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1. Introduction

The notion of T" —ring was first introduced by N. Nobusawa [9] and then Barnes [3] generalized the definition of
Nobusawa’s gamma rings. R. Ameri and R. Sadeghi [2] studied gamma module, gamma submodule,
homomorphism of gamma modules. They obtained some basic results of gamma modules. The authors in [1]
introduced and studied the concept of injective gamma module, divisible gamma module and essential gamma
submodule. They proved that every gamma module can be embedded in injective gamma module.

In this paper, we introduce and study the concept of quasi-injective gamma modules as a proper generalization of
injective gamma modules and quasi-injective modules.

2.Preliminaries
Let Rand I' be two additive abelian groups, R is called a I" — ring (in the sense of Barnes), if there exists a

mapping - RXTI X R — R, written - (r,v,s) +— rys such that (a + b)ac = aac + bac and a(o + B)c = aac +
apc, ao(b + c) = aac + bac and (aab)Bc = aa(bpc) for all a,b,c e Randa,p €T [3]. A subset A of I" —ring
R is said to be a left(right) ideal of R if A is an additive subgroup of R and R['A < A (AT'R < A), where RI'A =
{raa: r € R0 €T,a € A}. If Aisboth right and left ideal, we say that A is an ideal of R [3]. Anelement1lin " —
ring R is unity if there exists element, say 1 in R and y, € T such that r = 1y r = ry_1 for every r € R, unities
in T' — rings differ from unities in rings, it is possible for a T" — ring have more than one unity [7].
Let R be aI' —ring and M be an additive abelian group. Then M together with a mapping: RXI'xM —» M
written - (r,y, m) — rym such that

1- ra(m; + my) =ram; + ram,

2- (r; + ry)om = r;am + ryom

3- r(a+p)m =rom + rfm

4- (rjory)pm = rya(r,fm)
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for each r,r,r, €R o, BET and m,m;,m, €M, is called a left Rp —module, similarly one can defined
right Rr —module [2]. A left Rr —module M is unitary if there exist elements, say 1 in R and y, € I" such that
1y m = m for every m € M.

Let M bean Ry — module. Anonempty subset N of M is said to be an R —submodule of M (denoted by N < M)
if N is a subgroup of M and RTN € N, where RTIN={ron: re R, a €T, n € N} [2]. An R — module M is
called simple if RI'M # 0 and the only Ry — submodules of M are M and 0 [4]. If X is a nonempty subset of M,
then the Ry — submodule of M generated by X denoted by (X) and (X) =n {N < M:X € N}, X is called the
generator of (X) and (X) is finitely generated if |X| < oo. If X = {xy, ..., Xp}, then (X) = >, njx; + Z};l SIASE
kmeNn €Zy €l ERx,x € X}. In particular, if X = {x}, then (X) is called the cyclic R — submodule of
M generated by x. If M is unitary, then (X) = {¥JL, rjy.xi:n € N,y, € I,r; € R x; € X} [2].

Let M and N be two Ry — modules. A mapping f: M — N is called homomorphism of Ry — modules (simply

R — homomorphism) if f(x +y) = f(x) + f(y) and f(ryx) = ryf(x) for each x,y e M\,re Randy € . An R —
homomorphism is Rr — monomorpism if it is one-to-one and Ry — epimorphism if it is onto, the set of all Ry —
homomorphisms from M into N denote by Homg (M, N). In particular, if M = N, then Homg_ (M, N) denote by
Endg, (M). If M is Rp — module, then Endg (M) isa I — ring with the mapping -: Endg.(M) x I X Endg (M) —
Endg, (M) denoted by - (f,y,g) ~ fygwhere fyg(x) = f(g(1yx)), for f,g € Endg. (M) , yET and x € M. All
modules in this paper are unitary left Rr —modules and vy, € T" denote to the element such that 1y, is the unity, in
this case M is a right Endg. (M) —module with the mapping :M X I" X Endg (M) — Endg (M) by - (x,7,f) - xyf
where xyf = f(1yx), for f € Endg.(M),y € I'and x € M [2].
Let M and N be two R — modules. Then M is called N —injective if for any Ry — submodule A of N and Ry —
homomorphism f: A - M , there exists an R — homomorphism g:N — M such that gi = f where i is the inclusion
mapping. An R — module M is injective if it is N — injective for any R — module N [1]. An Ry — submodule
N of R — module M is essential (denote by N <. M) if every nonzero R — submodule of M has nonzero
intersection with N, in this case we say that M is an essential extension of N [1]. It is proved in [1], that every
gamma module can be embedded in injective gamma module. The minimal injective extension of M is called
injective hull (denote by E(M)) which is unique up to isomorphism.

