

RESEARCH ARTICLE

REPRESENTATION & NATURE OF MULTIPLE FACTORIANGULAR NUMBERS.

Swati bisht¹ and Dr. Anand singh uniyal².

Department of Mathematics, M.B. (Govt.) P.G. College, Haldwani, Uttarakhand, (India).

Manuscript InfoAbstractManuscript HistoryIn this paper, we have defined multiple factoriangular numbers and
found the values of number theoretic functions for multiple
factoriangular numbers. The mathematical experimentations are used
on multiple factoriangular numbers resulted to the establishment of
recurrence relations for these numbers. Here we have also described the
nature of multiple factoriangular numbers.

Copy Right, IJAR, 2018,. All rights reserved.

Keywords:-Factoriangular numbers; Multiplefactoriangular numbers; Recurrence relation; Number theoretic functions.

Introduction:-

Triangular number ^[2] is a number obtained by adding all positive integers less than or equal to a given positive integer n, i.e..

 $T_n = n(n + 1)/2$

Factoriangular number ^[1] is defined as the sum of the first n natural numbers plus the factorial of n. i.e., $Ft_n = n(n + 1)/2 + n!$

ParajalRai^[3] proved that there is no factoriangular number that is also factorial and also observed the patterns in factoriangular number modulo n. Romer C. Castillo^[2] presented several theorems, corollaries and some conjectures for factoriangular numbers.

Here in this paper, we have defined new factoriangular numbers namely multiple factoriangular numbers and established recurrence relations for these numbers. We have also described the nature of multiple factoriangular numbers as an increasing function.

Multiple Factoriangular Numbers

A generalization of Factoriangular numbers is known as Multiple Factoriangular numbers and are defined as,

$$F_t(n,k) = (n!)^{\kappa} + \sum n^{\kappa}$$

Where $\sum n^{\kappa} = T_n(k)$ and $n,k \in N$

Representation of Multiple Factoriangular Numbers

Representation of multiple factoriangular numbers by the sum of four squares and their number theoretic values are shown in Table 1.

S.no	F _t (n,2)	$\tau(F_t(n,2))$	$\Phi(F_t(n,2))$	$\sigma(\mathbf{F}_t(\mathbf{n},2))$	Sum of four squares
1	2	2	1	3	1 ² +1 ² +0 ² +0 ²
2	9	3	6	13	3 ² +0 ² +0 ² +0 ²
3	50	6	20	93	5 ² +5 ² +0 ² +0 ²
4	606	8	200	1224	20 ² +11 ² +9 ² +2 ²
5	14455	12	9744	20520	105 ² +42 ² +35 ² +21 ²
6	518491	8	473760	565200	483 ² +375 ² +324 ² +199 ²
7	25401740	96	7557120	69600384	4200 ² +2378 ² +1266 ² +710 ²
8	1625702604	24	541602240	3795396528	30806 ² +21208 ²
					+11610 ² +9598 ²
9	131681894685	64	59104972800	247354953984	296994 ² +175235 ²
					+112660 ² +8768 ²
10	13168189440385	16	9028934690688	18060593083776	2895929 ² +1819756 ²
					+1104112 ² +501208 ²
11	1593350922240506	32	668533897241280	2807883958924800	38517331 ² +7252704 ²
					+5497720 ² +5190327 ²
12	229442532802560650	48	90484187713651200	432774774588542400	343268700 ² +269764475 ²
					+194979255 ² +28624300 ²
13	38775788043632640819	96	20452848291426265344	68935794733745372160	4116092037 ² +4075095000 ²
					+2283956031 ² +103537317 ²
14	7600054456551997441015	64	5191322176716231358080	10463232848830954536960	60466243150 ² +55092899233 ²
					+29785417285 ² +4635651749 ²
15	1710012252724199424001240	256	606410020032497902878720	4317119683080297387840000	794738734438 ² +751716887400 ²
					+597059155914 ² +396036213300 ²

