

RESEARCH ARTICLE

QUASI-INJECTIVE GAMMA MODULES.

Mehdi S. Abbas, Saad Abdulkadhim Al-Saadi and Emad Allawi Shallal. Department of Mathematics, College of Science, Al-Mustansiriyah University, Iraq.

Manuscript Info	Abstract
Manuscript History	In this paper we introduce the concept of quasi-injective gamma modules as a proper generalization of injective gamma modules and quasi-injective modules. An R_{Γ} – module M is called quasi-injective if for any R_{Γ} –submodule A of M and R_{Γ} – homomorphism f from A to M there is an R_{Γ} –endomorphism of M which extends f. We are extending some results from module theory to gamma module theory, we established that every R_{Γ} – module has quasi-injective hull which is unique up to isomorphism. Morever, if M is quasi-injective, then $End_{R_{\Gamma}}(M) / J(End_{R_{\Gamma}}(M))$ is regular Γ – ring.
Received: 12 August 2016 Final Accepted: 22 September 2016 Published: October 2016	
<i>Key words:-</i> Gamma ring, Gamma module, injective gamma module, quasi-injective gamma, quasi-injective gamma hull, regular gamma ring, radical of gamma ring.	
	Copy Right, IJAR, 2016,. All rights reserved.

1. Introduction

The notion of Γ –ring was first introduced by N. Nobusawa [9] and then Barnes [3] generalized the definition of Nobusawa's gamma rings. R. Ameri and R. Sadeghi [2] studied gamma module, gamma submodule, homomorphism of gamma modules. They obtained some basic results of gamma modules. The authors in [1] introduced and studied the concept of injective gamma module, divisible gamma module and essential gamma submodule. They proved that every gamma module can be embedded in injective gamma module.

In this paper, we introduce and study the concept of quasi-injective gamma modules as a proper generalization of injective gamma modules and quasi-injective modules.

2. Preliminaries

Let R and Γ be two additive abelian groups, R is called a Γ - ring (in the sense of Barnes), if there exists a mapping $\because R \times \Gamma \times R \longrightarrow R$, written $(r, \gamma, s) \mapsto r\gamma s$ such that $(a + b)\alpha c = a\alpha c + b\alpha c$ and $a(\alpha + \beta)c = a\alpha c + a\beta c$, $a\alpha(b + c) = a\alpha c + b\alpha c$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all a, b, $c \in R$ and $\alpha, \beta \in \Gamma$ [3]. A subset A of Γ -ring R is said to be a left(right) ideal of R if A is an additive subgroup of R and $R\Gamma A \subseteq A$ ($A\Gamma R \subseteq A$), where $R\Gamma A = \{r\alpha a : r \in R, \alpha \in \Gamma, a \in A\}$. If A is both right and left ideal, we say that A is an ideal of R [3]. An element 1 in Γ - ring R is unity if there exists element, say 1 in R and $\gamma_o \in \Gamma$ such that $r = 1\gamma_o r = r\gamma_o 1$ for every $r \in R$, unities in Γ - rings differ from unities in rings, it is possible for a Γ - ring have more than one unity [7].

Let R be a Γ -ring and M be an additive abelian group. Then M together with a mapping $: \mathbb{R} \times \Gamma \times \mathbb{M} \to \mathbb{M}$, written $\cdot (r, \gamma, m) \mapsto r\gamma m$ such that

- 1- $r\alpha(m_1 + m_2) = r\alpha m_1 + r\alpha m_2$
- 2- $(r_1 + r_2)\alpha m = r_1\alpha m + r_2\alpha m$
- 3- $r(\alpha + \beta)m = r\alpha m + r\beta m$
- 4- $(r_1 \alpha r_2)\beta m = r_1 \alpha (r_2 \beta m)$

for each $r, r_1, r_2 \in \mathbb{R}$, $\alpha, \beta \in \Gamma$ and $m, m_1, m_2 \in \mathbb{M}$, is called a left \mathbb{R}_{Γ} -module, similarly one can defined right R_{Γ} -module [2]. A left R_{Γ} -module M is unitary if there exist elements, say 1 in R and $\gamma_{\alpha} \in \Gamma$ such that $1\gamma_m = m$ for every $m \in M$.

Let M be an R_{Γ} – module. Anonempty subset N of M is said to be an R_{Γ} –submodule of M (denoted by N \leq M) if N is a subgroup of M and $R\Gamma N \subseteq N$, where $R\Gamma N = \{r\alpha n : r \in R, \alpha \in \Gamma, n \in N\}$ [2]. An R_{Γ} – module M is called simple if $R\Gamma M \neq 0$ and the only R_{Γ} – submodules of M are M and 0 [4]. If X is a nonempty subset of M, then the R_{Γ} – submodule of M generated by X denoted by $\langle X \rangle$ and $\langle X \rangle = \cap \{N \leq M : X \subseteq N\}$, X is called the generator of $\langle X \rangle$ and $\langle X \rangle$ is finitely generated if $|X| < \infty$. If $X = \{x_1, ..., x_n\}$, then $\langle X \rangle = \{\sum_{i=1}^m n_i x_i + \sum_{i=1}^k r_i \gamma_i x_i : X \in \mathbb{N}\}$ $k, m \in \mathbb{N}, n_i \in \mathbb{Z}, \gamma_j \in \Gamma, r_j \in \mathbb{R}, x_i, x_j \in X$. In particular, if $X = \{x\}$, then $\langle X \rangle$ is called the cyclic \mathbb{R}_{Γ} – submodule of

M generated by x. If M is unitary, then $\langle X \rangle = \{\sum_{i=1}^{n} r_i \gamma_i x_i : n \in \mathbb{N}, \gamma_i \in \Gamma, r_i \in \mathbb{R}, x_i \in X\}$ [2].

