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Most of the statistical research studies concentrate on linear approaches to 

build the model to bring out the relationship among the variables. In the past 

two decades, many researchers introduced a latent nonlinear approach in 

Structural Equation Modeling. The Nonlinear models obtain simultaneous 

Interaction and Quadratic effects. In this paper, Latent Moderated Structural 

Equation Model, Constrained Approach and Unconstrained Approach are 

applied for the primary data of 405 patients who are affected by Cardio 

Vascular Disease. The efficacy of the model is also discussed. 
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1 Introduction 
 

The estimation of nonlinear relation between variables is an important concern in different areas of the social and 

behavioral sciences. Several theories do not only incorporate not only linear but also nonlinear relations between 

variables. An interaction effect implies that a relationship between a predictor and a criterion is weakened or 

strengthened by a second predictor variable (Aiken and West, 1991). In social psychology, for example, an 

interaction effect is hypothesized in an extension of the theory of planned behavior (Ajzen, 1991). This theory 

suggests that the behavior is dependent on the individual’s intention to perform a specific behavior and an 

individual’s perceived ease or difficulty of performing this behavior (perceived behavioral control). In an extension 

of this theory,  Elliott et.al. (2003) demonstrated in their study on compliance with speed-limits that prior behavior 

of exceeding speed limits while driving in built-up areas moderated the relationship between perceived behavioral 

control and subsequent behavior:  increasing frequency of prior noncompliance with speed limits was associated 

with a decrease in the relationship between perceived behavioral control and driver’s subsequent reported 

noncompliance with speed limits. 

 

A quadratic effect implies that the predictor variables interact within themselves. In health psychology, for example, 

a quadratic effect is hypothesized in research dealing with adolescents’ reputations of peer status and health 

behaviors. Wang et. al. (2006) investigated adolescent boys’ weight-related health behaviors and cognitions 

expecting a curvilinear association between perceived body size and reputation-based popularity. The results 

showed the expected inverted U-shaped curve: Lower levels of popularity were associated with self-reported body 

shapes at each extreme of the silhouette scale (thin and heavy silhouettes), whereas higher levels of popularity were 

associated with self-reported muscular silhouettes. These findings confirm boys’ body ideals toward body shapes 

that are neither thin nor heavy but muscular.  

http://www.journalijar.com/
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Most studies investigate either interaction or quadratic effects. It is also sometimes of interest to combine both types 

of nonlinear effects in a more complex “multiple” nonlinear model. We will cite two examples in order to explain 

such cases in empirical research: In educational psychology, for example, theory suggests a negative interaction 

between parent’s educations on child’s educational expectations (Ganzach, 1997): When the level of education of 

one parent is high, the educational expectations of the child will also be high, even if the level of education of the 

other parent is quite low. However, analyses also revealed two quadratic effects, a positively accelerated relationship 

between mother’s education and child’s educational expectations as well as a positively accelerated relationship 

between father’s education and child’s educational expectations.  

 

In studying the relationship between teachers’ expectations and students’ perceived competence in physical 

education classes, Trouilloud et al. (2006) hypothesized a quadratic effect that is a negatively accelerated 

relationship between teachers’ early expectations and students’ later perceived competence. In the last two decades, 

Structural Equation Modeling (SEM) is familiar in applied behavioral and social sciences research (Schumacker and 

Marcoulides, 1998). They concentrated on linear and nonlinear of Structural Equation Model (SEM) in social 

sciences.  

 

In this paper, we discuss collection of data as well as necessary variables in Section 3. Based on the variables, the 

model specification is explained and identified the significant factors in Section 4. The three SEM approaches are 

used for estimating parameters in nonlinear Structural Equation Modeling namely Latent Moderator Approach 

(LMS), Unconstrained Approach (UA) and Constrained Approach (CA) are explained and results are discussed in 

Sections 5, 6 and 7 respectively.  

 

2 Preliminaries 
 

In day today life, the cardio vascular disease is the much familiar and threatening disease to the life of the people. So 

we are interested to study the influencing factors to the cardio vascular disease. The survival status of the patients is 

also studied. In this article, we observed the two outcome variables namely ejection fraction and survival status.  The 

Ejection Fraction and Survival status of the patients are considered as endogenous (dependent) variables. Also we 

observed name of the patient, Gender, Age, Body Mass Index, Place of residence (Urban / Rural), Smoking habits, 

Alcohol habits, Family History, Blood Glucose level, Blood Cholesterol level, Blood Pressure variables are 

considered as exogenous (independent) variables. 

