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In this paper we introduce the concept of quasi-injective gamma 

modules as a proper generalization of injective gamma modules and 

quasi-injective modules. An      module    is called quasi-injective 

if for any    submodule   of     and      homomorphism     from 

   to    there is an     endomorphism of     which extends   . We 

are extending some results from module theory to gamma module 

theory, we established that every     module has quasi-injective hull 

which is unique up to isomorphism. Morever, if    is quasi-injective, 

then        
           

    ⁄    is regular     ring. 
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1. Introduction 

  The notion of   ring was first introduced by N. Nobusawa [9] and then Barnes [3] generalized the definition of 

Nobusawa’s gamma rings. R. Ameri and R. Sadeghi [2] studied gamma module, gamma submodule, 

homomorphism of gamma modules. They obtained some basic results of gamma modules. The authors in [1] 

introduced and studied the concept of injective gamma module, divisible gamma module and essential gamma 

submodule. They proved that every gamma module can be embedded in injective gamma module. 

  In this paper, we introduce and study the concept of quasi-injective gamma modules as a proper generalization of 

injective gamma modules and quasi-injective modules. 

 

2. Preliminaries 

    Let    and     be two additive abelian groups,     is called a     ring (in the sense of Barnes), if there exists a 

mapping             , written                 such that                   and              
    ,                    and                   for all          and        [3]. A subset    of    ring 

R is said to be a left(right) ideal of    if   is an additive subgroup of     and              , where      
{               }. If    is both right and left ideal, we say that    is an ideal of     [3]. An element 1 in     

ring R is unity if there exists element, say 1 in    and  
 
   such that     

 
    

 
  for every     , unities 

in     rings differ from unities in rings, it is possible for a     ring have more than one unity [7]. 

Let    be a   ring and     be an additive abelian group. Then     together with a mapping             

,written                such that 

1-                        

2-                      
3-                   

4-                      
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for each                  and           , is called a left      module, similarly one can defined 

right     module [2]. A left    module    is unitary if there exist elements, say 1 in     and  
 
   such that 

  
 
    for every     . 

Let     be an      module. Anonempty subset    of     is said to be an     submodule of    (denoted by    ) 

if   is a subgroup of     and       , where      {                 } [2]. An      module    is 

called simple if        and the only      submodules of     are     and     [4]. If    is a nonempty subset of   , 

then the     submodule of     generated by     denoted by 〈 〉 and 〈 〉   {       }, X is called the 

generator of 〈 〉  and 〈 〉 is finitely generated if | |   . If   {       }, then  〈 〉  {∑     
 
    ∑     

  
 
      

            
 
               }. In particular, if   { }, then 〈 〉 is called the cyclic      submodule of 

    generated by x. If    is unitary, then 〈 〉  {∑     
        

    
 
            } [2]. 

  Let     and     be two      modules. A mapping       is called homomorphism of      modules (simply 

    homomorphism) if                   and                for each           and    . An     

homomorphism is     monomorpism if it is one-to-one and     epimorphism if it is onto, the set of all     

homomorphisms from     into     denote by       
     . In particular, if    , then       

      denote by 

     
   . If     is      module, then       

    is a    ring with the mapping         
           

    

     
    denoted by              where                 , for          

    ,     and    . All 

modules in this paper are unitary left    modules and  
 
   denote to the element such that   

 
 is the unity, in 

this case     is a right      
    module with the mapping             

         
    by               

where            , for        
   ,     and     [2]. 

Let     and     be two     modules. Then     is called   injective if for any     submodule   of     and     

homomorphism       , there exists an     homomorphism        such that      where     is the inclusion 

mapping. An      module     is injective if it is     injective for any     module     [1]. An     submodule 

    of     module     is essential (denote by     ) if every nonzero     submodule of     has nonzero 

intersection with    , in this case we say that     is an essential extension of     [1]. It is proved in [1], that every 

gamma module can be embedded in injective gamma module. The minimal injective extension of     is called 

injective hull (denote by E(M))  which is unique up to isomorphism. 

 

3. Quasi-injective gamma module 
  In this section we introduce the concept of quasi-injective gamma modules as a generalization of injective gamma 

modules. 

 

Definition 3.1 An      submodule    of      module    is called direct summand if there exists an     

submodule    of     such that       and       , in this case    is written as      . 

The     submodules 0 and    are always direct summand of   .  

 

Definition 3.2 Let     be an      submodule of an    module   . A complement of     in     is any     

submodule denoted by     of     which is maximal with respect to the property        . 