Let M and N be two R_{Γ} – modules. A mapping f: M \rightarrow N is called homomorphism of R_{Γ} – modules (simply R_{Γ} - homomorphism) if f(x + y) = f(x) + f(y) and $f(r\gamma x) = r\gamma f(x)$ for each $x, y \in M, r \in R$ and $\gamma \in \Gamma$. An R_{Γ} homomorphism is R_{Γ} – monomorphism if it is one-to-one and R_{Γ} – epimorphism if it is onto, the set of all R_{Γ} – homomorphisms from M into N denote by $Hom_{R_{\Gamma}}(M, N)$. In particular, if M = N, then $Hom_{R_{\Gamma}}(M, N)$ denote by $\operatorname{End}_{R_{\Gamma}}(M)$. If M is R_{Γ} – module, then $\operatorname{End}_{R_{\Gamma}}(M)$ is a Γ – ring with the mapping $: \operatorname{End}_{R_{\Gamma}}(M) \times \Gamma \times \operatorname{End}_{R_{\Gamma}}(M) \to \mathbb{C}$ $\operatorname{End}_{R_{\Gamma}}(M)$ denoted by $(f, \gamma, g) \mapsto f\gamma g$ where $f\gamma g(x) = f(g(1\gamma x))$, for $f, g \in \operatorname{End}_{R_{\Gamma}}(M)$, $\gamma \in \Gamma$ and $x \in M$. All modules in this paper are unitary left R_{Γ} –modules and $\gamma_{o} \in \Gamma$ denote to the element such that $1\gamma_{o}$ is the unity, in this case M is a right $\operatorname{End}_{R_{\Gamma}}(M)$ –module with the mapping $:: M \times \Gamma \times \operatorname{End}_{R_{\Gamma}}(M) \to \operatorname{End}_{R_{\Gamma}}(M)$ by $\cdot (x, \gamma, f) \mapsto x\gamma f$ where $x\gamma f = f(1\gamma x)$, for $f \in End_{R_{\Gamma}}(M)$, $\gamma \in \Gamma$ and $x \in M$ [2].

Let M and N be two R_{Γ} – modules. Then M is called N –injective if for any R_{Γ} – submodule A of N and R_{Γ} – homomorphism f: A \rightarrow M, there exists an R_{Γ} - homomorphism g: N \rightarrow M such that gi = f where i is the inclusion mapping. An R_{Γ} – module M is injective if it is N – injective for any R_{Γ} – module N [1]. An R_{Γ} – submodule N of R_{Γ} – module M is essential (denote by $N \leq_e M$) if every nonzero R_{Γ} – submodule of M has nonzero intersection with N, in this case we say that M is an essential extension of N [1]. It is proved in [1], that every gamma module can be embedded in injective gamma module. The minimal injective extension of M is called injective hull (denote by E(M)) which is unique up to isomorphism.

3. Quasi-injective gamma module

In this section we introduce the concept of quasi-injective gamma modules as a generalization of injective gamma modules.

Definition 3.1 An R_{Γ} – submodule N of R_{Γ} – module M is called direct summand if there exists an R_{Γ} – submodule K of M such that M = N + K and $N \cap K = 0$, in this case M is written as $M = N \oplus K$. The R_{Γ} – submodules 0 and M are always direct summand of M.

Definition 3.2 Let N be an R_{Γ} – submodule of an R_{Γ} –module M. A complement of N in M is any R_{Γ} – submodule denoted by N^c of M which is maximal with respect to the property N \cap N^c = 0. By Zorn's lemma, one can be show that every submodule of gamma module has a complement submodule which is not unique in general.

Definition 3.3 An R_{Γ} – submodule A of an R_{Γ} – module M is called closed in M if it has no proper essential extension in M, that is, the only solution of the relation $A \leq_e K \leq M$ is A = K. It is easy to see that every direct summand of M is closed.

In this lemma, we see that every R_{Γ} – submodule is a direct summand of an essential R_{Γ} – submodule.

Lemma 3.4 Let N be an R_{Γ} – submodule of an R_{Γ} –module M. Then $N \oplus N^{c} \leq_{e} M$. **Proof.** For each R_{Γ} – submodule K of M such that $K \cap (N \oplus N^c) = 0$, if $a \in N \cap (N^c \oplus K)$, then a = b + k where $b \in N^c$ and $k \in K$, so $k = a - b \in K \cap (N \oplus N^c) = 0$, hence $a = b \in N \cap N^c = 0$, so $N \cap (N^c \oplus K) = 0$, by maximality of N^c we have N^c = N^c \oplus K, so K = 0, hence N + N^c \leq_{e} M.

Lemma 3.5 Let N be R_{Γ} – submodule of an R_{Γ} – module M and K a complement of N in M. Then: 1. There exists a complement L of K in M such that $N \leq L$.

- 2. L is a maximal essential extension of N.
- 3. If N is closed, then N = L.

Proof.

- 1. By Zorn's lemma there exists a complement L of K which contains N.
- 2. For any $A \leq L$, since $L \cap K = 0$, then $A \cap K = 0$. Let $0 \neq x = a + k \in (A + K) \cap N$ where $a \in A$ and $k \in K$. Then $k = x - a \in K \cap L = 0$, so k = 0 and $x = a \in N \cap A$, hence $N \cap A \neq 0$, so $N \leq_e L$, if P is R_{Γ} -submodule of M contains L properly, then $P \cap K \neq 0$ and $(P \cap K) \cap N = P \cap (K \cap N) = P \cap 0 = 0$, thus P is not essential extension of N.
- 3. Follows from (2).