 

The general model is represented by the following equations consisting of measurement and structural models:  

Y = ν +Λη + ε       (2.1) 

and      η = α + Bη + ξ,                (2.2) 

 

where Y is the vector of p observed variables in a considered  study (p >1), ν the p × 1 vector of observed variable 

mean intercepts, Λ is the p × q matrix of factor loadings, η is the  of q x 1 latent factors assumed in it (q > 0), ε the 

vector of p pertinent residuals (error terms), α is the q × 1 vector of latent variable intercepts, B is a q x q matrix of 

latent regression coefficients and ξ is the q × 1 vector of corresponding latent disturbance terms. 

 

Based on the general equation (2.1) and (2.2), we obtain the following the structural equation model for the three 

factors namely blood factor (
1
), life style factor (

2
) and physical factor (

3
) with manifest endogenous variables 

ejection fraction (𝑌1) and survival status (𝑌2) are given in the following structural equation models: 

 

𝑌1 = 𝛼1 + 𝛽111
+ 𝛽122

+ 𝛽133
+ 

1
                         (2.3)      

𝑌2 = 𝛼2 + 𝛽211
+ 𝛽222

+ 𝛽233
+  2               (2.4)  

The general matrix expression is given in the following equation: 

 

                                                                 𝑌1 = 𝛼1 + 11
+ 

1
                       (2.5)  

    𝑌2 = 𝛼2 + 22
+ 

2
               (2.6) 

where 1  =  𝛽11  𝛽12      𝛽13  ,   2  =  𝛽21  𝛽22      𝛽23 , 1
=  


1


2


3

  𝑎𝑛𝑑 
2

=  


1
∗


2
∗


3
∗

  . 
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In the above equations (2.5) and (2.6), 𝑌1 and 𝑌2 are the two manifest endogenous variables, 𝛼1 and 𝛼2 are the latent 

intercepts, 1 and 2 are the coefficient vectors for the linear effects of n latent predictors, 
1
and 

2
 are the latent 

factors and finally 
1
 and 

2
 are the latent disturbance. The above model in equations (2.5) and (2.6), are constructed 

in Amos (version 16.0) and finalized the significant factors. In this models equations (2.5) and (2.6), only two 

factors namely blood factor (
1
) and life style factor (

2
) are significant on the manifest endogenous variables 

ejection fraction (𝑌1) and survival status (𝑌2). The physical factor (
3
) in not significant on both the variables 𝑌1 and 

𝑌2.  

 

3 Data characteristics  

 
This study is conducted in Cardio Vascular Disease patient in Chennai City. A total of 405 samples are collected 

with help of Dr. Immanuel who is running private hospital in Chennai. There are 13 variables information of patient 

were observed  in clinical laboratory namely, Name of the patient, Gender, Age, Body Mass Index (BMI), Place of 

residence (Urban / Rural), Smoking habits, Alcohol habits, Family History, Blood Glucose level (BGL), Blood 

Cholesterol level (BCL), Blood Pressure (BP), Ejection Fraction (EF) of the patients and their Survival status . The 

variables Age, BMI, BGL, BCL, BP and EF are continuous variables and Gender, Place of residence, smoking 

habits, alcohol habits and family history are categorical variables. The data were collected between the years 2010 

and 2013. 

 

4 Model Specification 
 

We have classified into three factors namely Blood factor, Life Style factor and Physical factor based on the nature 

of the independent variables. The Blood factor is measured by three variables namely Blood Glucose, Blood 

Cholesterol and Blood Pressure. The Life Style factor is measured by four variables namely Place of residence 

(Urban / Rural), Smoking habits, Alcohol habits and Family History of the patients. The Physical factor is measured 

by three variables namely Age of the patients, Body Mass Index and Gender of the patients. The three factors are 

considered as major factors which influence the Cardio Vascular Disease and Survival status. Out of three factors, 

the physical factor is not significant on the manifest endogenous variables ejection fraction and survival status. 

Finally the two factors namely blood factor and life style factor are used to build the model in order to explain the 

relationship among the variables are shown in Diagram 4.1. 

 

We have constructed two major factors namely blood factor and life style factor and they are denoted as 
1
 ∗

 and 
2
 ∗

 

respectively. The blood factor (
1
 ∗

) is measured by three variables namely blood glucose (𝑋1
∗), blood cholesterol (𝑋2

∗) 

and blood pressure (𝑋3
∗). The life style factor (

2
 ∗

) is measured by three variables namely Smoking (𝑋4
∗), Alcohol 

(𝑋5
∗) and Family History (𝑋6

∗). The Ejection Fraction and Survival status are the two manifest endogenous variables 

which are influenced by two linear factors namely blood factor (
1
 ∗

) and life style factor (
2
 ∗

). Normally the linear 

effects are studied on endogenous variables. In this Paper, we are interested to study linear and nonlinear effects on 

manifest endogenous variable Ejection Fraction ( 𝑌1
∗) and Survival status (𝑌2). 

