240 

subjects. 

 

3.2 Kaplan-Meier Analysis for  treatment groups 

 
In this Section we perform Kaplan Meier analysis for the different treatment regimen administered to the 

patients included in the study and obtain their means and median survival times and the survival curve for the regimen 

of the patients is also obtained. The equality of survival distributions is tested using the log-rank test. 

In the table below the significance values based on different tests for equality of the survival distributions for 

treatment regimen is given. 

 

Table 3.2.1 

Test for equality of the treatment regimens. 

 Chi-Square Df Sig. 

Log Rank (Mantel-Cox) 8.169 2 0.017 

Breslow (Generalized 

Wilcoxon) 

5.847 2 0.054 
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Tarone-Ware 6.954 2 0.031 

 

The above Table 3.2.1 shows that all the three tests for the equality of survival distributions for the different 

treatments are significant, which means that there is a significant difference in survival times of patients receiving 

different treatments. 

Having tested for the survival distributions of treatment regimen we now present the survival curve for the 

treatment regimen administered to the patients in the figure below. 

 

Figure 3.2.1 Survival Curve for treatment regimen. 

 
The survival curve for the treatment groups of patients shown above Figure 3.2.1 tells that the survival differs 

for different regimen .Kaplan Meier method is a paradigm for nonparametric type; it has no assumption about the shape 

of hazard function. Hazard function is estimated based on empirical data, showing change over time and the Kaplan-

Meier method in survival analysis is the best example. From the above Kaplan-Meier curve, we note that a substantial 

difference between the treatments exists. 

 

4. Analysis of AFT Models 

 
1240 Total observations  

      3 Observation end on or before enter 

1237 Observation remaining, representing  

1062 Failures in single record/ single failure data 

3054 Total analysis time at risk 

 

The covariates under the study are 

1. Age in years 

2. Treatment: regiment 

3. Gender: Male(1) Female(0) 

4. Drug susceptibility pattern: Res(1) Sen(0) 

5. Weight in Kg at the time of admission 

 

4.1.Exponential regression – log relative-hazard form  

 
In the following table a brief summary of the data and the loglikelihood measures under the exponential 

regression are displayed. The total observations used for the study are 1237 and the event of interest has occurred in 

1062 patients. The Likelihood ratio Chi-Square value is 87.2 and which is highly significant. The loglikelihood of the 

model is -1427.1052 

                        Table 4.1.1 

No. of subjects                     1237 

Number of observations 1237 
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No. of failures 1062 

Time at risk 3054 

LR chi2(5) 87.2 

Log likelihood -1427.1052 

Prob > chi2 0.000 

 

In the following table hazard ratio, standard error, significance and confidence intervals for each of the 

variables are displayed in table 4.1.2 

Table 4.1.2 

_t Haz. Ratio Std. Err. Z P>|Z| [95% Conf. Interval] 

Sexcode 0.79458 0.0601 -3.04 0.002 0.6851 0.92155 

Age 0.9979 0.00279 -0.75 0.452 0.99244 1.00338 

wt_0 1.01073 0.00476 2.27 0.023 1.00145 1.0201 

Present 1.99569 0.17799 7.75 0 1.67562 2.3769 

Groupreg 0.93993 0.03515 -1.66 0.098 0.87351 1.01141 

 

From the above STATA output we observe that the variables such as sexcode, weight, present and groupreg 

are found to be significant. The hazard ratio for each of the variables and their corresponding confidence intervals are 

also displayed. 

The loglikelihood (LL) of the model is found to be -1427.1052. Further we need to calculate  -2 logikelihood 

(-2LL) to decide up on the model that suits the data well. Hence we calculate -2 loglikelihood (-2LL), for the 

exponential model we have -2LL = -2(-1427.1052) = 2854.21. 

 

Remark 1 

The Hazard Ratio of the variable Present (it is a drug susceptibility test which tells whether a particular drug 

works well for a particular patient or not) in Exponential model is 1.99569. So we now have exp (1.99569) = 7.357278. 