Definition 3.6 An R_{Γ} – module M is called quasi-injective if for any R_{Γ} – submodule A of Q and for any R_{Γ} – homomorphism f: A \rightarrow M there exists an R_{Γ} –endomorphism g of M such that gi = f where i is the inclusion mapping of A into M.

In fact, M is a quasi-injective if and only if M is M – injective [1].

The proof of the following propositions follow from proposition(3.13) in [1].

Proposition 3.7 An R_{Γ} – module M is quasi-injective if $f(M) \subseteq M$ for every $f \in End(E(M))$.

Corollary 3.8 Let M be a quasi-injective R_{Γ} – module and $\{A_{\lambda}: \lambda \in \Lambda\}$ be a family of an independent set of R_{Γ} – submodules of M, then $M \cap (\bigoplus_{\lambda \in \Lambda} A_{\lambda}) = \bigoplus_{\lambda \in \Lambda} (M \cap A_{\lambda})$.

Corollary 3.9 Let M be a quasi-injective R_{Γ} -module , then:

- 1. Every R_{Γ} submodule of M is essential in a direct summand of M.
- 2. If an R_{Γ} submodule N of M isomorphic to a summand of M, then N is a summand of M.

Proof.

- 1. Assume $N \le M$ and $E(M) = E_1 \oplus E_2$ where $E_1 = E(N)$, by proposition(3.7) $M = (M \cap E_1) \oplus (M \cap E_2)$, by lemma(3.3) in [1], $N \le_e M \cap E_1$.
- 2. Assume $N \cong K$ and K is a direct summand of M, then there exists R_{Γ} submodule K_1 of M such that $M = K \bigoplus K_1$ and R_{Γ} isomorphism $\alpha: N \to K$, frome [1] K is M injective, so α can be extended to an R_{Γ} homomorphism $\beta: M \to K$ such that $\alpha = \beta i$ where i is the inclusion mapping, so $M = Im(i) \bigoplus Ker(\beta)$, hence N is a summand of M.

Proposition 3.10 Let N be a closed R_{Γ} – submodule of an R_{Γ} –module M. If M is quasi-injective, then N is M – injective.

Proof. Let K is R_{Γ} – submodule of M and f: $K \to N$ is an R_{Γ} –homomorphism, define $\Omega = \{(K', f'): K \le K' \le M, f' \text{ extended of f to } K'\}$ by Zorn's lemma Ω has a maximal element (K_{\circ}, f_{\circ}) , since M is quasi-injective, then f_{\circ} can extended to an R_{Γ} –homomorphism g: $M \to M$. If $g(M) \not\subseteq N$, let L be a complement of N in M, since N closed, then N is complement of L, since $N \subset N + g(M)$, so $[N + g(M)] \cap L \neq 0$, let $0 \neq x = a + b$ where $a \in N$ and $b \in g(M)$, if $b \in N$, then $x = a + b \in N \cap L = 0$ contradiction, so $b \notin N$ and $b = x - a \in L \oplus N$. Define $S = \{m \in M: g(m) \in L \oplus N\}$, S is an R_{Γ} – submodule contains K, take $t \in M$ such that g(t) = b, then $t \in S$ but $t \notin K$, if $\pi: L \oplus N \to N$ is the projection R_{Γ} –homomorphism , then $\pi g: M \to N$ and $(\pi g)(k) = \pi(g(k)) = \pi(f(k)) = f(k)$ for each $k \in K$, thus πg extending of f which is contradiction, therefore $g(M) \subseteq N$.

Corollary 3.11 Every closed R_{Γ} – submodule N of an quasi-injective R_{Γ} – module M is a direct summand of M, moreover, N is quasi-injective.

Proof. Let $I_N: N \to N$ identity map of N. Then by proposition(3.10) there exists $f: M \to N$ such that $fi = I_N$ where i is inclusion mapping, so $Im(i) \oplus Ker(f) = M$, hence $N \oplus Ker(f) = M$. By lemma(1.5) in [1], we have N is quasi-injective.

Corollary 3.12 Let M be R_{Γ} – module. Then M is quasi-injective if and only if M \oplus M is quasi-injective. **Proof.** If M is quasi-injective R_{Γ} – module, then by [1, proposition 1.4] M is M \oplus M – injective, by [1, lemma 1.5] M \oplus M is quasi-injective.

The proof of the following propositions follow from proposition(1.3) in [1].

Proposition 3.13 An R_{Γ} – module M is quasi-injective if and only if for each R_{Γ} – submodule B of a cyclic R_{Γ} – submodule A, each R_{Γ} –homomorphism α : B \rightarrow M can be extending to an R_{Γ} – homomorphism β : A \rightarrow M.