 

We have constructed two types of measurements models namely latent measurement model and nonlinear latent 

measurement model. The latent measurement model is explained by two linear factors namely 
1
 ∗

 and 
2
 ∗

. The 

nonlinear latent measurement model is explained by one interaction term (
3
 ∗

 ) and one quadratic term (
4
 ∗

). It is 

shown in the following Diagram 4.1. Also the linear effect, interaction effect and quadratic effect of three methods 

namely Linear Structural Equation Method, Unconstrained Method and Constrained Method are studied on 𝑌1
∗ and 

𝑌2. Finally the efficacy of the methods is studied. In this paper, we study how the survival status is influenced by 

linear and non linear terms and the influence of Ejection Fraction on Survival status. 
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Diagram 4.1 

There are two measurement models used in this section namely linear latent measurement model and nonlinear 

latent measurement model and they are shown in Diagram 4.1. The nonlinear structural equation model includes two 

latent exogenous variables 
1
 ∗

 and 
2
 ∗

, a latent interaction term 
1
 ∗


2
 ∗ =  

3
 ∗

, latent quadratic term 
1
 ∗2

=   
4
 ∗

, two 

manifest endogenous variable  𝑌1
∗ and 𝑌2 and a disturbance term   

1
∗   and  

2
∗
. The parameters  𝛽11

∗  and  𝛽12
∗   are 

linear effect of  
1
 ∗

 and 
2
 ∗

 , the notation 𝜔13
∗  is the interaction effect of 

3
 ∗

 and 𝜔14
∗  is the quadratic effect of 

4
 ∗

 for 

the manifest endogenous variable 𝑌1
∗. The parameter 𝛽21  is the effect of 𝑌1

∗ on 𝑌2 and the notation 𝜔23  is the 

interaction effect of 
3
 ∗

 and 𝜔24  is the quadratic effect of 
4
 ∗

 for the manifest endogenous variable 𝑌2. 

The structural equation of the nonlinear model with an intercept term 𝛼1
∗ is given in the following structural equation 

model: 

                                                                 𝑌2 = 𝛼1
∗  + 𝛽21𝑌1

∗ + 𝜔233
 ∗ +𝜔244

 ∗ + 
 
2
∗   ,                           

where    𝑌1
∗ = 𝛼∗ + 𝛽11

∗ 
1
 ∗ + 𝛽12

∗ 
2
 ∗ +𝜔13

∗  
3
 ∗ +𝜔14

∗  
4
 ∗ + 

1
 ∗

. 

The general matrix expression is given in the following equation: 

                                                            𝑌2 = 𝛼1
∗  +   ∗ + 

 ∗


 ∗


 ∗ + 
 
2
∗
 ,                    

where  =  0 𝛽21  ,  =  
0
𝑌1
∗ ,  ∗ =  1

 ∗


2
 ∗
  𝑎𝑛𝑑  ∗ =  

0 0
𝜔13 𝜔14

  . 

In the above Equation, 𝑌2 is the manifest endogenous variable, 𝛼1
∗  is the latent intercept,   ∗

 is the coefficient vector 

for the linear effects, 
 ∗

  is the coefficient matrix of the non-linear effects and finally 
 
2
∗
 is the latent disturbance. In 

this paper, the linear measurement model and nonlinear measurement model are explained in Sections 4.1 and 4.2 

respectively in order to estimate the parameters.  

 

 

     𝑌2 
 

    𝑌1
∗ 

 

𝛿11
∗  

 
𝛿12
∗  

 

𝛿10
∗  

 

𝑋3
∗2

 

4
∗
 

𝑋1
∗2

 𝑋2
∗2

 

 
1
∗
  

2
∗
 𝛿2

∗ 
 

𝛿1
∗ 

𝛿3
∗ 

 

𝑋2
∗ 

𝑋1
∗ 

𝑋3
∗ 

1
∗
 

𝛿5
∗ 

 

𝛿4
∗ 

 

𝛿6
∗ 

 

𝑋5
∗ 

𝑋4
∗ 

𝑋6
∗ 

2
∗
 

𝛿8
∗ 

 
𝛿9
∗ 

 
𝛿7
∗ 

 

𝑋2
∗𝑋5

∗ 

 
𝑋3
∗𝑋6

∗ 

 

𝑋1
∗𝑋4

∗ 

 

3
∗
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4.1 Linear Latent Measurement Model 

 