3. Quasi-injective gamma module
In this section we introduce the concept of quasi-injective gamma modules as a generalization of injective gamma
modules.

Definition 3.1 An Ry — submodule N of R — module M is called direct summand if there exists an Ry —
submodule K of M suchthat M = N+ Kand NN K = 0, in this case M is written as M = N@K.
The Ry — submodules 0 and M are always direct summand of M.

Definition 3.2 Let N be an Ry — submodule of an R —module M. A complement of N in M is any Ry —
submodule denoted by N€of M which is maximal with respect to the property N N N¢ = 0.

By Zorn's lemma, one can be show that every submodule of gamma module has a complement submodule which is
not unique in general.

Definition 3.3 An R — submodule A of an R — module M s called closed in M if it has no proper essential
extension in M, that is, the only solution of the relation A <, K< M is A =K. It is easy to see that every direct
summand of M is closed.

In this lemma, we see that every R — submoduleis a direct summand of an essential R — submodule.
Lemma 3.4 Let N be an Ry — submodule of an Ry —module M. Then N@GN°¢ <, M.
Proof. For each Rj — submodule K of M such that Kn (N®N) = 0, ifa € Nn (N°@K), then a = b + k where
beN® and KeK, so k=a—beKN(NAN) =0, hence a=beNNN =0, so NNn(N°®K) =0, by
maximality of N© we have N¢ = N°@K, so K = 0, hence N + N¢ <, M.
Lemma 3.5 Let N be Ry — submodule of an R — module M and K a complement of Nin M. Then:

1. There exists a complement L of K in M such that N < L.

328



ISSN: 2320-5407 Int. J. Adv. Res. 4(10), 327-333

2. L is a maximal essential extension of N.

3. If N isclosed, then N = L.

Proof.

1. By Zorn's lemma there exists a complement L of K which contains N.

2. ForanyA<L,since LNK=0,then ANK=0.Let 0#x=a+ke(A+K)NN where aeAand ke K.
Then k=x—a€KNL=0,50 k=0 and x=a€&€NNA, hence NNA#0,s0 N<,L, if P is Rp—
submodule of M contains L properly, then PN K=0 and (PNK)NN=PNn(KNN)=Pn0 =0, thus P is
not essential extension of N.

3. Follows from (2).

Definition 3.6 An R — module M is called quasi-injective if for any R — submodule A of Q and for any Rj —
homomorphism f: A — M there exists an Ry —endomorphism g of M such that gi = f where i is the inclusion
mapping of A into M.

In fact, M is a quasi-injective if and only if M is M — injective [1].

The proof of the following propositions follow from proposition(3.13) in [1].
Proposition 3.7 An Rp — module M is quasi-injective if f{(M) < M for every f € End(E(M)).

Corollary 3.8 Let M be a quasi-injective Ry — module and {A,: 1 € A} be a family of an independent set of R —
submodules of M, then M N (@, cpA)) = Bjea(MNA,)).

Corollary 3.9 Let M be a quasi-injective Rr —module , then:

1. Every Ry — submodule of M is essential in a direct summand of M.

2. Ifan R — submodule N of M isomorphic to a summand of M, then N is a summand of M.

Proof.