Examples and Remarks 3.14

- 1. Every simple R_{Γ} module is quasi-injective.
- 2. Every injective R_{Γ} module is quasi-injective, the converse is not true, for example, let $R = \Gamma = Z$ and $M = Z_2$, then M is quasi-injective from(1) but not injective since $1 \neq 2$. m. x for any $x \in M$, so it is not divisible [1].
- 3. Let F be a field, $R = \{\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} : x, y, z \in F\}$, and $\Gamma = \{\begin{pmatrix} \gamma & \beta \\ 0 & \lambda \end{pmatrix} : \gamma, \beta, \lambda \in F\}$. R is a Γ ring with usual multiplication of matrices, consider $A = \{\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in F\}$, $B = \{\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in F\}$ and $C = \{\begin{pmatrix} 0 & b \\ 0 & c \end{pmatrix} : b, c \in F\}$, then $M = A \oplus C$, and $B \cong A$, from corollary(3.9), R is not quasi-injective R_{Γ} module.
- 4. Direct sum of two quasi-injective R_{Γ} modules need not be quasi-injective, for example,let $R = \Gamma = Z$, $M_1 = Z_2$ and $M_2 = Q$ from example(2) and example(2.3) in [1] M_1 and M_2 are quasi-injective. But $M = M_1 \oplus M_2$ is not quasi-injective, since if the R_{Γ} homomorphism f: $0 \oplus Z \to M$ by $f(0, n) = (\overline{n}, 0)$ extended to R_{Γ} endomorphism g of M, then $g(0,1) = g(2.1.(0,\frac{1}{2})) = 2.1.g(0,\frac{1}{2}) = 2.1.(x,y) = (2.1.x, 2.1.y) = (2x, 2y)$, so (1,0) = g(0,1) = (2x, 2y) = (0,2y) contradiction.
- 5. If R_{Γ} module M contains a copy of R as R_{Γ} –module, then M is quasi-injective if and only if M is injective.
- 6. An R_{Γ} module M is quasi-injective if and only if for each essential R_{Γ} -submodule N of M, each R_{Γ} homomorphism f: N \rightarrow M can be extended to R_{Γ} endomorphism of M. For each R_{Γ} -submodule N of M and each R_{Γ} -homomorphism f: N \rightarrow M, define g: N \oplus N^c \rightarrow Mby g(n + n') = f(n) + n' where n \in N and n' \in N^c since N \oplus N^c is essential by lemma(3.4), then g can be extended to R_{Γ} endomorphism h of M, clear that h is extending of f.

Lemma 3.15 Let M be a quasi-injective R_{Γ} – module. Then M is injective if there exist an R_{Γ} – epimorphism from M to E(M).

Proof. Let $f: M \to E(M)$ be an R_{Γ} – epimorphism. Then there exists an R_{Γ} – endomorphism h: $E(M) \to E(M)$ such that f = hi, since M is quasi-injective, then $h(M) \subseteq M$, hence $E(M) = f(M) = h(M) \subseteq h(M) \subseteq M$, so M = E(M), Thus M is injective R_{Γ} – module.

The annihilator of a left R_{Γ} – module M define by $Ann_{R}(M) = \{r \in R: r\Gamma M = 0\}$ and the annihilator of $m \in M$ define by $Ann_{R}(m) = \{r \in R: r\Gamma m = 0\}$ [4]. We denote $\ell_{R_{\Gamma}}(M)$ and $\ell_{R_{\Gamma}}(m)$ instead of $Ann_{R}(M)$ and $Ann_{R}(m)$.

Definition 3.16 Let M be an R_{Γ} – module, $a \in M$ and $\gamma \in \Gamma$. The left Annihilator of m in R with respect to γ define by $\ell_{R_{\Gamma}}^{\gamma}(m) = \{r \in R: r\gamma m = 0\}$.

It's clear that $\ell_{R_{\Gamma}}(M) \subseteq \ell_{R_{\Gamma}}(m) \subseteq \ell_{R_{\Gamma}}^{\gamma}(m)$, in fact $\ell_{R_{\Gamma}}(M) = \bigcap_{m \in M} \ell_{R_{\Gamma}}(m) = \bigcap_{m \in M} \ell_{R_{\Gamma}}^{\gamma}(m)$.

The following proposition gives a characterization of quasi-injective gamma modules.

Proposition 3.17 An R_{Γ} – module M is quasi-injective if and only if for each left ideal L of R, each R_{Γ} – homomorphism f: L \rightarrow M with $\ell_{R_{\Gamma}}^{\gamma_{o}}(a) \subseteq \text{Ker}(f)$ for some $a \in M$, f can be extending to an R_{Γ} – homomorphism from R to M.

Proof. Assume M is quasi-injective R_{Γ} – module , L a left ideal of R and f an R_{Γ} – homomorphism from L to M with $\ell_{R_{\Gamma}}^{\gamma_{o}}(a) \subseteq \text{Ker}(f)$ for some $a \in M$. Then $L\gamma_{o}a$ is R_{Γ} – submodule of $\langle a \rangle$, define $\alpha: L\gamma_{o}a \to M$ by $\alpha(r\gamma_{o}a) = f(r)$ for any $r\gamma_{o}a \in L\gamma_{o}a$, if $r\gamma_{o}a = 0$, then $\ell_{R_{\Gamma}}^{\gamma_{o}}(a) \subseteq \text{Ker}(f)$, so f(r) = 0, hence α is well defined and easily to show α is R_{Γ} – homomorphism, then by proposition(3.13) α can extends to an R_{Γ} – homomorphism $\beta: \langle a \rangle \to M$, define $g: R \to M$ by $g(r) = \beta(r\gamma_{o}a)$ for each $r \in R$. Since $f(r) = \alpha(r\gamma_{o}a) = \beta(r\gamma_{o}a) = g(r)$ for each $r \in L$, then g extended to f. Conversely, Assume B is any R_{Γ} – submodule of M and $\alpha: B \to M$ is R_{Γ} –homomorphism. By Zorn's lemma there exists a maximal element (B_{o}, α_{o}) such that $B \leq B_{o}$ and α_{o} extends of α to B_{o} , if $B_{o} = M$ the proof complete , if not there exists $a \in M$ and $a \notin B_{o}$, take $L = \{r \in R: r\gamma_{o}a \in B_{o}\}$, then L is left ideal of R, define $\phi: L \to M$ by $\phi(r) = \alpha_{o}(r\gamma_{o}a)$ for each $r \in L$, if r = 0, then $r\gamma_{o}a = 0$, so $0 = \alpha_{o}(r\gamma_{o}a) = \phi(r)$, so $r \in \text{Ker}(\phi)$, thus $\ell_{R_{\Gamma}}^{\gamma_{o}}(a) \subseteq \text{Ker}(\phi)$, by hypothesis ϕ extended to R_{Γ} – homomorphism $\lambda: R \to M$. Define R_{Γ} – submodule C by