The latent exogenous variable 
1
 ∗

 is measured by three indicators 𝑋1
∗, 𝑋2

∗ and 𝑋3
∗  and 

2
 ∗

 is measured by three 

indicators 𝑋4
∗, 𝑋5

∗ and 𝑋6
∗ and it is shown in the following measurement model equation: 

 
 
 
 
 
 
𝑋1
∗

𝑋2
∗

𝑋3
∗

𝑋4
∗

𝑋5
∗

𝑋6
∗ 
 
 
 
 
 

=

 
 
 
 
 
 

1 0
12
∗ 0

13
∗ 0
0 1

   0 25
∗

   0 26
∗  
 
 
 
 
 

 


1
 ∗


2
 ∗ +

 
 
 
 
 
 
𝛿1
∗

𝛿2
∗

𝛿3
∗

𝛿4
∗

𝛿5
∗

𝛿6
∗ 
 
 
 
 
 

 

The parameters  12
∗

 and 13
∗

 are the factor loadings of the measurement model 
1
 ∗

 and the parameters 25
∗

 and 26
∗

  

are the factor loadings of the measurement model 
2
 ∗

. The factor loadings of 𝑋2
∗, 𝑋3

∗, 𝑋5
∗ and 𝑋6

∗ are 12
∗

  13
∗

, 25
∗

 and 

26
∗

 respectively which are freely estimated parameters. The parameters  11
∗

and 24
∗

 are the factor loading of the 

indicators 𝑋1
∗ and 𝑋4

∗ respectively which are fixed parameters and they are denoted as 11
∗ = 1 and  24

∗ = 1. The 

errors of the indicator variables 𝑋1
∗, 𝑋2

∗, 𝑋3
∗, 𝑋4

∗, 𝑋5
∗ and are 𝑋6

∗ 𝛿1
∗, 𝛿2

∗, 𝛿3
∗, 𝛿4

∗, 𝛿5
∗ and 𝛿6

∗ respectively. The endogenous 

manifest variable is denoted as 𝑌1
∗ 𝑎𝑛𝑑 𝑌2 .  

 

4.2 Nonlinear latent Measurement Model 

 

The latent exogenous variable 
3
 ∗

 is measured by three interaction indicators 𝑋1
∗𝑋4

∗, 𝑋2
∗𝑋5

∗ and 𝑋3
∗𝑋6

∗. The latent 

exogenous variable 
4
 ∗

 is also measured by three quadratic indicators 𝑋1
∗2

, 𝑋2
∗2

 and 𝑋3
∗2

. The two nonlinear 

exogenous terms are described in the following equation.  

 
 
 
 
 
 
 
𝑋1
∗𝑋4

∗

𝑋2
∗𝑋5

∗ 

𝑋3
∗𝑋6

∗

𝑋1
∗2

𝑋2
∗2

𝑋3
∗2  
 
 
 
 
 
 

=

 
 
 
 
 
 

1 0
38
∗ 0

39
∗ 0
0 1

   0 42
∗

   0 43
∗  
 
 
 
 
 

 


3
 ∗


4
 ∗ +

 
 
 
 
 
 
𝛿7
∗

𝛿8
∗

𝛿9
∗

𝛿10
∗

𝛿11
∗

𝛿12
∗  
 
 
 
 
 

 

The parameters  38
∗

 and 39
∗

 are the factor loadings of the nonlinear measurement term 
3
 ∗

 . The parameter  42
∗

 and 

43
∗

 are the factor loadings of the nonlinear measurement term 
4
 ∗

 . The factor loadings 38
∗

 and 39
∗

 are of the 

interaction indictors 𝑋2
∗𝑋5

∗ and 𝑋3
∗𝑋6

∗ respectively. The parameter 42
∗

 and 43
∗

 are the factor loading of the quadratic 

indicators 𝑋2
∗2

 and  𝑋3
∗2

 respectively. The parameters 38 , 39  42  and 43 are freely estimating parameters. The 

parameters 37
∗

 and 41
∗

 are the factor loadings of the indicators 𝑋1
∗𝑋4

∗ and 𝑋1
∗2

 respectively are fixed parameters and 

they are denoted as 37
∗ = 1 and  41

∗ = 1. The errors of the indicator variables 𝑋1
∗𝑋4

∗ , 𝑋2
∗𝑋5

∗, 𝑋3
∗𝑋6

∗, 𝑋1
∗2  ,  𝑋2

∗2   and 

𝑋3
∗2

 are 𝛿7
∗,  𝛿8

∗, 𝛿9
∗,  𝛿10

∗ , 𝛿11
∗  and 𝛿12

∗  respectively. 