By Zorn's lemma, one can be show that every submodule of gamma module has a complement submodule which is 

not unique in general. 

 

Definition 3.3 An      submodule    of an     module    is called closed in    if it has no proper essential 

extension in  , that is, the only solution of the relation        is     . It is easy to see that every direct 

summand of    is closed. 

 

   In this lemma, we see that every     submoduleis a direct summand of an essential     submodule. 

 

Lemma 3.4  Let     be an      submodule of an    module   . Then         . 

Proof. For each      submodule     of     such that            , if           , then        where 

      and    , so                 , hence           , so           , by 

maximality of    we have        , so    , hence         . 

 

Lemma 3.5  Let     be      submodule of an     module     and     a complement of    in    . Then: 

1. There exists a complement     of     in   such that    . 
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2.   is a maximal essential extension of   . 

3. If     is closed, then     . 

Proof. 

1. By Zorn's lemma there exists a complement     of     which contains   . 

2. For any     , since       , then       . Let                   where      and     . 

Then             , so       and         , hence       , so      , if     is      

submodule of     contains   properly, then         and                      , thus     is 

not essential extension of   . 

3. Follows from (2). 

 

Definition 3.6  An     module    is called quasi-injective if for any     submodule     of     and for any     

homomorphism       there exists an    endomorphism    of     such that      where    is the inclusion 

mapping of     into  . 

In fact,     is a quasi-injective if and only if     is    injective [1]. 

 

  The proof of the following propositions follow from proposition(3.13) in [1]. 

 

Proposition 3.7  An      module    is quasi-injective if        for every             . 

 

Corollary 3.8  Let     be a quasi-injective      module and {      } be a family of an independent set of     

submodules of  , then                      . 

 

Corollary 3.9  Let     be a quasi-injective    module , then: 

1. Every     submodule of    is essential in a direct summand of   . 

2. If an     submodule    of    isomorphic to a summand of   , then   is a summand of  . 

Proof. 

1. Assume      and            where        , by proposition(3.7)                , by 

lemma(3.3) in [1],        . 

2. Assume      and    is a direct summand of   , then there exists     submodule    of    such that 

       and     isomorphism      , frome [1]    is    injective, so   can be extended to an     

homomorphism       such that      where     is the inclusion mapping, so                , hence    
is a summand of   . 

 

Proposition 3.10  Let     be a closed     submodule of an     module   . If     is quasi-injective, then    is  

   injective. 

Proof. Let    is      submodule of   and       is an    homomorphism, define   {             
    extended of          } by Zorn's lemma   has a maximal element        , since     is quasi-injective, then    can 

extended to an    homomorphism      . If        , let     be a complement of     in   , since     closed, 

then     is complement of    , since          , so             , let         where      and 

       , if    , then             contradiction, so     and          . Define   {  
          } ,     is an     submodule contains    , take     such that       , then     but    , if 

        is the projection    homomorphism , then        and          (    )   (    )       for 

each    , thus     extending of     which is contradiction, therefore       . 

 

Corollary 3.11  Every closed       submodule    of an quasi-injective     module     is a direct summand of 

  , moreover ,    is quasi-injective. 

Proof. Let        identity map of   . Then by proposition(3.10) there exists       such that       where    
is inclusion mapping, so                , hence            . By lemma(1.5) in [1], we have     is quasi-

injective. 

 

Corollary 3.12  Let    be     module. Then    is quasi-injective if and only if       is  quasi-injective . 

Proof. If    is quasi-injective     module, then by [1, proposition 1.4]     is      injective , by [1, lemma 1.5] 

    is quasi-injective. 

 

  The proof of the following propositions follow from proposition(1.3) in [1]. 
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Proposition 3.13  An      module     is quasi-injective if and only if for each     submodule     of a cyclic 

     submodule    , each    homomorphism       can be extending to an     homomorphism      . 

 

Examples and Remarks 3.14 

1. Every simple     module is quasi-injective. 

2. Every injective     module is quasi-injective , the converse is not true, for example, let       and      

, then    is quasi-injective from(1) but not injective since          for any     , so it is not divisible  [1]. 

3. Let    be a field,   {(
  
  

)         }, and   {(
  

  
)         }.     is a    ring with usual 

multiplication of matrices, consider   {(
  
  

)     } ,   {(
  
  

)     } and   {(
  
  

)       }, 

then      , and    , from corollary(3.9),   is not quasi-injective     module. 