1. Assume N<M and E(M) = E,;®E, where E; = E(N), by proposition(3.7) M = (MNE;)®(MNE,), by
lemma(3.3) in [1], N <, MNE,.

2. Assume N =K and K is a direct summand of M, then there exists R — submodule K; of M such that
M = K@K, and Ry — isomorphism a: N — K, frome [1] K is M — injective, so o can be extended to an R —
homomorphism B: M — K such that o = i where i is the inclusion mapping, so M = Im(i)@Ker(p), hence N
is a summand of M.

Proposition 3.10 Let N be a closed Ry — submodule of an R —module M. If M is quasi-injective, then N is
M — injective.

Proof. Let K is Rp — submodule of Mand f:K — N is an R —homomorphism, define Q = {(K,f):K <K <
M, f'extended of f to K'} by Zorn's lemma Q has a maximal element (K-, f.), since M is quasi-injective, then f. can
extended to an R —homomorphism g:M — M. If g(M) € N, let L be a complement of N in M, since N closed,
then N is complement of L, since Nc N+g(M),so [N+g(M)]NL=+#0,let0+#x=a+b where a€N and
begM),ifbeN,thenx=a+beNnNL=0 contradiction,sob & N and b = x —a € L@N. Define S={m €
M:g(m) € LN}, S is an R — submodule contains K, take t € M such that g(t) = b, then t € S but t € K, if
m: LN - N is the projection R —homomorphism , then ng: M — N and (zg) (k) = n(g(k)) = n(f(k)) = f(k) for
each k € K, thus ng extending of f which is contradiction, therefore g(M) < N.

Corollary 3.11 Every closed Ry — submodule N of an quasi-injective R — module M is a direct summand of
M, moreover , N is quasi-injective.

Proof. Let Iy: N — N identity map of N. Then by proposition(3.10) there exists f: M — N such that fi = Iy where i
is inclusion mapping, so Im(i)@Ker(f) = M, hence N@®Ker(f) = M. By lemma(1.5) in [1], we have N is quasi-
injective.

Corollary 3.12 Let M be R — module. Then M is quasi-injective if and only if M@®M is quasi-injective .

Proof. If M is quasi-injective R — module, then by [1, proposition 1.4] M is M@M — injective , by [1, lemma 1.5]
M@M is quasi-injective.

The proof of the following propositions follow from proposition(1.3) in [1].
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Proposition 3.13 An Ry — module M is quasi-injective if and only if for each R — submodule B of a cyclic
Rr — submodule A, each Rr —homomorphism a: B — M can be extending to an R — homomorphism : A - M.

Examples and Remarks 3.14
1. Every simple R — module is quasi-injective.
2. Every injective R — module is quasi-injective , the converse is not true, for example, let R=T=Zand M = Z,
, then M is quasi-injective from(1) but not injective since 1 # 2. m.x for any x € M, so it is not divisible [1].
. (X Y. _((y BY. . o .
3. Let F be a field, R= {(0 z) X, V,Z € F}, and T = {(0 x) 7, BAE F} R is a I' = ring with usual

multiplication of matrices, consider A = {(3 g) 'a € F} , B= {(8 g) b € F} and C = {(g E) :b,c € F},

then M = A@C, and B = A, from corollary(3.9),R is not quasi-injective R — module.

4. Direct sum of two quasi-injective R — modules need not be quasi-injective, for examplelet R=T"=17 ,
M; =7Z, and M, =Q from example(2) and example(2.3) in [1] M; and M, are quasi-injective. But M =
M;®M, is not quasi-injective, since if the R — homomorphism f: 0@Z — M by f(0,n) = (i, 0) extended to
Rpr — endomorphism g of M, then g(0,1) = g(2.1.(0,§)) =21.g(0,5) =21.(x,y) = (2.1.x,2.1.y) =
(2x,2y), 50 (1,0) = g(0,1) = (2%, 2y) = (0,2y) contradiction.

5. If Rr — module M contains a copy of R as Rr —module, then M is quasi-injective if and only if M is injective.

6. An R — module M is quasi-injective if and only if for each essential R —submodule N of M, each Ry —
homomorphism f: N — M can be extended to R — endomorphism of M. For each Ry —submodule N of M and
each R —homomorphism f: N — M, define g: N®N® - Mby g(n + n’) = f(n) + n’ where n € N and n' € N°
since NE@N° is essential by lemma(3.4), then g can be extended to R — endomorphism h of M, clear that h is
extending of f.