 

The three approaches namely Latent Moderator Approach (LMS), Unconstrained Approach (UA) and Constrained 

Approach (CA) are used to estimate the parameters of the indicator variables which are shown in Diagram 4.1. 

Subsequently, their results are discussed in the following Sections 5, 6 and 7 respectively. 

 

5 Latent Moderated Structural Equation Model (LMS) 
 

Latent Moderated Structural Equation method has been developed by Klenin and Moosbrugger (2000) for 

estimation of multiple latent interaction and quadratic effects for non normal latent variables.  The manifest non-

linear indicators are not needed in latent moderated structural equation method for the estimation of the non-linear 

effects. Instead, the latent criterion variable is non-normally distributed when non-linear effects are in the data; the 

distribution of the latent criterion is utilized to estimate the non-linear effects.  

 

The latent exogenous predictor and the latent exogenous moderator variables are assumed to be bivariate normally 

distributed. If follows that for each value of the moderator variable the conditional distribution of the predictor 

variable and the conditional distribution of the latent criterion variable is normal. Therefore, the non-normal density 

function of the joint indicator vector is approximated by a finite mixture distribution of multivariate normally 

distributed components. In order to estimate the model parameters, model implied mean vectors and covariance 

matrices of the mixture components are utilized.  
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The latent moderated structural equation only assumes that the latent predictor variables 
1
 and  

2
 and all error 

variables 𝛿1,  𝛿2,  𝛿3,  𝛿4,  𝛿5, 𝛿6 and  are to be normally distributed. The Maximum Likelihood estimates are 

computed with the Expectation – Maximization algorithm (Dempster et al. 1977). The parameters are estimated by 

using latent moderated approach in the statistical software Mplus and the syntax is taken from Moosbrugger, H., et 

al. (2010),Testing of nonlinear effects in Structural Equation Modeling: A comparison of alternative estimation 

approaches, Rotterdam, NL, Sense publications. The fit indices and coefficients of LMS approach are obtained by 

using Mplus 5.0 package and given in the following Table 5.1 and Table 5.2 respectively. 

 

Table 5.1 

Methods 𝜒2/df RMSEA CFI SRMR Result 

Latent Moderated approach 3.528 0.041 0.906 0.042 Model is significant 

 

In latent approach, the 𝜒2/𝑑𝑓   value 3.528 is less than the recommended value 5, the RMSEA value 0.041 is also 

less than 0.05, the CFI value 0.906 is higher than the guideline value 0.9 and SRMR is less than 0.05. All fit indices 

of latent moderated approach satisfied the required conditions for accepting the given model in  Diagram 4.1.  In 

overall, the fit indices of LMS Method confirm that the derived model has a high explanatory power in terms of 

describing the interrelationship among the latent exogenous and latent endogenous constructs. The coefficient values 

of latent exogenous variables and its standard error and probability value are given in the following Table 5.2. 

 

Table 5.2 

Method Paths Coefficient value Standard error p-value Result 

Latent Moderated Approach 


1
 ∗  𝑌1

∗ -0.421 0.018 0.000 Significant 


2
 ∗  𝑌1

∗ -0.307 0.027 0.000 Significant 


3
 ∗  𝑌1

∗ -0.506 0.015 0.000 Significant 


4
 ∗  𝑌1

∗ -0.327 0.024 0.000 Significant 


1
 ∗  𝑌2 -0.562 0.026 0.000 Significant 


2
 ∗  𝑌2 -0.427 0.020 0.000 Significant 


3
 ∗  𝑌2 -0.610 0.019 0.000 Significant 


4
 ∗  𝑌2 -0.405 0.015 0.000 Significant 

𝑌1
∗  𝑌2 0.597 0.004 0.000 Significant 

 

From the Table 5.2, the coefficients, standard errors and significant values are given for the Latent Moderated 

Approach Method. In Latent Moderated Approach, the linear latent exogenous variables 
1
 ∗

 and 
2
 ∗

, the nonlinear 

latent exogenous variable 
3
 ∗

 and latent quadratic exogenous variable 
4
 ∗

 are significant at 1 % level. There are four 

latent exogenous variable are explaining the manifest endogenous variables   𝑌1
∗ 𝑎𝑛𝑑 𝑌2 out of which the most 

contributing variable is 
3
 ∗

 the next contributing variable is 
1
 ∗

 and least contributing  variables are 
4
 ∗ 𝑎𝑛𝑑 

2
 ∗

. 