 $C = B_{\circ} + R\gamma_{\circ}a \text{ and } \beta: C \to M \text{ by } \beta(b_{\circ} + r\gamma_{\circ}a) = \alpha_{\circ}(b_{\circ}) + \lambda(r) \text{ for each } b_{\circ} \in B_{\circ} \text{ and } r \in R, \text{ if } b_{\circ} + r\gamma_{\circ}a = 0 \text{ , then } b_{\circ} = -r\gamma_{\circ}a \in B_{\circ}, \text{ so } r \in L \text{ and hence } \lambda(r) = \phi(r) = \alpha_{\circ}(r\gamma_{\circ}a) = -\alpha_{\circ}(b_{\circ}) \text{ , thus } \beta(b_{\circ} + r\gamma_{\circ}a) = 0, \text{ so } \beta \text{ is well } defined \text{ and it is } R_{\Gamma} - homomorphism \text{ , for each } b \in B, \alpha(b) = \alpha_{\circ}(b) = \alpha_{\circ}(b) + \lambda(0) = \beta(b), a \text{ contradiction with maximality of } (B_{\circ}, \alpha_{\circ}) \text{ , so } B_{\circ} = M, \text{ thus } M \text{ is quasi-injective.}$

Proposition 3.18 If M is an R_{Γ} -module $E = End_{R_{\Gamma}}(E(M))$ and $Q = M\Gamma E$, where $M\Gamma E = \{x\gamma f: x \in M, \alpha \in \Gamma \text{ and } f \in E\}$, then:

- 1. Q is an quasi-injective R_{Γ} submodule of E(M) containing M.
- 2. Q is the intersection of quasi-injective R_{Γ} submodule of E(M) containing M.
- 3. M = Q if and only if M is quasi-injective.
- 4. Q is the smallest quasi-injective R_{Γ} submodule of E(M) that contains M, furthermore, Q is essential extension of M.

Proof.

- 1. Since $M = 1_{E(M)}(M) = 1_{E(M)}(1\gamma_{\circ}M) = M\gamma_{\circ}1_{E(M)} \subseteq Q$, this shows that Q contains M. For all $x \in M$, $\alpha \in \Gamma$ and $f \in E$, then $x\gamma f = f(1\gamma x) \in E(M)$, so $Q \subseteq E(M)$, clearly that Q is an R_{Γ} submodule of E(M). If N is an R_{Γ} submodule of Q and f: $N \to Q$ is an R_{Γ} homomorphism, by injectivity of E(M), there exists $\varphi: E(M) \to E(M)$ which extends f. Since $\varphi(x\gamma f) = \varphi(f(1\gamma x)) = \varphi(1\gamma_{\circ}f(1\gamma x)) = (\varphi\gamma_{\circ}f)(1\gamma x) = x\gamma(\varphi\gamma_{\circ}f) \in Q$ for $x \in M$, $\alpha \in \Gamma$ and $f \in E$, therefore $\varphi(Q) \subseteq Q$, so if define $\overline{\varphi} = \varphi_{|_{Q}}$, then $\overline{\varphi}_{|_{N}} = f$ and thus Q is quasi-injective R_{Γ} module.
- 2. Let Q' be a quasi-injective R_{Γ} submodule of E(M) containing M, By proposition(3.7) and part(1) $f(Q') \subseteq Q'$ for $f \in E$, since $M \subseteq Q'$, then $Q = M\Gamma E \subseteq Q'\Gamma E \subseteq E(1\Gamma Q') \subseteq E(Q') \subseteq Q'$ and this shows that Q is the smallest one. Now for any family of a quasi-injective R_{Γ} submodules $\{Q_{\alpha}\}_{\alpha \in \Lambda}$ of E(M) each of which contains M, then $Q \subseteq \bigcap_{\alpha \in \Lambda} Q_{\alpha}$, but $\bigcap_{\alpha \in \Lambda} Q_{\alpha} \subseteq Q$, since $Q \in \{Q_{\alpha}\}_{\alpha \in \Lambda}$. Thus $Q = \bigcap_{\alpha \in \Lambda} Q_{\alpha}$.
- 3. Follows from(1) and from(2).
- 4. It's Clear from(2) Q is the smallest quasi-injective R_{Γ} submodule of E(M) contains M , since M essential in E(M), hence Q is essential in E(M) [1].

Definition 3.19 Let M be an R_{Γ} – module. A quasi-injective hull of M denoted by Q(M) is a quasi-injective R_{Γ} – module containing M such that for any R_{Γ} – monomorphism f from M into a quasi-injective R_{Γ} – module N, extends to an R_{Γ} – monomorphism from Q(M) into N. In fact, Q(M) = M Γ End_{R_{Γ}}(E(M)).

Lemma 3.20 Every R_{Γ} – module has a quasi-injective hull which is unique up to isomorphism.