Lemma 3.15 Let M be a quasi-injective R — module. Then M is injective if there exist an Ry — epimorphism
from M to E(M).

Proof. Let f: M — E(M) be an Ry — epimorphism. Then there exists an Ry — endomorphism h: E(M) — E(M) such
that f=hi , since M is quasi-injective , then h(M) € M, hence EMM) = f{(M) = hi(M) =h(M) €M, so M =
E(M), Thus M is injective R- — module.

The annihilator of a left R — module M define by Anng (M) = {r € R: rTM = 0} and the annihilator of m € M
define by Anng (m) = {r € R:rT'm = 0} [4]. We denote {. (M) and {g (m) instead of Anng(M) and Anng(m).

Definition 3.16 Let M be an Rr — module, a € M and y € T'. The left Annihilator of m in R with respect to y
define by E%r(m) = {r € Rirym = 0}.

It's clear that £z (M) S (g, (m) S E,Y{r(m), infact €. (M) = Npem lr,. (M) = nmgx E,ﬁr(m).
Y
The following proposition gives a characterization of quasi-injective gamma modules.

Proposition 3.17 An Rr — module M is quasi-injective if and only if for each left ideal L of R, each Ry —
homomorphism f: L - M with EZ{r(a) c Ker(f) for some a € M, f can be extending to an R — homomorphism

from R to M.
Proof. Assume M is quasi-injective R — module , L a left ideal of R and f an R — homomorphism from L to M

with EI{F (a) € Ker(f) for some a € M. Then Ly,a is Ri- — submodule of (a), define o: Ly a »> M by a(ry,a) = f(r)
foranyrya€Lya,ifrya=0,then E]y{r(a) C Ker(f), so f(r) = 0, hence o is well defined and easily to show a is
R — homomorphism, then by proposition(3.13) o can extends to an R — homomorphism B:(a) —» M, define
g:R > M by g(r) = B(ry,a) for each r € R. Since f(r) = a(ry,a) = B(ry,a) = g(r) for each r € L, then g extended
to f. Conversely, Assume B is any R — submodule of M and a: B — M is R —homomorphism. By Zorn's lemma

there exists a maximal element (B,, o,,) such that B < B, and a, extends of a to B, , if B, = M the proof complete ,
if not there exists ae M and a € B, , take L = {r e R:ry,a € B} , then L is left ideal of R, define ¢:L — M by

o(r) = a.(ry,a) foreachr € L, ifr=0, thenry,a = 0,50 0 = a.(ry,a) = (r), therefore ¢ is well define and it is
Rp — homomorphism and for each re€ E;’{F(a) , then rya=0, so 0= ao(ryoa) = ¢(r), so r € Ker(o), thus
Ek’r(a) C Ker(o) , by hypothesis ¢ extended to R — homomorphism A:R — M. Define R — submodule C by
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C =B. +Ry,aand B:C > M by B(b. +ry,a) = a.(b,) + A(r) for each b, € B, and r € R, if b, +ry,a =0, then
b.=-ry,a€B,, so reL and hence A(r) = ¢(r) = 0.(ry,a) = —a.(b.) , thus B(b, +1y,a) =0, so B is well
defined and it is R — homomorphism , for each b € B, a(b) = a,(b) = a.(b) + A(0) = B(b),a contradiction with
maximality of (B., a.) , S0 B, = M, thus M is quasi-injective.

Proposition 3.18 If M isan R —module ,E = Endg, (E(M)) and Q = MI'E, where MI'E = {xyf:x € M,a € I" and

f € E}, then:

1. Q is an quasi-injective R — submodule of E(M) containing M.

2. Q is the intersection of quasi-injective Ry — submodule of E(M) containing M.

3. M =Qifandonlyif M is quasi-injective.

4. Q isthe smallest quasi-injective R — submodule of E(M) that contains M, furthermore, Q is essential extension
of M.

Proof.