 

6 Unconstrained Method 

 
Marsh et al. (2004) revised the constrained approach in that they did not impose any complicated nonlinear 

constraints to define relations between product indicators and the latent nonlinear terms and denoted this new 

approach as Unconstrained approach. In the unconstrained approach extended to  quadratic nonlinear terms (Kelava 

et al., 2008) factor loadings as well as error variables and covariances are estimated directly without using any 

constraints. Additionally, parameters based on assumptions of normality are also not constrained, so that this 

approach does not need any constraints on the latent variances, too. The covariances between the linear and 

nonlinear latent variables may be freely estimated if it is assumed that the variables are non normally distributed. 

The only constraints used in this approach are the constraints on the latent means which are shown in the following: 

𝑀𝑒𝑎𝑛 𝑉𝑒𝑐𝑡𝑜𝑟 =  

0
0


21


11

    𝑎𝑛𝑑   𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑐𝑛𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 =

 

 


11


21

0
0


22

0
0


33


43


44 

  . 

An advantage of the unconstrained approach for applied researchers clearly is that the syntax is much easier to set up 

than for the extended constrained approach as no complicated, nonlinear constraints are required. The fit indices and 
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coefficients of unconstrained approach are obtained by using Mplus 5.0 package and given in the following Table 

6.1 and Table 6.2 respectively. 

Table 6.1 

Methods 𝜒2/df RMSEA CFI SRMR Result 

Unconstrained approach 1.392 0.038 0.962 0.039 Model is significant 

 

In unconstrained approach, the  𝜒2/𝑑𝑓 value 1.392 is less than the recommended value 2, the RMSEA value 0.038 

is less than 0.05, the value of CFI 0.962 is more than the guideline value 0.9 and the value of SRMR 0.039 is also 

less than 0.05. The fit indices values of unconstrained approach are also satisfied the recommended values and the 

model is accepted. Based on the fit indices it is inferred that the given model is accepted which means the 

endogenous variables 𝑌1
∗ 𝑎𝑛𝑑 𝑌2 are highly explained by the latent linear term, interaction term and quadratic term. 

The coefficient values of latent exogenous variables and its standard error and probability value are given in the 

following Table 6.2. 

Table 6.2 

Method Paths Coefficient value Standard error p-value Result 

Unconstrained Approach 


1
 ∗  𝑌1

∗ -0.438 0.011 0.000 Significant 


2
 ∗  𝑌1

∗ -0.299 0.013 0.000 Significant 


3
 ∗  𝑌1

∗ -0.548 0.009 0.000 Significant 


4
 ∗  𝑌1

∗ -0.337 0.017 0.000 Significant 


1
 ∗  𝑌2 -0.609 0.013 0.000 Significant 


2
 ∗  𝑌2 -0.475 0.019 0.000 Significant 


3
 ∗  𝑌2 -0.692 0.008 0.000 Significant 


4
 ∗  𝑌2 -0.486 0.010 0.000 Significant 

𝑌1
∗  𝑌2 -0.684 0.003 0.000 Significant 

 

From the Table 6.2, the coefficients, standard errors and significant values are given for the Unconstrained 

Approach Method. In Unconstrained Approach, the linear latent exogenous variables 
1
 ∗

 and 
2
 ∗

, the nonlinear latent 

exogenous variable 
3
 ∗

 and latent quadratic exogenous variable 
4
 ∗

 are significant at 1 % level. Out of four latent 

factors, the leading contributor to 𝑌1
∗ 𝑎𝑛𝑑 𝑌2 are 

3
 ∗

 the second leading term is 
1
 ∗

, the third leading latent term is  
4
 ∗

 

and  
2
 ∗

 is the least contributor on manifest endogenous variables  𝑌1
∗ 𝑎𝑛𝑑 𝑌2. 

 

7 Constrained Method 
 

Joreskog and Yang (1996) developed constrained approach and Marsh et al. (2004). The unconstrained approach is 

developed by Kenny and Judd (1984). In that study, the latent nonlinear terms  
3
 ∗

 and  
4
 ∗

 are specified for the both 

models constrained and unconstrained approaches. In order to estimate the parameters, the maximum likelihood 

method is used and it is to be assumed that all latent variables are normally distributed. Kenny and Judd (1984) first 

described, how to analyze a latent nonlinear model with an interaction or a quadratic effect and also they included 

all possible manifest variables considered as indicators in latent interaction term  
3
 ∗

 . Later Marsh et al. (2004) 

suggested to use the matched pair strategy in order to avoid overlapping information in the quadratic and interaction 

term. As per Kenny and Judd (1984), it is required nine product indicators for latent interaction term, but only three 

product indicators are obtained as per Marsh et al. (2000) namely 𝑋1
∗𝑋4

∗ , 𝑋2
∗𝑋5

∗ and 𝑋3
∗𝑋6

∗.  