Those who are sensitive to the drug are likely to reduce the sputum conversion time by 7 times compared to the patients 

who are resistant. The weight of the patient also has a significant impact on their sputum conversion times. Similar 

interpretations can be made using the Hazard Ratio of variables in the model. 

Similarly we calculate the loglikelihood values under different distributions and make comparisons. In the 

next section we shall discuss the results under weibull model. 

 

4.2 Weibull regression -- log relative-hazard form  

 
In the following table a brief summary of the data and the loglikelihood measures under the Weibull 

regression are displayed. The total observations used for the study are 1237 and the event of interest has occurred in 

1062 patients. The Likelihood ratio Chi-Square value is 185.08 and which is highly significant. The loglikelihood of 

the model is -1157.1355. 

                   Table 4.2.1 

No. of subjects                     1237 

Number of observations 1237 

No. of failures 1062 

Time at risk 3054 

LR chi2(5) 185.08 

Log likelihood -1157.1355 

Prob > chi2 0.000 

 

In the following table hazard ratio, standard error, significance and confidence intervals for each of the 

variables are displayed in table 4.2.2 
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Table 4.2.2 

_t Haz. 

Ratio 

Std. 

Err. 

Z P>|Z| [95% Conf. 

Interval] 

Sexcode 0.736376 0.05509 -4.09 0 0.63594 0.85267 

Age 0.99742 0.00279 -0.93 0.354 0.99197 1.00289 

wt_0 1.01459 0.00452 3.25 0.001 1.00576 1.0235 

Present 2.74432 0.24829 11.16 0 2.29839 3.27677 

Groupreg 0.91278 0.03386 -2.46 0.014 0.84876 0.98162 

/ln_p 0.63105 0.02283 27.64 0 0.5863 0.67579 

P 1.87958 0.04291   1.79733 1.96558 

1/p 0.53204 0.01215   0.50875 0.55638 

 

From the above STATA output we observe that the variables such as age, sexcode, weight, present, groupreg 

and ln_p are found to be significant. The hazard ratio for each of the variables and their corresponding confidence 

intervals are also displayed. 

The loglikelihood (LL) of the model is found to be -1157.1355. Further we need to calculate  -2 logikelihood 

(-2LL) to decide up on the model that suits the data well. Hence we calculate -2 loglikelihood (-2LL), for the weibull 

model we have  -2LL = -2(-1157.1355) = 2314.271. 

 

Remark 2 

The Harzed Ratio of the variable Present (it is a drug susceptibility test which tells whether a particular drug 

works well for a particular patient or not) in Weibull model is 2.74432. So we now have exp(2.74432)= 15.55403. 

Those who are sensitive to the drug are likely to reduce the sputum conversion time by 15 times compared to the 

patients who are resistant. The weight of the patient also has a significant impact on their sputum conversion times. 

Similar interpretations can be made using the Harzed Ratio of variables in the model. 

Similarly we calculate the loglikelihood values under different distributions and make comparisons. In the 

next section we shall discuss the results under Lognormal model. 

 

4.3. Lognormal regression – Accelerated Failure-Time form  
 

In the following table a brief summary of the data and the loglikelihood measures under the exponential 

regression are displayed. The total observations used for the study are 1237 and the event of interest has occurred in 

1062 patients. The Likelihood ratio Chi-Square value is 116.92 and which is highly significant. The loglikelihood of 

the model is -1029.2903. 

                 Table 4.3.1 

No. of subjects                     1237 

Number of observations 1237 

No. of failures 1062 

Time at risk 3054 

LR chi2(5) 116.92 

Log likelihood -1029.2903 

Prob > chi2 0.000 

 

In the following table Coefficient, standard error ,significance and confidence intervals for each of the 

variables are displayed in table 4.3.2 

Table 4.3.2 

_t Coet. Std. 

Err. 

Z P>|Z| [95% Conf. 