Table 1:-Representation of Multiple Factoriangular Numbers

Recurrence Relations for Multiple Factoriangular Numbers:-

 $\begin{array}{l} Proof: By the definition of multiple factoriangular numbers we have, \\ F_t(n,k) &= (n!)^k + \sum n^k \\ Where \sum n^k &= T_n(k) \\ Now, F_t(n+r,k+s) &= ((n+r)!)^k + \sum (n+r)^{k+s} \\ &= (n+r)^{k+s}.(n+r-1)^{k+s}.(n+r-2)^{k+s}......(n+1)^{k+s}.(n!)^{k+s} + \sum (n+r)^{k+s} \\ &= (n+r)^{k+s}.(n+r-1)^{k+s}.(n+r-2)^{k+s}......(n+1)^{k+s}[F_t(n,k) - \sum n^k](n!)^s + \sum (n+r)^{k+s} \\ &= (n+r)^{k+s}.(n+r-1)^{k+s}.(n+r-2)^{k+s}.....(n+1)^{k+s}[F_t(n,k) - T_n(k)](n!)^s \\ &+ \sum (n+r)^k \sum (n+r)^s - \sum_{l \neq m} (l+r)^k (m+r)^s \\ F_t(n+r,k+s) &= (n+r)^{k+s}.(n+r-1)^{k+s}.(n+r-2)^{k+s}.....(n+1)^{k+s}[F_t(n,k) - T_n(k)](n!)^s \\ &+ T_{n+r}(k).T_{n+r}(s) - \sum_{l \neq m} (l+r)^k (m+r)^s \end{array}$

Particular cases

Case-I: If r = 1, s = 0 then, the recurrence relation for multiple factoriangular numbers is given by, $F_t(n+1,k) = (n+1)^k [F_t(n,k)-T_n(k)+1]+T_n(k)$ Where, $F_t(n,k) = (n!)^k + \sum n^k$ and $T_n(k) = \sum n^k$

 $\begin{array}{l} Proof: \mbox{ The recurrence relation for multiple factoriangular numbers is given by } \\ F_t(n+r,k+s) = (n+r)^{k+s}.(n+r-1)^{k+s}.(n+r-2)^{k+s}.....(n+1)^{k+s}[F_t(n,k)-T_n(k)](n!)^s \\ + T_{n+r}(k) .T_{n+r}(s) - \sum_{l \neq m} (l+r)^k (m+r)^s \\ \mbox{ If } r = 1, s = 0 \mbox{ then}, \\ F_t(n+1,k) = (n+1)^k [F_t(n,k)-T_n(k)] + T_{n+1}(k) .T_{n+1}(0) - \sum_{l \neq m} (l+1)^k (m+1)^0 \\ = (n+1)^k [F_t(n,k)-T_n(k)] + \sum_{l \neq m} (l+1)^k \\ = (n+1)^k [F_t(n,k)-T_n(k)] + \sum_{l \neq m} (n+1)^k \\ F_t(n+1,k) = (n+1)^k [F_t(n,k)-T_n(k)] + \sum_{l \neq m} (n+1)^k \\ F_t(n+1,k) = (n+1)^k [F_t(n,k)-T_n(k)] + T_n(k). \\ \end{array}$

Case-II: If r = 0, s = 1 then, the recurrence relation for multiple factoriangular numbers is given by, $F_t(n,k+1)=n!.F_t(n,k) + T_n(k) (T_n(1)-n!) - \sum_{l \neq m} l^k m$ Where, $F_t(n,k) = (n!)^k$, $T_n(k) = \sum n^k$ and $1, m, \in \{1, 2, ..., n\}$, $r, s \in W$

Proof: The recurrence relation for multiple factoriangular numbers is given by $F_{t}(n+r,k+s) = (n+r)^{k+s} \cdot (n+r-1)^{k+s} \cdot (n+r-2)^{k+s} \cdot \dots \cdot (n+1)^{k+s} [F_{t}(n,k)-T_{n}(k)](n!)^{s}$ $+T_{n+r}(k) . T_{n+r}(s) - \sum_{l \neq m} (l+r)^k (m+r)^s$

If r = 0, s = 1 then, $F_t(n,k+1) = (n)!^{k+1} + T_n(k)T_n(1) - \sum_{l \neq m} l^k m$ $= n! [F_t(n,k) - \Sigma n^k] + T_n(k)T_n(1) - \sum_{l \neq m} l^k m$ = n!. $[F_t(n,k)-T_n(k)] + T_n(k)T_n(1) - \sum_{l \neq m} l^k m$ $F_t(n,k+1) = n!.F_t(n,k) + T_n(k) (T_n(1)-n!) - \sum_{l \neq m} l^k m$

Hence proved.