 

If 𝑋2
∗ is an indicator of  

1
 ∗

 and 𝑋5
∗ is an indicator of  

2
 ∗

 (with 𝑋2
∗ = 12

∗


1
 ∗ + 𝛿2

∗ and 𝑋5
∗ = 52

∗


2
 ∗ + 𝛿5

∗), then the 

indicator 𝑋2
∗𝑋5

∗ of the interaction term  
3
 ∗

 would be specified as follows: 

𝑋2
∗𝑋5

∗ =  12
∗


1
 ∗ + 𝛿2

∗  25
∗


2
 ∗ + 𝛿5

∗    

         = 38
∗


3
 ∗ + 𝛿8

∗ . 

As the parameters in this measurement equation cannot be estimated directly, several constraints are needed. The 

variance decomposition of the interaction indicator 𝑋2
∗𝑋5

∗ required for model specification and is given as follows: 

𝑉𝑎𝑟 𝑋2
∗𝑋5

∗ = 𝑉𝑎𝑟 38
∗


3
 ∗ + 𝛿8

∗   

                      = 38
∗ 2
𝑉𝑎𝑟 

3
 ∗) + 𝑉𝑎𝑟(𝛿8

∗    

and includes the following constraints 

38
∗ 2

= 12
∗ 2

25
∗ 2
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𝑉𝑎𝑟 
3
 ∗ = 𝑉𝑎𝑟 

1
 ∗ + 𝑉𝑎𝑟 

2
 ∗ + 𝐶𝑜𝑣 

1
 ∗, 

2
 ∗ 

2
  

𝑉𝑎𝑟(𝛿8
∗) = 12

∗ 2
𝑉𝑎𝑟 

1
 ∗ 𝑉𝑎𝑟(𝛿5

∗) + 25
∗ 2
𝑉𝑎𝑟 

2
 ∗ 𝑉𝑎𝑟(𝛿2

∗) + 𝑉𝑎𝑟 𝛿2
∗ 𝑉𝑎𝑟(𝛿5

∗) . 

All indicators of the linear terms 
1
 ∗

 and 
2
 ∗

 should be used in the formation of the indicators of each latent non 

linear term, but each of the multiple indicators should be used only once for each nonlinear term. 

The above measurement model for the predictor variables of the nonlinear model is therefore as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋1𝑋4

𝑋2𝑋5

𝑋3𝑋6

𝑋1
2

𝑋2
2

𝑋3
2  
 
 
 
 
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 
 
 
 

1 0
𝜆12 0

  
0 0
0 0

𝜆13 0
0 1   

   
0 0
0 0

0 𝜆25

0 𝜆26

0 0
0 0

   

0 0
0 0

    
1 0
𝜆38 0

0 0
0 0

    𝜆39 0
1 0

0 0
0 0

      
0 𝜆42

0 𝜆43 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
𝜉1

𝜉2

𝜉1𝜉2

𝜉1
2  
 
 
 

+

 
 
 
 
 
 
 
 
 
 
 
 
 
𝛿1

𝛿2

𝛿3

𝛿4

𝛿5

𝛿6

𝛿7

𝛿8

𝛿9

𝛿10

𝛿11

𝛿12 
 
 
 
 
 
 
 
 
 
 
 
 

 . 

Under the supposition that 𝜉1, 𝜉2,  and all error terms 𝛿 are multivariate normal, uncorrelated and have zero means. 

Joreskog and Yang (1996) proposed a model with a latent mean structure. Using the constrained approach extended 

for multiple nonlinear term by Kelava et.al.,(2008), the mean vector and covariance matrix of 𝜉1,  𝜉2 , 𝜉1𝜉2 and 𝜉1
2 

are, respectively. 

𝑀𝑒𝑎𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 =  

0
0


21


11

    𝑎𝑛𝑑   𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 =

 
 
 
 
 


11


21


22

0 0
0 0


11


22
+ 

21
2

2
11


21
2

11
2
 
 
 
 
 

 . 

Furthermore, even if  𝜉1 and 𝜉2 are centered so as to have zero means,  𝐸(𝜉1𝜉2) = 𝐶𝑜𝑣  𝜉1 , 𝜉2 = 
21

,  will typically 

not be zero. Extending Joreskog and Yang (1996) latent interaction model to a model with quadratic terms (Kelava 

et al., 2008). In order to estimate the parameters in extended constrained approach, the syntax (Kelava et al., 2008) 

𝐸 𝜉1
2 = 𝑉𝑎𝑟 𝜉1 = 

11
 𝑎𝑛𝑑 𝐸 𝜉2

2 = 𝑉𝑎𝑟 𝜉2 = 
22

  will also not be zero. Hence the mean structure is always 

necessary and should always be specified. It is used in LISREL package and it is taken from Moosbrugger, H., et.al. 