4. Direct sum of two quasi-injective     modules need not be quasi-injective, for example,let       , 

      and       from example(2) and example(2.3) in [1]    and    are quasi-injective. But   
      is not quasi-injective, since if the     homomorphism         by           ̅    extended to 

    endomorphism     of  , then              (   

 
)           

 
                          

       , so                             contradiction. 

5. If      module    contains a copy of    as    module, then    is quasi-injective if and only if    is injective. 

6. An     module   is quasi-injective if and only if for each essential    submodule N of  , each     

homomorphism       can be extended to     endomorphism of  . For each     submodule N of   and 

each    homomorphism f N   , define g N Nc   by                 where n  N and n  Nc 

since N Nc is essential by lemma(3.4), then g can be extended to     endomorphism   of  , clear that    is 

extending of   . 
 

Lemma 3.15 Let   be a quasi-injective R   module. Then     is injective if there exist an R   epimorphism 

from    to     . 

Proof. Let f        be an R   epimorphism. Then there exists an  R   endomorphism h           such 

that f  hi , since   is quasi-injective , then h     , hence      f    hi    h     , so   
      Thus   is injective R   module. 

 

  The annihilator of a left R   module    define by AnnR    {r  R r    } and the annihilator of m    

define by AnnR m  {r  R r m   } [4]. We denote  R 
    and  R 

 m  instead of AnnR     and  AnnR m . 

 

Definition 3.16 Let     be an R   module, a     and    . The left Annihilator of m in R with respect to   

define by  R 

 
 m  {r  R r m   }. 

It's clear that  R 
     R 

 m   R 

 
 m , in fact   R 

      R 
 m m     R 

 
 m m  

   

. 

  The following proposition gives a characterization of quasi-injective gamma modules. 

 

Proposition 3.17 An R   module     is quasi-injective if and only if for each left ideal   of R, each R   

homomorphism f     with  
R 

   a   er f  for some  a   ,   f  can be extending to an R   homomorphism  

from R to  . 

Proof. Assume   is quasi-injective R   module ,     a left ideal of R and f  an R   homomorphism from   to   

with   
R 

   a   er f  for some  a   . Then   
 
a is R   submodule of 〈a〉, define     

 
a    by  (r 

 
a)  f r  

for any r 
 
a    

 
a , if r 

 
a    , then  

R 

   a   er f , so  f r   , hence   is well defined and easily to show   is 

R   homomorphism, then by proposition(3.13)   can extends to an R   homomorphism   〈a〉   , define  

g R    by g r   (r 
 
a) for each  r  R. Since  f r   (r 

 
a)   (r 

 
a)  g r  for each  r   , then g extended 

to f. Conversely, Assume   is any R   submodule of   and       is R  homomorphism. By Zorn's lemma 

there exists a maximal element         such that      and    extends of   to    , if       the proof complete , 

if not there exists  a    and  a     , take   {r  R  r 
 
a    } , then   is left ideal of R, define       by 

  r    (r  
a) for each r   , if r    , then r 

 
a    , so     (r  

a)    r , therefore   is well define and it is 

R   homomorphism and for each  r   
R 

   a  , then  r 
 
a   , so     (r  

a)    r , so  r   er   , thus 

 
R 

   a   er    , by hypothesis   extended to R   homomorphism   R   . Define R   submodule   by 
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     R 
 
a and       by  (b  r 

 
a)     b     r  for each  b     and r  R, if b  r 

 
a    , then 

 b   r 
 
a    , so r    and hence   r    r    (r  

a)      b   , thus  (b  r 
 
a)   , so   is well 

defined and  it is R   homomorphism , for each  b    ,   b     b     b         b ,a contradiction with 

maximality of         , so     , thus   is quasi-injective. 

 

Proposition 3.18  If     is an R  module ,   ndR 
       and      , where     {  f         and 

f   } , then: 

1.    is an quasi-injective     submodule of E(M) containing   . 

2.    is the intersection of quasi-injective     submodule of E(M) containing   .  

3.     if and only if     is quasi-injective. 

4.    is the smallest quasi-injective     submodule of E(M) that contains   , furthermore,    is essential extension 

of   . 

Proof. 

1. Since                                  , this shows that    contains    . For all    ,     and 

    , then                , so       , clearly that    is an     submodule of E(M). If     is an     

submodule of    and       is an     homomorphism, by injectivity of E(M), there exists             

which extends  . Since          (      )   (         )                         for    ,     

and    , therefore         , so  if define  ̅   |  , then  ̅|    and  thus    is quasi-injective     module. 