1. Since M = 1gy (M) = 1gam)(1y.M) = My, 15y € Q, this shows that Q contains M . Forall x € M, a € T" and
f € E, then xyf = f(1yx) € E(M), so Q € E(M), clearly that Q is an R — submodule of E(M). If N isan Ry —
submodule of Q and f: N — Q is an R — homomorphism, by injectivity of E(M), there exists ¢: E(M) — E(M)
which extends f. Since @(xyf) = @(f(1yx)) = @(1y.f(1yx)) = (py.H(1yx) = xy(@y.f) EQ for x eM, a €T
and f € E, therefore ¢(Q) € Q, so if define ¢ = Plq then @, = fand thus Q is quasi-injective R — module.

2. Let Q' be a quasi-injective R — submodule of E(M) containing M , By proposition(3.7) and part(1) f(Q") < Q'

forf € E, since M € Q' ,then Q = MT'E € Q'TE € E(1T'Q") € E(Q") € Q’ and this shows that Q is the smallest

one. Now for any family of a quasi-injective Ry — submodules {Q},ea 0f E(M) each of which contains M, then

Q gnO(EA Qa ) but nocEA ro c Ql since Q € {Qa}aEA . Thus Q znaEA Qa .

Follows from(1) and from(2).

4. It's Clear from(2) Q is the smallest quasi-injective R — submodule of E(M) contains M , since M essential in
E(M), hence Q is essential in E(M) [1].

w

Definition 3.19 LetM be an Ry — module. A quasi-injective hull of M denoted by Q(M) is a quasi-injective Ry —
module containing M such that for any R — monomorphism f from M into a quasi-injective R — module N ,
extends to an R — monomorphism from Q(M) into N . In fact, Q(M) = MI'Endg (E(M)).

Lemma 3.20 Every Ry — module has a quasi-injective hull which is unique up to isomorphism.

Proof. Let M be Ry —module , for each quasi-injective extension N of M and Ry — monomorphism f from M
into N , let E = Endg.(E(M)), E* = Endg (E(N)) and Q = MT'E . By proposition(3.7), we have NI'E* € N .
Since E(N) is injective R — module , there exists Rr — homomorphism g: Q — E(N) such that giy = iyf where
iy(in) is the inclusion mapping of M(N) into Q(E(N)) , if x € Ker(g) N M, then f(x) = g(x) =0, so f(x) =0,
hence x € Ker(f) = 0, thus g is R — monomorphism, hence g(Q) is quasi-injective and so E'T'(g(Q)) € g(Q) ,
take X = N n g(Q) , then XI'E* € X , so by proposition(3.7), X is quasi-injective, hence g~!(X) is quasi-injective
Rp — submodule of E(M) contains M , by proposition(3.18) Q = g='(X) , hence g(Q) = X S N. If there exists
another quasi-injective hull T of M , then there exists an R — monomorphism g: T — Q such that g'f = i where i
inclusion mapping from M to Q, for each xyh € Q , g'g(xyh) = g'g(xyh) = g'ixf(xyh) = h(1yx) = xyh, so g'g = I
, hence g'is R — isomorphism.

Definition 3.21 Let M be an R — module and 1 a left ideal of R. M is called T — bounded if for each left ideal J of
R, there exists an element m in M with £z .(m) < Jifand only if 1< J.

Every Rr — module M is R — bounded, since 0 € M and 0 (0) =R and M is 0 — bounded if there exists an
element m in M with g (m) < J for each ideal J of R.

Remarks 3.22 Let Ibe aleftideal of aI' — ring R and M is an I — bounded R — module. Then
1. Tis the minimal ideal of R with the property 1= £y _(m) fore some m € M. Since I < I, so by definition(3.21),
there exists m € M such that £ (m) < I. On the other hand, since ¢ .(m) < ¢ (m) again by definition(3.21)
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we have I < £ (m), so I = £ (m). For the minimality, if there exists a left ideal I; of R such that I, = (%)
fore some x € M, since ¢ (x) < Iy, by definition(3.21) we have 1 < 1;.