Proof. Let M be R_{Γ} -module, for each quasi-injective extension N of M and R_{Γ} - monomorphism f from M into N, let $E = End_{R_{\Gamma}}(E(M))$, $E^* = End_{R_{\Gamma}}(E(N))$ and $Q = M\Gamma E$. By proposition(3.7), we have $N\Gamma E^* \subseteq N$. Since E(N) is injective R_{Γ} - module, there exists R_{Γ} - homomorphism $g: Q \to E(N)$ such that $gi_M = i_N f$ where $i_M(i_N)$ is the inclusion mapping of M(N) into Q(E(N)), if $x \in Ker(g) \cap M$, then f(x) = g(x) = 0, so f(x) = 0, hence $x \in Ker(f) = 0$, thus g is R_{Γ} - monomorphism, hence g(Q) is quasi-injective and so $E^*\Gamma(g(Q)) \subseteq g(Q)$, take $X = N \cap g(Q)$, then $X\Gamma E^* \subseteq X$, so by proposition(3.7), X is quasi-injective, hence $g^{-1}(X)$ is quasi-injective R_{Γ} - submodule of E(M) contains M, by proposition(3.18) $Q = g^{-1}(X)$, hence $g(Q) = X \subseteq N$. If there exists another quasi-injective hull T of M, then there exists an R_{Γ} - monomorphism $g': T \to Q$ such that g'f = i where i inclusion mapping from M to Q, for each $x\gamma h \in Q$, $g'g(x\gamma h) = g'g(x\gamma h) = g'i_N f(x\gamma h) = h(1\gamma x) = x\gamma h$, so $g'g = I_Q$, hence g' is R_{Γ} - isomorphism.

Definition 3.21 Let M be an R_{Γ} – module and I a left ideal of R. M is called I – bounded if for each left ideal J of R, there exists an element m in M with $\ell_{R_{\Gamma}}(m) \leq J$ if and only if $I \leq J$.

Every R_{Γ} – module M is R – bounded, since $0 \in M$ and $\ell_{R_{\Gamma}}(0) = R$ and M is 0 – bounded if there exists an element m in M with $\ell_{R_{\Gamma}}(m) \leq J$ for each ideal J of R.

Remarks 3.22 Let I be a left ideal of a Γ - ring R and M is an I - bounded R_{Γ} - module. Then

1. I is the minimal ideal of R with the property $I = \ell_{R_{\Gamma}}(m)$ fore some $m \in M$. Since $I \leq I$, so by definition(3.21), there exists $m \in M$ such that $\ell_{R_{\Gamma}}(m) \leq I$. On the other hand, since $\ell_{R_{\Gamma}}(m) \leq \ell_{R_{\Gamma}}(m)$ again by definition(3.21)

we have $I \le \ell_{R_{\Gamma}}(m)$, so $I = \ell_{R_{\Gamma}}(m)$. For the minimality, if there exists a left ideal I_1 of R such that $I_1 = \ell_{R_{\Gamma}}(x)$ fore some $x \in M$, since $\ell_{R_{\Gamma}}(x) \le I_1$, by definition(3.21) we have $I \le I_1$.

- 2. I is two-sided ideal of R. Since $I = \ell_{R_{\Gamma}}(m)$, then $I\Gamma M \leq I\Gamma m = 0$. So $(I\Gamma R)\Gamma M = I\Gamma(R\Gamma M) \leq I\Gamma M = 0$, hence $I\Gamma R \leq \ell_{R_{\Gamma}}(M) \leq \ell_{R_{\Gamma}}(m) = I$, therefore I is two-sided ideal.
- 3. Suppose there exists $m_1 \in M$ such that $I \leq \ell_{R_{\Gamma}}(m_1)$, then there is no element $x \in M$ such that $\ell_{R_{\Gamma}}(x) \leq \ell_{R_{\Gamma}}(m_1)$ which is a contradiction. Thus $I \leq \bigcap_{m \in M} \ell_{R_{\Gamma}}(m)$ for each $m \in M$.
- 4. Since $I \le \ell_{R_{\Gamma}}(m)$ for each $m \in M$, then $I \le \bigcap_{m \in M} \ell_{R_{\Gamma}}(m) = \ell_{R_{\Gamma}}(M)$, so M is $(R/I)_{\Gamma}$ module by the rule $(r + I, \gamma, m) \mapsto r\gamma m$ for each $r \in R, \gamma \in \Gamma$ and $m \in M$ [2].

The following proposition gives a characterization of quasi-injective gamma modules.

Theorem 3.23 Let M be an I – bounded R_{Γ} – module. Then M is quasi-injective if and only if it is injective as an $(R/I)_{\Gamma}$ – module.

Proof. Assume M is quasi-injective R_{Γ} -module. Let K/I is an R_{Γ} - submodule of R/I and f: K/I \rightarrow M an R_{Γ} - homomorphism. Define α : K \rightarrow M by $\alpha(r) = f(r + I)$ for each $r \in K$, if r = 0, then f(r + I) = 0, hence α is well-defined and it's easily to show that α is R_{Γ} - homomorphism. Since I \leq Ker(f), then I = $\ell_{R_{\Gamma}}(M) \leq$ Ker(α). So $\ell_{R_{\Gamma}}^{\gamma_{\circ}}(a) \subseteq$ Ker(α), hence by proposition(3.17) α can extend to an R_{Γ} - homomorphism β : R \rightarrow M. Define g: R/I \rightarrow Q by g(r + I) = $\beta(r)$ for each $r \in R$. If r + I = I, then $r \in I$, so $\beta(r) = \alpha(r) = 0$, thus g(r + I) = 0, therefore g is well-defined and for each $r \in K$, g(r + I) = $\beta(r) = \alpha(r) = f(r + I)$, then M is injective as $(R/I)_{\Gamma}$ - module.

Corollary 3.24 Let M is 0 – bounded R_{Γ} – module. Then M is quasi-injective if and only if it is injective.