2. Let     be a quasi-injective     submodule of E(M) containing    , By proposition(3.7) and part(1)          

for    , since      ,then                             and this shows that     is the smallest 

one. Now for any family of a quasi-injective     submodules {  }    of E(M) each of which contains    , then 

         , but         , since    {  }    . Thus          . 

3. Follows from(1) and from(2). 

4. It's Clear from(2)     is the smallest quasi-injective     submodule of E(M) contains     , since     essential in 

E(M), hence    is essential in E(M) [1]. 

 

Definition 3.19  Let     be an R   module. A quasi-injective hull of     denoted by      is a quasi-injective R   

module containing     such that for any R   monomorphism     from     into a quasi-injective R   module     , 
extends to an R   monomorphism from      into    . In fact,         ndR 

      . 

 

Lemma 3.20  Every R   module has a quasi-injective hull which is unique up to isomorphism. 

Proof. Let   be R  module , for each quasi-injective extension     of     and R   monomorphism     from     

into     , let    ndR 
(    )     ndR 

(  N ) and       . By proposition(3.7), we have N    N . 

Since E(N) is injective R   module , there exists R   homomorphism g     N  such that gi  iNf where 

i  iN  is the inclusion mapping of   N  into  (  N ) , if    er g   , then f    g     , so f     , 

hence    er f   , thus g is R   monomorphism, hence g    is quasi-injective and so     g     g    , 

take   N  g    , then        , so by proposition(3.7),  X is quasi-injective, hence g      is quasi-injective 

R   submodule of E(M) contains     , by proposition(3.18)   g      , hence g      N. If there exists 

another quasi-injective hull     of     , then there exists an R   monomorphism g  T    such that g f  i where i 

inclusion mapping from     to  , for each   h    , g g   h  g g   h  g iNf   h  h        h, so g g     

, hence g  is R   isomorphism. 

 

Definition 3.21  Let   be an R   module and   a left ideal of R.   is called    bounded if for each left ideal   of 

R, there exists an element m in   with  R 
 m    if and only if     . 

Every R   module   is R   bounded, since     and  R 
    R and   is    bounded if there exists an 

element m in   with  R 
 m    for each ideal   of R.  

 

Remarks 3.22  Let    be a left ideal of a    ring R and   is an    bounded  R   module. Then 

1.   is the minimal ideal of    with the property       
    fore some    . Since    , so by definition(3.21), 

there exists     such that    
     . On the other hand, since    

       
    again by definition(3.21) 
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we have      
   , so      

   . For the minimality, if there exists a left ideal    of    such that        
    

fore some    , since     
      , by definition(3.21) we have      . 

2.   is two-sided ideal of   . Since      
   , then          . So                        , hence 

       
       

     , therefore    is two-sided ideal. 

3. Suppose there exists       such that      
    , then there is no element      such that    

    

   
     which is a contradiction. Thus       

       for each    . 

4. Since      
    for each     , then      

          
   , so    is    ⁄     module by the rule 

               for each    ,     and     [2].  

 

  The following proposition gives a characterization of quasi-injective gamma modules. 

 

Theorem 3.23  Let   be an    bounded R   module. Then   is quasi-injective if and only if it is injective as an 

 R  ⁄     module. 

Proof. Assume   is quasi-injective R  module. Let   ⁄  is an R   submodule of R  ⁄  and f   ⁄    an R   

homomorphism. Define       by   r  f r     for each r   , if  r    , then f r      , hence   is well-

defined and it's easily to show that   is R   homomorphism. Since    er f , then    R 
     er   . So 

 
R 

   a   er   , hence by proposition(3.17)   can extends to an R   homomorphism   R   . Define g R  ⁄  

  by g r       r  for each r  R. If r     , then r    , so   r    r   , thus g r      , therefore g is 

well-defined and for each r   ,  g r       r    r  f r    , then   is injective as  R  ⁄     module. 

 

Corollary 3.24  Let   is    bounded  R   module. Then   is quasi-injective if and only if it is injective. 

 

Examples 3.25 

1. If    is simple, then    is    bounded. Since      , then there exists a non-zero element    , since 

      , so      

     , thus    

       , hence     
     . In particular,    as         module is               

   bounded. 

2. The      module    is not    bounded .Take the ideal     , since     {   } ,    
       and    

    

{      is even}, so there is not      such that    
      but    . By example(3.14)(2)     is quasi-

injective but not injective, this example show that the condition of    bounded in corollary(3.24) cannot be 

dropped.  