2. lis two-sided ideal of R. Since I = £ (m), then I'M < II'm = 0. So (IFR)['M = II'(RTM) < IT'M = 0 , hence
IR < £p (M) < #R.(m) =, therefore I is two-sided ideal.

3. Suppose there exists m; € M such that I < £ (m,), then there is no element x € M such that ¢ (x) <
¢ (m,) which is a contradiction. Thus I < Nyem g, (m) for each m € M.

4. Since I < ¢ (m) for each m € M, thenl < Ny £r.(m) = £ (M), so M is (R/I)r — module by the rule
(r+1y,m)— rym foreachr eR,yeTand m € M [2].

The following proposition gives a characterization of quasi-injective gamma modules.

Theorem 3.23 Let M be an I — bounded R — module. Then M is quasi-injective if and only if it is injective as an
(R/Dy — module.

Proof. Assume M is quasi-injective R —module. Let K/T is an Ry — submodule of R/I and f: K/I - M an Ry —
homomorphism. Define a: K » M by a(r) = f(r +I) for eachr € K, if r =0, then f(r + I) = 0, hence a is well-
defined and it's easily to show that o is Rr — homomorphism. Since I < Ker(f), then I = {g (M) < Ker(a). So
E]Y{r (a) € Ker(a), hence by proposition(3.17) o can extends to an R — homomorphism B: R - M. Define g:R/1 -
Qbyglr+1)=p() foreachreR. Ifr+1=1,thenrel, so B(r) = a(r) =0, thus g(r + 1) = 0, therefore g is
well-defined and for eachr € K, g(r+ 1) = B(r) = a(r) = f(r + 1), then M is injective as (R/I) — module.

Corollary 3.24 LetM is 0 — bounded Ry — module. Then M is quasi-injective if and only if it is injective.

Examples 3.25
1. If R is simple, then R is 0 — bounded. Since RI'R # 0, then there exists a non-zero element r € R, since

r=1yr, so 1¢£ (r), thus £ (r) #R, hence £ (r) =0. In particular, Z, as (Z,); — module is
0 — bounded.

2. The Zz; — module Z, is not 0 —bounded .Take the ideal ] = 3Z, since Z, = {0,1} , #3.(0) =Z and £.(1) =
{n € Z:n is even}, so there is not m € Z, such that £g (m) <] but 0 <]. By example(3.14)(2) Z, is quasi-
injective but not injective, this example show that the condition of 0 — bounded in corollary(3.24) cannot be
dropped.

3. The Z; —module Z is 0 — bounded for each ideal J of Z . Since #x_.(n) = 0 <] for any nonzero n in Z.

4. Let R=Z,, ,[=Z and M = Z,,, take [, = {0} , I, = {0,6}, I3 = {0,4,8}, I, = {0,3,6,9}, I5 = {0,2,4,6,8,10},
then {JRF(O) = Z12£R1~(1) = fkr(5) = {)RF(7) = {)Rr(ll) =1y, fkr(z) = 12:€RF(3) = ’?Rl—(9) =1z, €RF(4) =
tr.(8) =1 , £g.(6) =15, hence Z;, is 1; — bounded, I, — bounded, I;— bounded, I, — bounded, Is —
bounded and Z,, - bounded. So Z,, is injective as (le/li)z — module (j=1,2,...,6) by theorem(3.23).

Lemma 3.26 If direct sum of every pair of quasi-injective Ry — modules is quasi-injective, then every quasi-
injective is injective.

Proof. For any ideal I of R and R — homomorphism f: 1 — M, since M@E(R) is quasi-injective, then there exists
an Rp — endomorphism g of M such that iy f = gigi; where iy(ig,i;) is the inclusion mapping of M(R,1) into
M@ER)(M@E(R), R). Define g:R - M by g = mgix where m; is the projection of M@E(R) into M, then
gij(n) = m gigij(n) = n;iyf(n) = f(n) for each n € I, so by proposition(1.7) in [1] M is injective.