(2010),Testing of nonlinear effects in Structural Equation Modeling: A comparison of alternative estimation 

approaches, Rotterdam, NL, Sense publications. 

 

The fit indices and coefficients of constrained approach are obtained by using Mplus 5.0 package and given in the 

following Table 7.1 and Table 7.2 respectively. 

Table 7.1 

Methods 𝜒2/df RMSEA CFI SRMR Result 

Constrained approach 1.046 0.003 0.995 0.028 Model is significant 

 

From Table 7.1, in constrained approach, the value of 𝜒2/𝑑𝑓 1.046 is less than the guideline value 2, the RMSEA 

value 0.003 is less than 0.05, the CFI value 0.995 is more than 0.9 and it is close to 1 and SMR value 0.028 is less 

than 0.05. All fit indices highly satisfied the guideline values. Based on the fit indices it is inferred that the given 

model is accepted which means the endogenous variables 𝑌1
∗ 𝑎𝑛𝑑 𝑌2 are highly explained by the latent linear term, 

interaction term and quadratic term.  

 

The fit indices of the constrained approach highly satisfy the guideline values than the latent moderated approach 

and unconstrained method. The performance of the constrained approach is better than the latent moderated 

approach and unconstrained method. The coefficient values of latent exogenous variables and its standard error and 

probability values are given in the following Table 7.2. 
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Table 7.2 

Method Paths Coefficient value Standard error p-value Result 

Constrained Approach 


1
 ∗  𝑌1

∗ -0.457 0.003 0.000 Significant 


2
 ∗  𝑌1

∗ -0.308 0.014 0.000 Significant 


3
 ∗  𝑌1

∗ -0.619 0.008 0.000 Significant 


4
 ∗  𝑌1

∗ -0.364 0.006 0.000 Significant 


1
 ∗  𝑌2 -0.689 0.018 0.000 Significant 


2
 ∗  𝑌2 -0.507 0.012 0.000 Significant 


3
 ∗  𝑌2 -0.724 0.006 0.000 Significant 


4
 ∗  𝑌2 -0.531 0.002 0.000 Significant 

𝑌 1
∗  𝑌 2 0.703 0.001 0.000 Significant 

 

From the Table 7.2, the coefficients, standard errors and significant values are given for the Constrained Approach 

Method. In Constrained Approach, the linear latent exogenous variables 
1

 ∗
 and 

2

 ∗
, the nonlinear latent exogenous 

variable 
3

 ∗
 and latent quadratic exogenous variable 

4

 ∗
 are significant at 1 % level of significant. Out of four latent 

factors, the leading contributor to  𝑌1
∗ 𝑎𝑛𝑑 𝑌2  is 

3

 ∗
 the second leading term is 

1

 ∗
 , the third leading latent term is  

4

 ∗
 

and least contributor on manifest endogenous variables is  
2

 ∗
.  

 

The coefficient of each latent exogenous variables value are significantly contributing to the manifest endogenous 

variables  𝑌1
∗ 𝑎𝑛𝑑 𝑌2. Their coefficient values are also clearly explaining the relationship among the variables. In 

Constrained approach method, the coefficient value of the linear latent exogenous variables 
1

 ∗
 and 

2

 ∗
, the latent 

interaction exogenous variable 
3

 ∗
 and latent quadratic exogenous variable 

4

 ∗
 are considerably higher than the latent 

moderated method and unconstrained method. Hence it is concluded that the constrained method is the best method 

to explain the relationship between latent exogenous variables and manifest endogenous variables. 

 

8 Conclusion 
 

When considering the three methods namely latent moderated structural model, unconstrained approach, constrained 

approach all the three methods explain the relationship among the variables very well. Comparing unconstrained 

approach with latent moderated approach, the unconstrained method is better explaining endogenous variables 

𝑌1
∗ 𝑎𝑛𝑑 𝑌2 by the latent exogenous variables. The constrained method is compared with latent moderated method 

and unconstrained method. The fit indices of constrained method highly satisfy the guideline values than the other 

two methods. It is inferred that the constrained approach is the best method to explain the relationship between the 

latent exogenous variables 
1

 ∗
 , 

2

 ∗
 (blood factor, life style factor), 

3

 ∗
 (interaction term), 

4

 ∗
 (quadratic term) and the 

manifest endogenous variable 𝑌1
∗ (Ejection Fraction) and 𝑌2 (Survival status). 
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