Nature of Multiple Factoriangular Numbers

Multiple Factoriangular numbers are given by the function, $F_t(n,k) = (n!)^k + \sum_{n=1}^{k} T_n(k)$ Where $\sum_{n=1}^{k} T_n(k)$

There are three cases: Case-I: n'>n, k'=k

 $F_t(n',k') = (n'!)^{k'} + \sum n'^{k'}$ $> (n!)^{k'} + \sum n^{*k'}$ = (n!)^{k'} + (1^{k'} + 2^{k'} + 3^{k'} + \dots + n^{k'} + \dots + n^{*k'}) > (n!)^{k'} + \sum n^{k'} = (n!)^{k'} + \sum n^{k} $= F_t(n,k)$ $F_t(n',k') > F_t(n,k)$ Hence

Case-II: n'=n, k'>k

$$\begin{split} F_t(n^{*},k^{*}) &= (n^{*}!)^{k^{*}} + \sum n^{*k^{*}} \\ &= (n!)^{k^{*}} \cdot (n!)^{k^{*}-k} + [1^{k^{+}(k^{*}-k)} + 2^{k^{+}(k^{*}-k)} + 3^{k^{+}(k^{*}-k)} + \ldots + n^{k(k^{*}-k)} - \ldots + n^{*k^{+}(k^{*}-k)}] \end{split}$$
 $>(n!)^{k}+(1^{k}+2^{k}+3^{k}+....+n^{k})$ F_{t}

Hence

1

$$= F_t(n,k)$$

(n',k') >F_t(n,k)

Case-III: n'>n, k'>k

$$\begin{split} F_t(n',k') &= (n'!)^{k'} + \sum n^{k'} \\ &= (n!)^{k'}(n+1)^{k'}(n+2)^{k'} \dots (n')^{k'} + (1^{k'}+2^{k'}+3^{k'}+\dots+n^{k'}+\dots+n^{k'}) \\ &= (n!)^{k'}(n+1)^{k'}(n+2)^{k'} \dots (n')^{k'} + (1^{k'}+2^{k'}+3^{k'}+\dots+n^{k'}+\dots+n^{k'}) \\ &= (n!)^k \dots (n!)^{k'+k} + [1^{k+(k'-k)}+2^{k+(k'-k)}+3^{k+(k'-k)}+\dots+n^{k+(k'-k)}] \\ &= F_t(n,k) \\ Hence & F_t(n',k') > F_t(n,k) \end{split}$$

It is clear that the multiple factoriangular number i.e, the function $F_t(n,k) = (n!)^k + \sum n^k$ is strictly increasing as the value of n and k increases.

Conclusion:-

The results for multiple factoriangular numbers are: i) The recurrence relation for multiple factoriangular numbers is given by $F_{t}(n+r,k+s) = (n+r)^{k+s} . (n+r-1)^{k+s} . (n+r-2)^{k+s} (n+1)^{k+s} [F_{t}(n,k)-T_{n}(k)](n!)^{s}$ $+T_{n+r}(k) . T_{n+r}(s) - \sum_{l \neq m} (l+r)^k (m+r)^s$ Where, $F_t(n,k) = (n!)^k + \sum n^k , T_n(k) = \sum n^k \text{ and } l,m, \in \{1,2,...n\}, r,s \in W.$ Case-I: If r = 1, s = 0 then, the recurrence relation for multiple factoriangular numbers is given by $F_t(n+1,k) = (n+1)^k [F_t(n,k)-T_n(k)+1]+T_n(k)$

Case-II: If r = 0, s = 1 then, the recurrence relation for multiple factoriangular numbers is given by $F_t(n,k+1)=n!.F_t(n,k) + T_n(k) (T_n(1)-n!) - \sum_{l \neq m} l^k m$ **ii**) Function $F_t(n,k) = (n!)^k + \sum n^k$ is strictly increasing function.

References:-

- Castillo,R.C. "On the Sum of Corresponding Factorials and Triangular Numbers: Some Preliminary Results", Asia Pacific Journal of Multidisciplinary Research (ISSN 2350-8442), Vol. 3, No. 4, November 2015 Part I, pp. 5-11.
- 2. Garge, A.S. and Shirali, "Triangular Numbers", Resonance, pp.672-681.
- 3. https://www.researchgate.net/publication/327069534.