Let R be a T —ring, the radical J(R) of R is the set of all elements of R which annihilates all simple Ry —
modules [6]. An elementain T —ring R is called left quasi-regular if there exists a' in Rsuch thata +a +a'ya=0
foreachy e T', anideal I of R is left quasi-regular if each its elements is left quasi-regular [10].

Theorem 3.27 [10] Let R be I" —ring. Then the radical J(R) of R is left quasi-regular ideal of R contains every
left quasi-regular ideal of R.
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Anelement x ofaTl —ring R is called regular if there exists s € R such that x = xasyx for some y,a € T" and R
is regular if each element of R is regular [8].
Theorem 3.28 Let M be a quasi-injective R — module and E = Endg (M) , then J(E) = {f € E: Ker(f) is essential
Ry — submodule of M} and E/J(E) is regular I' — ring.
Proof. Let K = {f € E: Ker(f) essential R — submodule M}, for each f,g € K, since Ker(f) n Ker(g) < Ker(f —
g) , then Ker(f — g) is essential Ry — submodule of M, so f—g e K and foreach fe K,yeT'andh €E ,if N is
non-zero Ry — submodule of M, since Ker(f) <, M , then h“(Ker(f)) <. M by [1, lemma(3.3)], so there exists
n(# 0) € Nnh™'(Ker(f)), hence h(n) € Ker(f), thus lyh(n) = h(lyn) € Ker(f), so (fyh)(n) = f(h(lyn)) =0,
hence n € Ker(fyh), therefore n € N n Ker(fyh) # 0, so Ker(fyh) <. M, hence fyh € K, thus EI'K € K , this show
that K is an ideal of E. Now for each f € K , define an R —homomaorphism h: M — M by h(x) = 1yf(x) for each
x € M, since Ker(f) € Ker(h) , then Ker(h) <. M but Ker(h) N Ker(I —h) = 0 where I = id(M), hence Ker(I —
h) =0and I —h:M — Im(I — h) is an R —isomorphism, so there exists g:M — M such that 81y = (I-h)!
, hence g(I — h) =1, define an R —homomorphism t:M - M by t(x) = g(x) — f(x) — I(x) for each x € M, then
gx) =t(x) +f(x) +I(x) ,s0 I=g—gh=t+f+1—gyf, hence t+ f— gyf =0 for each y € I, therefore f is
quasi-regular by theorem(3.27) f € J(E) , thus K € J(E). For each f € J(E) , let K < M with K n Ker(f) = 0, then
f = —fx: K > M is an R —monomorphism , so there exists g:M — M such that k = g(f(k)) = g(lyof(k)) =
(gy.f) (k) for each k € K , hence (I+ gy.f)(K) =0, s0 K < Ker(I + gy.f), since f € J(E) and J(E) is an ideal [10],
then gy.f € J(E), then gy.f is quasi-regular by theorem(3.11) in [10], thus there exists h € E such that gy.f+h +
hy,gy.f=0, thatis, (I + h)yo(I + gyof) =1, hence Ker(I + gyof) =0butK < Ker(I + gyof), so K = 0, therefore
Ker(f) <. M, thus J(E) € K, so K = J(E).
For each f = f+ K € E/K, take B = (Ker(f))° in M , since Ker(f|B) =0, then fgis an R —monomorphism and
fis~':f(B) > B is Ry — isomorphism, so fi/s) can be extended to Rp —homomorphism g:M — M such that

€ = firmy " 50 (gr.f)(®) = g((1.b)) = g(f(b)) = b for each b € B, hence gy.f = id(B) , since (fr.gy.f—
f)(B) = (fr.g)(f(B)) — f{(B) =0, then (fy.gy.f—f)(B +Ker(f)) =0, so B @ Ker(f) < Ker(fy.gy.f—f) but
B @ Ker(f) <. M, then Ker(fyogyof— f) <. M and fy,gy.f — f € K, so fy.gy.f + K = f + K, take f = fy,gy.f, hence
E/K is regular , thus E/J(E) is regular .
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