Interval] 

Sexcode 0.18213 0.03989 4.57 0 0.10395 0.26031 

Age 0.00333 0.00142 2.34 0.019 0.00054 0.00613 
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wt_0 -0.0072 0.00257 -2.82 0.005 -0.0123 -0.0022 

Present -0.375 0.04148 -9.04 0 -0.4563 -0.2937 

Groupreg 0.03702 0.01938 1.91 0.056 -0.001 0.075 

_cons 1.10243 0.12056 9.14 0 0.86614 1.33871 

/In_sig -0.6108 0.02232 -

27.37 

0 -0.6546 -0.5671 

Sigma 0.54291 0.01212   0.51967 0.56718 

 

From the above STATA output we observe that the variables such as age, sexcode, weight, present, groupreg, 

_cons and ln_sig are found to be significant. The Coefficient for each of the variables and their corresponding 

confidence intervals are also displayed. 

The loglikelihood (LL) of the model is found to be -1029.2903. Further we need to calculate  -2 logikelihood 

(-2LL) to decide up on the model that suits the data well. Hence we calculate -2 loglikelihood (-2LL), for the 

Lognormal model we have   -2LL = -2(-1029.2903) = 2058.581. 

 

Remark 3 

The coefficient of the variable Present (it is a drug susceptibility test which tells whether a particular drug 

works well for a particular patient or not) in Lognormal model is -0.375. So we now have exp(-0.375)= 0.6872893. 

Those who are sensitive to the drug are likely to increase the sputum conversion time by 0.6873 times compared to 

patients who are resistant. The weight of the patient also has a significant impact on their sputum conversion times. 

Similar interpretations can be made using the coefficients of variables in the model. 

 

Similarly we calculate the loglikelihood values under different distributions and make comparisons. In the 

next section we shall discuss the results under Loglogistic model. 

 

4.4. Loglogistic regression – Accelerated Failure-Time form  

 
In the following table a brief summary of the data and the loglikelihood measures under the exponential 

regression are displayed. The total observations used for the study are 1237 and the event of interest has occurred in 

1062 patients. The Likelihood ratio Chi-Square value is 102.31 and which is highly significant. The loglikelihood of 

the model is -1024.5177. 

Table 4.4.1 

No. of subjects                     1237 

Number of observations 1237 

No. of failures 1062 

Time at risk 3054 

LR chi2(5) 102.31 

Log likelihood -1024.5177 

Prob > chi2 0.000 

 

In the following table Coefficient, standard error, significance and confidence intervals for each of the 

variables are displayed in table 4.4.2 

Table 4.4.2 

_t Coet. Std. 

Err. 

Z P>|Z| [95% Conf. 

Interval] 

Sexcode 0.18637 0.03912 4.76 0 0.10969 0.26305 

Age 0.00343 0.00139 2.47 0.013 0.00071 0.00614 

wt_0 -0.007 0.00257 -2.74 0.006 -0.0121 -0.002 

Present -0.3528 0.04474 -7.89 0 -0.4405 -0.2651 

Groupreg 0.03336 0.01889 1.77 0.077 -0.0037 0.07039 
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_cons 1.058144 0.1219 8.68 0 0.81922 1.29707 

/In_gam -1.1756 0.02586 -

45.46 

0 -1.2263 -1.1249 

Gamma 0.30863 0.00798   0.29337 0.32467 

 

From the above STATA output we observe that the variables such as age, sexcode, weight, present, groupreg, 

_cons and ln_gam are found to be significant. The Coefficient for each of the variables and their corresponding 

confidence intervals are also displayed. 

The loglikelihood (LL) of the model is found to be -1024.5177. Further we need to calculate -2 logikelihood (-

2LL) to decide up on the model that suits the data well. Hence we calculate   -2 loglikelihood (-2LL), for the 

Loglogistic model we have   -2LL = -2(-1024.5177) = 2049.035. 

 

Remark 4 

The coefficient of the variable Present (it is a drug susceptibility test which tells whether a particular drug 

works well for a particular patient or not) in Loglogistic model is -0.3528. So we now have exp(-0.3528)= 0.7027177. 

Those who are sensitive to the drug are likely to increase the sputum conversion time by 0.7027 times compared to 

patients who are resistant.  The weight of the patient also has a significant impact on their sputum conversion times. 

Similar interpretations can be made using the coefficients of variables in the model. 