Examples 3.25

- 1. If R is simple, then R is 0 bounded. Since $R\Gamma R \neq 0$, then there exists a non-zero element $r \in R$, since $r = 1\gamma_{\circ}r$, so $1 \notin \ell_{R_{\Gamma}}^{\gamma_{\circ}}(r)$, thus $\ell_{R_{\Gamma}}^{\gamma_{\circ}}(r) \neq R$, hence $\ell_{R_{\Gamma}}(r) = 0$. In particular, Z_2 as $(Z_2)_Z \text{module}$ is 0 bounded.
- 2. The Z_Z module Z_Z is not 0-bounded .Take the ideal J = 3Z, since $Z_Z = \{0,1\}$, $\ell_{R_{\Gamma}}(0) = Z$ and $\ell_{R_{\Gamma}}(1) = \{n \in Z: n \text{ is even}\}$, so there is not $m \in Z_Z$ such that $\ell_{R_{\Gamma}}(m) \leq J$ but $0 \leq J$. By example(3.14)(2) Z_Z is quasiinjective but not injective, this example show that the condition of 0 - bounded in corollary(3.24) cannot be dropped.
- 3. The Z_Z module Z is 0 bounded for each ideal J of Z. Since $\ell_{R_T}(n) = 0 \le J$ for any nonzero n in Z.
- 4. Let $R = Z_{12}$, $\Gamma = Z$ and $M = Z_{12}$, take $I_1 = \{0\}$, $I_2 = \{0,6\}$, $I_3 = \{0,4,8\}$, $I_4 = \{0,3,6,9\}$, $I_5 = \{0,2,4,6,8,10\}$, then $\ell_{R_{\Gamma}}(0) = Z_{12}\ell_{R_{\Gamma}}(1) = \ell_{R_{\Gamma}}(5) = \ell_{R_{\Gamma}}(7) = \ell_{R_{\Gamma}}(11) = I_1$, $\ell_{R_{\Gamma}}(2) = I_2, \ell_{R_{\Gamma}}(3) = \ell_{R_{\Gamma}}(9) = I_3$, $\ell_{R_{\Gamma}}(4) = \ell_{R_{\Gamma}}(8) = I_4$, $\ell_{R_{\Gamma}}(6) = I_5$, hence Z_{12} is I_1 – bounded, I_2 – bounded, I_3 – bounded, I_4 – bounded, I_5 – bounded and Z_{12} – bounded. So Z_{12} is injective as $(Z_{12}/I_j)_7$ – module (j=1,2,...,6) by theorem(3.23).

Lemma 3.26 If direct sum of every pair of quasi-injective R_{Γ} – modules is quasi-injective, then every quasi-injective is injective.

Proof. For any ideal I of R and R_{Γ} – homomorphism f: I \rightarrow M, since M \oplus E(R) is quasi-injective, then there exists an R_{Γ} – endomorphism g of M such that $i_{M}f = gi_{R}i_{I}$ where $i_{M}(i_{R}, i_{I})$ is the inclusion mapping of M(R, I) into M \oplus E(R)(M \oplus E(R), R). Define \bar{g} : R \rightarrow M by $\bar{g} = \pi_{1}gi_{R}$ where π_{1} is the projection of M \oplus E(R) into M, then $\bar{g}i_{I}(n) = \pi_{1}gi_{R}i_{I}(n) = \pi_{1}i_{M}f(n) = f(n)$ for each $n \in I$, so by proposition(1.7) in [1] M is injective.

Let R be a Γ -ring, the radical J(R) of R is the set of all elements of R which annihilates all simple R_{Γ} – modules [6]. An element a in Γ –ring R is called left quasi-regular if there exists a' in R such that $a + a' + a'\gamma a = 0$ for each $\gamma \in \Gamma$, an ideal I of R is left quasi-regular if each its elements is left quasi-regular [10].

Theorem 3.27 [10] Let R be Γ –ring. Then the radical J(R) of R is left quasi-regular ideal of R contains every left quasi-regular ideal of R.

An element x of a Γ - ring R is called regular if there exists $s \in R$ such that $x = x\alpha s\gamma x$ for some $\gamma, \alpha \in \Gamma$ and R is regular if each element of R is regular [8].

Theorem 3.28 Let M be a quasi-injective R_{Γ} – module and $E = End_{R_{\Gamma}}(M)$, then $J(E) = \{f \in E: Ker(f) \text{ is essential } R_{\Gamma} - submodule of M \}$ and E/J(E) is regular Γ – ring.