3. The      module    is     bounded for each ideal   of   . Since      
        for any nonzero    in  . 

4. Let        ,      and      , take    { } ,    {   },    {     },    {       },    {            }, 

then     
          

       
       

       
       ,    

      ,   
       

       ,    
    

   
       ,    

      , hence     is      bounded,      bounded,      bounded,     bounded,     

bounded and      – bounded. So     is injective as (     ⁄ )
 
  module (j= ,2,…,6) by theorem(3.23).  

 

Lemma 3.26  If direct sum of every pair of quasi-injective  R   modules is quasi-injective, then every quasi-

injective is injective. 

Proof. For any ideal   of R and R   homomorphism f    , since     R  is quasi-injective, then there exists 

an R   endomorphism g of   such that i f  giRi  where  i  iR i   is the inclusion mapping of   R    into 

    R      R  R . Define g̅ R    by g̅    giR where    is the projection of     R  into  , then 

g̅i  n    giRi  n    i f n  f n  for each n   , so by proposition(1.7) in [1]   is injective. 

 

  Let     be a    ring, the radical       of     is the set of all elements of    which annihilates all simple  R   

modules [6]. An element   in   ring     is called left quasi-regular if there exists a  in    such that a  a  a  a    

for each     , an ideal     of     is left quasi-regular if each its elements is left quasi-regular [10]. 

 

Theorem 3.27 [10]  Let     be   ring. Then the radical       of     is left quasi-regular ideal of     contains every 

left quasi-regular ideal of   . 
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  An element     of a    ring     is called regular if there exists s  R such that     s    for some       and    
is regular if each element of     is regular [8]. 

Theorem 3.28  Let    be a quasi-injective R   module and    ndR 
    , then      {f     er f  is essential 

R   submodule of   } and       ⁄   is regular    ring. 

Proof. Let   {f     er f  essential R   submodule  }, for each f g    , since   er f   er g   er f  
g  , then  er f  g  is essential R   submodule of M , so f  g    and for each f        and h    , if      is 

non-zero R   submodule of    , since  er f  e   , then  h  ( er f )  e   by [1, lemma(3.3)], so there exists 

n     N  h
    er f  , hence h n   er f , thus   h n  h   n   er f , so  f h  n  f(h   n )   , 

hence n   er f h , therefore n  N   er f h   , so  er f h  e  , hence f h   , thus       , this show 

that   is an ideal of  . Now for each f    , define an R  homomorphism h     by h      f    for each 

   , since  er f   er h  , then  er h  e   but  er h   er   h    where   id   , hence  er   
h    and   h    m   h  is an R  isomorphism, so there exists g     such that g

|   h    
    h    

, hence g   h    , define an R  homomorphism  t      by t    g    f         for each      , then 

g    t    f         , so   g  gh  t  f    g f , hence t  f  g f    for each    , therefore f is 

quasi-regular by theorem(3.27) f       , thus       . For each f       , let     with     er f   , then 

f
   f|      is an R  monomorphism , so there exists g     such that   g (f    )  g (  

 
f
    )  

 g 
 
f
      for each     , hence (  g 

 
f)      , so    er   g 

 
f , since f       and      is an ideal [10], 

then g 
 
f      , then g 

 
f is quasi-regular by theorem(3.11) in [10], thus there exists h    such that g 

 
f  h  

h 
 
g 

 
f    , that is ,    h  

 
(  g 

 
f)    , hence  er(  g 

 
f)    but    er(  g 

 
f), so    , therefore 

 er f  e   , thus       , so       . 

For each f ̅  f      ⁄ , take     er f  c in     , since  er(f| )    , then f| is an R  monomorphism and 

f| 
   f      is R   isomorphism, so f|f   

  
 can be extended to R  homomorphism g     such that 

g
|f   

 f|f   
  

 , so (g 
 
f) b  g (f(  

 
b))  g(f b )  b for each b   , hence g 

 
f  id    , since (f 

 
g 

 
f  

f)    (f 
 
g)(f   )  f     , then (f 

 
g 

 
f  f)    er f    , so    er f   er(f 

 
g 

 
f  f) but 

   er f  e  , then  er(f 
 
g 

 
f  f)  e   and f 

 
g 

 
f  f   , so f 

 
g 

 
f    f   , take f ̅  f ̅

 
g̅ 

 
f ̅ , hence 

  ⁄  is regular , thus      ⁄  is regular . 
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