Similarly we calculate the loglikelihood values under different distributions and make comparisons. In the 

next section we shall discuss the results under Gamma model 

 

4.5. Gamma regression – Accelerated Failure-Time form  

 
In the following table a brief summary of the data and the loglikelihood measures under the exponential 

regression are displayed. The total observations used for the study are 1237 and the event of interest has occurred in 

1062 patients. The Likelihood ratio Chi-Square value is 65.29 and which is highly significant. The loglikelihood of the 

model is -1003.2559. 

                            Table 4.5.1 

No. of subjects                     1237 

Number of observations 1237 

No. of failures 1062 

Time at risk 3054 

LR chi2(5) 65.29 

Log likelihood -1003.2559 

Prob > chi2 0.000 

 

In the following table Coefficient, standard error, significance and confidence intervals for each of the 

variables are displayed in table 4.5.2 

Table 4.5.2 

_t Coet. Std. 

Err. 

Z P>|Z| [95% Conf. 

Interval] 

Sexcode 0.15624 0.03835 4.07 0 0.08107 0.2314 

Age 0.00409 0.00131 3.11 0.002 0.00151 0.00666 

wt_0 -0.0054 0.00245 -2.19 0.028 -0.0102 -0.0006 

Present -0.2314 0.04223 -5.48 0 -0.3141 -0.1486 

Groupreg 0.02985 0.01838 1.62 0.104 -0.0062 0.06587 

_cons 0.73696 0.12291 6 0 0.49605 0.97786 

/In_sig -0.6592 0.02499 -

26.38 

0 -0.7082 -0.6102 

/Kappa -0.708 0.09764 -7.25 0 -0.8993 -0.5166 
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Sigma 0.51726 0.01293   0.49254 0.54322 

 

From the above STATA output we observe that the variables such as age, sexcode, weight, present, groupreg, 

_cons and ln_sig are found to be significant  and also Kappa statistics be significant for this model. The Coefficient for 

each of the variables and their corresponding confidence intervals are also displayed. 

The loglikelihood (LL) of the model is found to be -1003.2559. Further we need to calculate   -2 logikelihood 

(-2LL) to decide up on the model that suits the data well. Hence we calculate -2 loglikelihood       (-2LL), for the 

Gamma model we have  -2LL = -2(-1003.2559) = 2006.512. 

 

Remark 5 

The coefficient of the variable Present (it is a drug susceptibility test which tells whether a particular drug 

works well for a particular patient or not) in Gamma model is -0.2314. So we now have exp(-0.2314)=0.793442 . Those 

who are sensitive to the drug are likely to increase the sputum conversion time by 0.7934 times compared to patients 

who are resistant. The weight of the patient also has a significant impact on their sputum conversion times. Similar 

interpretations can be made using the coefficients of variables in the model. 

 

5.CONCLUSION  
 

Lower values of -2LogLikelihood suggest a better model. With the exception of the Weibull and log normal 

distribution, it is difficult to use a formal statistical test to discriminate between parametric models. One way of 

selecting an appropriate parametric model is to base the decision on minimum (AIC) and also based on the     -2LL. For 

the parametric models presented in the Tables -2LL of gamma is 2006.5118 and for log normal distribution -2LL is 

2058.5806 and for log logistic it is 2049.0354. Decision based on -2LL, Gamma distribution is the most suitable 

model for our data set. In Gamma distribution all the variables like age of the patient, sex to which the patient 

belongs, presens etc , and weight of the patient are all significant at 5% level. Thus we can conclude that each covariate 

included in the study have significant impact on the occurrence of event i.e, sputum conversion. 

 

The coefficient of the variable Present (it is a drug susceptibility test which tells whether a particular drug 

works well for a particular patient or not) in Gamma model is -0.2314. So we now have exp(-0.2314)=0.7934. Those 

who are sensitive to the drug are likely to increase the sputum conversion time by 0.7934 times compared to patients 

who are resistant. In the Gamma model, the weight of the patient also has a significant impact on their sputum 

conversion times. Similar interpretations can be made using the coefficients of variables in all the models. 
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