Proof. Let $K = \{f \in E: Ker(f) \text{ essential } R_{\Gamma} - \text{ submodule } M\}$, for each $f, g \in K$, since $Ker(f) \cap Ker(g) \subseteq Ker(f - Ker(g))$ g), then Ker(f – g) is essential R_{Γ} – submodule of M, so f – g \in K and for each f \in K, $\gamma \in \Gamma$ and h \in E, if N is non-zero R_{Γ} – submodule of M, since Ker(f) $\leq_e M$, then $h^{-1}(Ker(f)) \leq_e M$ by [1, lemma(3.3)], so there exists $n \neq 0 \in N \cap h^{-1}(Ker(f))$, hence $h(n) \in Ker(f)$, thus $1\gamma h(n) = h(1\gamma n) \in Ker(f)$, so $(f\gamma h)(n) = f(h(1\gamma n)) = 0$, hence $n \in \text{Ker}(f_Yh)$, therefore $n \in \mathbb{N} \cap \text{Ker}(f_Yh) \neq 0$, so $\text{Ker}(f_Yh) \leq_e M$, hence $f_Yh \in K$, thus $E\Gamma K \subseteq K$, this show that K is an ideal of E. Now for each $f \in K$, define an R_{Γ} -homomorphism h: M \rightarrow M by h(x) = 1 γ f(x) for each $x \in M$, since Ker(f) \subseteq Ker(h), then Ker(h) $\leq_e M$ but Ker(h) \cap Ker(I - h) = 0 where I = id(M), hence Ker(I - h) = 0 where I = id(M) where Ker(I - h) = 0 where I = id(M) where Ke h) = 0 and I – h: M \rightarrow Im(I – h) is an R_{Γ} –isomorphism, so there exists g: M \rightarrow M such that $g_{|(I-h)(M)} = (I - h)^{-1}$, hence g(I - h) = I, define an R_{Γ} -homomorphism $t: M \to M$ by t(x) = g(x) - f(x) - I(x) for each $x \in M$, then g(x) = t(x) + f(x) + I(x), so $I = g - gh = t + f + I - g\gamma f$, hence $t + f - g\gamma f = 0$ for each $\gamma \in \Gamma$, therefore f is quasi-regular by theorem(3.27) $f \in J(E)$, thus $K \subseteq J(E)$. For each $f \in J(E)$, let $K \leq M$ with $K \cap Ker(f) = 0$, then $f' = -f_{IK}: K \to M$ is an R_{Γ} -monomorphism, so there exists $g: M \to M$ such that $k = g(f'(k)) = g(1\gamma_{\circ}f'(k)) = g(1\gamma_{\circ}f'(k))$ $(g\gamma_{\circ}f')(k)$ for each $k \in K$, hence $(I + g\gamma_{\circ}f)(K) = 0$, so $K \leq \text{Ker}(I + g\gamma_{\circ}f)$, since $f \in J(E)$ and J(E) is an ideal [10], then $g\gamma_{\circ}f \in J(E)$, then $g\gamma_{\circ}f$ is quasi-regular by theorem(3.11) in [10], thus there exists $h \in E$ such that $g\gamma_{\circ}f + h + f$ $h\gamma_{\circ}g\gamma_{\circ}f = 0$, that is, $(I + h)\gamma_{\circ}(I + g\gamma_{\circ}f) = I$, hence $Ker(I + g\gamma_{\circ}f) = 0$ but $K \le Ker(I + g\gamma_{\circ}f)$, so K = 0, therefore $\operatorname{Ker}(f) \leq_{e} M$, thus $J(E) \subseteq K$, so K = J(E).

For each $\overline{f} = f + K \in E/K$, take $B = (Ker(f))^c$ in M, since $Ker(f_{|B}) = 0$, then $f_{|B}$ is an R_{Γ} -monomorphism and $f_{|B}^{-1}: f(B) \to B$ is R_{Γ} - isomorphism, so $f_{|f(B)}^{-1}$ can be extended to R_{Γ} -homomorphism $g: M \to M$ such that $g_{|f(B)} = f_{|f(B)}^{-1}$, so $(g\gamma_{\circ}f)(b) = g(f(1\gamma_{\circ}b)) = g(f(b)) = b$ for each $b \in B$, hence $g\gamma_{\circ}f = id(B)$, since $(f\gamma_{\circ}g\gamma_{\circ}f - f)(B) = (f\gamma_{\circ}g)(f(B)) - f(B) = 0$, then $(f\gamma_{\circ}g\gamma_{\circ}f - f)(B + Ker(f)) = 0$, so $B \oplus Ker(f) \le Ker(f\gamma_{\circ}g\gamma_{\circ}f - f)$ but $B \oplus Ker(f) \le e$ M, then $Ker(f\gamma_{\circ}g\gamma_{\circ}f - f) \le e$ M and $f\gamma_{\circ}g\gamma_{\circ}f - f \in K$, so $f\gamma_{\circ}g\gamma_{\circ}f + K = f + K$, take $\overline{f} = \overline{f}\gamma_{\circ}\overline{g}\gamma_{\circ}\overline{f}$, hence E/K is regular , thus E/J(E) is regular .

References:

- 1. M. S. Abbas, S. A. Saadi, E. A. Shallal, (2016), Injective gamma modules, Annals of Pure and Applied Mathematics, Vol. 12, No. 1, 85-94.
- 2. R. Ameri and R.Sadeghi, (2010), Gamma Modules, Ratio Mathematica, Vol. 20, pp. 127-147.
- 3. W. E. Barnes, (1966), On The Γ Ring of Nobusawa, Pacific Journal of Mathematics, Vol. 18, No. 3, pp. 411-422.
- 4. **M. Dumitru**, (2009), Gamma-Rings: some interpretations used in the study of their radicals, U. P. B. Bull., Vol. 71, No. 3.
- 5. L. Fuchs, (1969), On Quasi-injective modules, Ann. Scuola Norm. Sup. Pisa, 23, 541-546.
- 6. S. Kyuno, (1977), On the semi-simple gamma rings, Tohoku Math. Journ., 29, 217-225.
- 7. S. Kyuno, (1979), A gamma ring with the right and left unites, Math. Japon., 24, 191-193.
- 8. X. Ma, J. Zhan, (2010), Some Characterizations of regular semisimple Γ –Ring, Kyungpook Math. J., 50, 411-417.
- 9. N. Nobusawa, (1964), On a Generalization of the ring theory, Osaka Journal Math., Vol. 1, pp 81-89.
- 10. A. C. Paul ,Md. SaburUddin, (2009), On Jacobson radical for Γ Rings, J. Bangladesh Math. Soc., 29, 147-160.